mcmc_based_searches.py 92 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" Searches using MCMC-based methods """
2
from __future__ import division, absolute_import, print_function
Gregory Ashton's avatar
Gregory Ashton committed
3

4
import sys
Gregory Ashton's avatar
Gregory Ashton committed
5
import os
6
import copy
Gregory Ashton's avatar
Gregory Ashton committed
7
import logging
8
from collections import OrderedDict
9
import subprocess
10
11
12
13
14
15
16
17

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import emcee
import corner
import dill as pickle

18
import pyfstat.core as core
19
20
from pyfstat.core import tqdm, args, read_par
import pyfstat.optimal_setup_functions as optimal_setup_functions
21
import pyfstat.helper_functions as helper_functions
22
23


24
class MCMCSearch(core.BaseSearchClass):
Gregory Ashton's avatar
Gregory Ashton committed
25
    """MCMC search using ComputeFstat
26
27
28
29
30
31
32
33
34

    Parameters
    ----------
    theta_prior: dict
        Dictionary of priors and fixed values for the search parameters.
        For each parameters (key of the dict), if it is to be held fixed
        the value should be the constant float, if it is be searched, the
        value should be a dictionary of the prior.
    tref, minStartTime, maxStartTime: int
35
36
37
38
39
40
41
        GPS seconds of the reference time, start time and end time. While tref
        is requirede, minStartTime and maxStartTime default to None in which
        case all available data is used.
    label, outdir: str
        A label and output directory (optional, defaults is `'data'`) to
        name files
    sftfilepattern: str, optional
Gregory Ashton's avatar
Gregory Ashton committed
42
43
        Pattern to match SFTs using wildcards (*?) and ranges [0-9];
        mutiple patterns can be given separated by colons.
44
    detectors: str, optional
Gregory Ashton's avatar
Gregory Ashton committed
45
46
        Two character reference to the detectors to use, specify None for no
        contraint and comma separate for multiple references.
47
    nsteps: list (2,), optional
48
49
50
        Number of burn-in and production steps to take, [nburn, nprod]. See
        `pyfstat.MCMCSearch.setup_initialisation()` for details on adding
        initialisation steps.
51
    nwalkers, ntemps: int, optional
52
53
        The number of walkers and temperates to use in the parallel
        tempered PTSampler.
54
    log10beta_min float < 0, optional
55
56
57
        The  log_10(beta) value, if given the set of betas passed to PTSampler
        are generated from `np.logspace(0, log10beta_min, ntemps)` (given
        in descending order to emcee).
58
    theta_initial: dict, array, optional
59
60
        A dictionary of distribution about which to distribute the
        initial walkers about
61
    rhohatmax: float, optional
62
63
64
        Upper bound for the SNR scale parameter (required to normalise the
        Bayes factor) - this needs to be carefully set when using the
        evidence.
65
    binary: bool, optional
66
        If true, search over binary parameters
67
    BSGL: bool, optional
Gregory Ashton's avatar
Gregory Ashton committed
68
        If true, use the BSGL statistic
69
    SSBPrec: int, optional
Gregory Ashton's avatar
Gregory Ashton committed
70
        SSBPrec (SSB precision) to use when calling ComputeFstat
71
    minCoverFreq, maxCoverFreq: float, optional
72
73
        Minimum and maximum instantaneous frequency which will be covered
        over the SFT time span as passed to CreateFstatInput
74
    injectSources: dict, optional
Gregory Ashton's avatar
Gregory Ashton committed
75
76
        If given, inject these properties into the SFT files before running
        the search
77
    assumeSqrtSX: float, optional
Gregory Ashton's avatar
Gregory Ashton committed
78
        Don't estimate noise-floors, but assume (stationary) per-IFO sqrt{SX}
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

    Attributes
    ----------
    symbol_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), to Latex math
        symbols for plots
    unit_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), and the
        units (i.e. `Hz`)
    transform_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), where the key is
        itself a dictionary which can item `multiplier`, `subtractor`, or
        `unit` by which to transform by and update the units.

    """
94
95

    symbol_dictionary = dict(
96
        F0='$f$', F1='$\dot{f}$', F2='$\ddot{f}$', Alpha=r'$\alpha$',
97
98
        Delta='$\delta$', asini='asini', period='P', ecc='ecc', tp='tp',
        argp='argp')
99
    unit_dictionary = dict(
100
101
        F0='Hz', F1='Hz/s', F2='Hz/s$^2$', Alpha=r'rad', Delta='rad',
        asini='', period='s', ecc='', tp='', argp='')
102
    transform_dictionary = {}
103

Gregory Ashton's avatar
Gregory Ashton committed
104
    @helper_functions.initializer
105
106
107
    def __init__(self, theta_prior, tref, label, outdir='data',
                 minStartTime=None, maxStartTime=None, sftfilepattern=None,
                 detectors=None, nsteps=[100, 100], nwalkers=100, ntemps=1,
108
                 log10beta_min=-5, theta_initial=None,
109
                 rhohatmax=1000, binary=False, BSGL=False,
Gregory Ashton's avatar
Gregory Ashton committed
110
                 SSBprec=None, minCoverFreq=None, maxCoverFreq=None,
111
                 injectSources=None, assumeSqrtSX=None):
112

Gregory Ashton's avatar
Gregory Ashton committed
113
114
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
115
        self._add_log_file()
116
        logging.info('Set-up MCMC search for model {}'.format(self.label))
117
118
        if sftfilepattern:
            logging.info('Using data {}'.format(self.sftfilepattern))
119
        else:
120
            logging.info('No sftfilepattern given')
121
122
        if injectSources:
            logging.info('Inject sources: {}'.format(injectSources))
123
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
124
        self._unpack_input_theta()
125
        self.ndim = len(self.theta_keys)
126
127
        if self.log10beta_min:
            self.betas = np.logspace(0, self.log10beta_min, self.ntemps)
128
129
        else:
            self.betas = None
130

131
132
133
        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

134
        self._set_likelihoodcoef()
135
        self._log_input()
136
137
138

    def _set_likelihoodcoef(self):
        self.likelihoodcoef = np.log(70./self.rhohatmax**4)
139

140
    def _log_input(self):
141
        logging.info('theta_prior = {}'.format(self.theta_prior))
142
        logging.info('nwalkers={}'.format(self.nwalkers))
143
144
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
145
146
        logging.info('log10beta_min = {}'.format(
            self.log10beta_min))
147

148
    def _initiate_search_object(self):
149
        logging.info('Setting up search object')
150
        self.search = core.ComputeFstat(
151
            tref=self.tref, sftfilepattern=self.sftfilepattern,
152
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
153
            detectors=self.detectors, BSGL=self.BSGL, transient=False,
154
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
155
            binary=self.binary, injectSources=self.injectSources,
156
            assumeSqrtSX=self.assumeSqrtSX, SSBprec=self.SSBprec)
157
158
159
160
        if self.minStartTime is None:
            self.minStartTime = self.search.minStartTime
        if self.maxStartTime is None:
            self.maxStartTime = self.search.maxStartTime
161
162

    def logp(self, theta_vals, theta_prior, theta_keys, search):
163
        H = [self._generic_lnprior(**theta_prior[key])(p) for p, key in
164
165
166
167
168
169
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
170
171
172
        twoF = search.get_fullycoherent_twoF(
            self.minStartTime, self.maxStartTime, *self.fixed_theta)
        return twoF/2.0 + self.likelihoodcoef
173

174
    def _unpack_input_theta(self):
175
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']
176
177
178
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
179
180
        full_theta_keys_copy = copy.copy(full_theta_keys)

181
182
        full_theta_symbols = ['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                              r'$\delta$']
183
184
        if self.binary:
            full_theta_symbols += [
185
                'asini', 'period', 'ecc', 'tp', 'argp']
186

187
188
        self.theta_keys = []
        fixed_theta_dict = {}
189
        for key, val in self.theta_prior.iteritems():
190
191
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
192
                self.theta_keys.append(key)
193
194
195
196
197
198
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
199
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

215
    def _check_initial_points(self, p0):
216
217
218
219
220
221
222
223
224
225
226
227
228
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

229
                p0 = self._generate_new_p0_to_fix_initial_points(
230
231
                    p0, nt, initial_priors)

232
    def _generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
252

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    def setup_initialisation(self, nburn0, scatter_val=1e-10):
        """ Add an initialisation step to the MCMC run

        If called prior to `run()`, adds an intial step in which the MCMC
        simulation is run for `nburn0` steps. After this, the MCMC simulation
        continues in the usual manner (i.e. for nburn and nprod steps), but the
        walkers are reset scattered around the maximum likelihood position
        of the initialisation step.

        Parameters
        ----------
        nburn0: int
            Number of initialisation steps to take
        scatter_val: float
            Relative number to scatter walkers around the maximum likelihood
            position after the initialisation step

        """

        logging.info('Setting up initialisation with nburn0={}, scatter_val={}'
                     .format(nburn0, scatter_val))
        self.nsteps = [nburn0] + self.nsteps
        self.scatter_val = scatter_val

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
#    def setup_burnin_convergence_testing(
#            self, n=10, test_type='autocorr', windowed=False, **kwargs):
#        """ Set up convergence testing during the MCMC simulation
#
#        Parameters
#        ----------
#        n: int
#            Number of steps after which to test convergence
#        test_type: str ['autocorr', 'GR']
#            If 'autocorr' use the exponential autocorrelation time (kwargs
#            passed to `get_autocorr_convergence`). If 'GR' use the Gelman-Rubin
#            statistic (kwargs passed to `get_GR_convergence`)
#        windowed: bool
#            If True, only calculate the convergence test in a window of length
#            `n`
#        **kwargs:
#            Passed to either `_test_autocorr_convergence()` or
#            `_test_GR_convergence()` depending on `test_type`.
#
#        """
#        logging.info('Setting up convergence testing')
#        self.convergence_n = n
#        self.convergence_windowed = windowed
#        self.convergence_test_type = test_type
#        self.convergence_kwargs = kwargs
#        self.convergence_diagnostic = []
#        self.convergence_diagnosticx = []
#        if test_type in ['autocorr']:
#            self._get_convergence_test = self._test_autocorr_convergence
#        elif test_type in ['GR']:
#            self._get_convergence_test = self._test_GR_convergence
#        else:
#            raise ValueError('test_type {} not understood'.format(test_type))
#
#
#    def _test_autocorr_convergence(self, i, sampler, test=True, n_cut=5):
#        try:
#            acors = np.zeros((self.ntemps, self.ndim))
#            for temp in range(self.ntemps):
#                if self.convergence_windowed:
#                    j = i-self.convergence_n
#                else:
#                    j = 0
#                x = np.mean(sampler.chain[temp, :, j:i, :], axis=0)
#                acors[temp, :] = emcee.autocorr.exponential_time(x)
#            c = np.max(acors, axis=0)
#        except emcee.autocorr.AutocorrError:
#            logging.info('Failed to calculate exponential autocorrelation')
#            c = np.zeros(self.ndim) + np.nan
#        except AttributeError:
#            logging.info('Unable to calculate exponential autocorrelation')
#            c = np.zeros(self.ndim) + np.nan
#
#        self.convergence_diagnosticx.append(i - self.convergence_n/2.)
#        self.convergence_diagnostic.append(list(c))
#
#        if test:
#            return i > n_cut * np.max(c)
#
#    def _test_GR_convergence(self, i, sampler, test=True, R=1.1):
#        if self.convergence_windowed:
#            s = sampler.chain[0, :, i-self.convergence_n+1:i+1, :]
#        else:
#            s = sampler.chain[0, :, :i+1, :]
#        N = float(self.convergence_n)
#        M = float(self.nwalkers)
#        W = np.mean(np.var(s, axis=1), axis=0)
#        per_walker_mean = np.mean(s, axis=1)
#        mean = np.mean(per_walker_mean, axis=0)
#        B = N / (M-1.) * np.sum((per_walker_mean-mean)**2, axis=0)
#        Vhat = (N-1)/N * W + (M+1)/(M*N) * B
#        c = np.sqrt(Vhat/W)
#        self.convergence_diagnostic.append(c)
#        self.convergence_diagnosticx.append(i - self.convergence_n/2.)
#
#        if test and np.max(c) < R:
#            return True
#        else:
#            return False
#
#    def _test_convergence(self, i, sampler, **kwargs):
#        if np.mod(i+1, self.convergence_n) == 0:
#            return self._get_convergence_test(i, sampler, **kwargs)
#        else:
#            return False
#
#    def _run_sampler_with_conv_test(self, sampler, p0, nprod=0, nburn=0):
#        logging.info('Running {} burn-in steps with convergence testing'
#                     .format(nburn))
#        iterator = tqdm(sampler.sample(p0, iterations=nburn), total=nburn)
#        for i, output in enumerate(iterator):
#            if self._test_convergence(i, sampler, test=True,
#                                      **self.convergence_kwargs):
#                logging.info(
#                    'Converged at {} before max number {} of steps reached'
#                    .format(i, nburn))
#                self.convergence_idx = i
#                break
#        iterator.close()
#        logging.info('Running {} production steps'.format(nprod))
#        j = nburn
#        iterator = tqdm(sampler.sample(output[0], iterations=nprod),
#                        total=nprod)
#        for result in iterator:
#            self._test_convergence(j, sampler, test=False,
#                                   **self.convergence_kwargs)
#            j += 1
#        return sampler

    def _run_sampler(self, sampler, p0, nprod=0, nburn=0, window=50):
        for result in tqdm(sampler.sample(p0, iterations=nburn+nprod),
                           total=nburn+nprod):
            pass
390

391
392
        self.mean_acceptance_fraction = np.mean(
            sampler.acceptance_fraction, axis=1)
393
        logging.info("Mean acceptance fraction: {}"
394
                     .format(self.mean_acceptance_fraction))
395
        if self.ntemps > 1:
396
            self.tswap_acceptance_fraction = sampler.tswap_acceptance_fraction
397
398
399
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
        try:
400
            self.autocorr_time = sampler.get_autocorr_time(c=4)
401
            logging.info("Autocorrelation length: {}".format(
402
                self.autocorr_time))
403
        except emcee.autocorr.AutocorrError as e:
404
            self.autocorr_time = np.nan
405
406
407
408
409
            logging.warning(
                'Autocorrelation calculation failed with message {}'.format(e))

        return sampler

410
    def _estimate_run_time(self):
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
        """ Print the estimated run time

        Uses timing coefficients based on a Lenovo T460p Intel(R)
        Core(TM) i5-6300HQ CPU @ 2.30GHz.

        """
        # Todo: add option to time on a machine, and move coefficients to
        # ~/.pyfstat.conf
        if (type(self.theta_prior['Alpha']) == dict or
                type(self.theta_prior['Delta']) == dict):
            tau0S = 7.3e-5
            tau0LD = 4.2e-7
        else:
            tau0S = 5.0e-5
            tau0LD = 6.2e-8
426
        Nsfts = (self.maxStartTime - self.minStartTime) / 1800.
427
428
429
        numb_evals = np.sum(self.nsteps)*self.nwalkers*self.ntemps
        a = tau0S * numb_evals
        b = tau0LD * Nsfts * numb_evals
430
431
432
        logging.info('Estimated run-time = {} s = {:1.0f}:{:1.0f} m'.format(
            a+b, *divmod(a+b, 60)))

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
    def run(self, proposal_scale_factor=2, create_plots=True, c=5, **kwargs):
        """ Run the MCMC simulatation

        Parameters
        ----------
        proposal_scale_factor: float
            The proposal scale factor used by the sampler, see Goodman & Weare
            (2010). If the acceptance fraction is too low, you can raise it by
            decreasing the a parameter; and if it is too high, you can reduce
            it by increasing the a parameter [Foreman-Mackay (2013)].
        create_plots: bool
            If true, save trace plots of the walkers
        c: int
            The minimum number of autocorrelation times needed to trust the
            result when estimating the autocorrelation time (see
            emcee.autocorr.integrated_time for further details. Default is 5
        **kwargs:
            Passed to _plot_walkers to control the figures

452
453
454
455
456
        Returns
        -------
        sampler: emcee.ptsampler.PTSampler
            The emcee ptsampler object

457
        """
458

459
        self.old_data_is_okay_to_use = self._check_old_data_is_okay_to_use()
460
461
462
        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
463
            d = self.get_saved_data_dictionary()
464
465
466
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
467
            self.all_lnlikelihood = d['all_lnlikelihood']
468
469
            return

470
        self._initiate_search_object()
471
        self._estimate_run_time()
472
473
474
475

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
476
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
477

478
479
480
        p0 = self._generate_initial_p0()
        p0 = self._apply_corrections_to_p0(p0)
        self._check_initial_points(p0)
481

482
        # Run initialisation steps if required
483
484
485
        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
Gregory Ashton's avatar
Gregory Ashton committed
486
                j, ninit_steps, n))
487
            sampler = self._run_sampler(sampler, p0, nburn=n)
488
            if create_plots:
489
                fig, axes = self._plot_walkers(sampler,
490
491
                                               symbols=self.theta_symbols,
                                               **kwargs)
492
493
                fig.tight_layout()
                fig.savefig('{}/{}_init_{}_walkers.png'.format(
Gregory Ashton's avatar
Gregory Ashton committed
494
                    self.outdir, self.label, j))
495

496
497
498
            p0 = self._get_new_p0(sampler)
            p0 = self._apply_corrections_to_p0(p0)
            self._check_initial_points(p0)
499
500
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
501
502
503
504
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
505
506
507
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
508
        sampler = self._run_sampler(sampler, p0, nburn=nburn, nprod=nprod)
509
        if create_plots:
510
            fig, axes = self._plot_walkers(sampler, symbols=self.theta_symbols,
511
                                           nprod=nprod, **kwargs)
512
513
            fig.tight_layout()
            fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label),
Gregory Ashton's avatar
Gregory Ashton committed
514
                        )
515
516
517
518

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
519
        all_lnlikelihood = sampler.lnlikelihood[:, :, nburn:]
520
521
522
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
523
524
        self.all_lnlikelihood = all_lnlikelihood
        self._save_data(sampler, samples, lnprobs, lnlikes, all_lnlikelihood)
Gregory Ashton's avatar
Gregory Ashton committed
525
        return sampler
526

527
    def _get_rescale_multiplier_for_key(self, key):
528
        """ Get the rescale multiplier from the transform_dictionary
529
530
531
532
533

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
534
        if key not in self.transform_dictionary:
535
536
            return 1

537
538
        if 'multiplier' in self.transform_dictionary[key]:
            val = self.transform_dictionary[key]['multiplier']
539
540
541
            if type(val) == str:
                if hasattr(self, val):
                    multiplier = getattr(
542
                        self, self.transform_dictionary[key]['multiplier'])
543
544
545
546
547
548
549
550
551
                else:
                    raise ValueError(
                        "multiplier {} not a class attribute".format(val))
            else:
                multiplier = val
        else:
            multiplier = 1
        return multiplier

552
    def _get_rescale_subtractor_for_key(self, key):
553
        """ Get the rescale subtractor from the transform_dictionary
554
555
556
557
558

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
559
        if key not in self.transform_dictionary:
560
561
            return 0

562
563
        if 'subtractor' in self.transform_dictionary[key]:
            val = self.transform_dictionary[key]['subtractor']
564
565
566
            if type(val) == str:
                if hasattr(self, val):
                    subtractor = getattr(
567
                        self, self.transform_dictionary[key]['subtractor'])
568
569
570
571
572
573
574
575
576
                else:
                    raise ValueError(
                        "subtractor {} not a class attribute".format(val))
            else:
                subtractor = val
        else:
            subtractor = 0
        return subtractor

577
    def _scale_samples(self, samples, theta_keys):
578
        """ Scale the samples using the transform_dictionary """
579
        for key in theta_keys:
580
            if key in self.transform_dictionary:
581
582
                idx = theta_keys.index(key)
                s = samples[:, idx]
583
                subtractor = self._get_rescale_subtractor_for_key(key)
584
                s = s - subtractor
585
                multiplier = self._get_rescale_multiplier_for_key(key)
586
                s *= multiplier
587
588
                samples[:, idx] = s

589
590
        return samples

591
    def _get_labels(self):
592
        """ Combine the units, symbols and rescaling to give labels """
593

594
595
596
597
598
599
        labels = []
        for key in self.theta_keys:
            label = None
            s = self.symbol_dictionary[key]
            s.replace('_{glitch}', r'_\textrm{glitch}')
            u = self.unit_dictionary[key]
600
601
602
603
604
605
606
            if key in self.transform_dictionary:
                if 'symbol' in self.transform_dictionary[key]:
                    s = self.transform_dictionary[key]['symbol']
                if 'label' in self.transform_dictionary[key]:
                    label = self.transform_dictionary[key]['label']
                if 'unit' in self.transform_dictionary[key]:
                    u = self.transform_dictionary[key]['unit']
607
608
609
610
            if label is None:
                label = '{} \n [{}]'.format(s, u)
            labels.append(label)
        return labels
611

612
613
    def plot_corner(self, figsize=(7, 7), add_prior=False, nstds=None,
                    label_offset=0.4, dpi=300, rc_context={},
614
                    tglitch_ratio=False, fig_and_axes=None, save_fig=True,
615
                    **kwargs):
616
617
618
619
620
621
622
623
624
        """ Generate a corner plot of the posterior

        Using the `corner` package (https://pypi.python.org/pypi/corner/),
        generate estimates of the posterior from the production samples.

        Parameters
        ----------
        figsize: tuple (7, 7)
            Figure size in inches (passed to plt.subplots)
625
626
627
        add_prior: bool, str
            If true, plot the prior as a red line. If 'full' then for uniform
            priors plot the full extent of the prior.
628
629
630
631
632
633
634
635
636
637
638
639
640
641
        nstds: float
            The number of standard deviations to plot centered on the mean
        label_offset: float
            Offset the labels from the plot: useful to precent overlapping the
            tick labels with the axis labels
        dpi: int
            Passed to plt.savefig
        rc_context: dict
            Dictionary of rc values to set while generating the figure (see
            matplotlib rc for more details)
        tglitch_ratio: bool
            If true, and tglitch is a parameter, plot posteriors as the
            fractional time at which the glitch occurs instead of the actual
            time
642
643
644
645
646
        fig_and_axes: tuple
            fig and axes to plot on, the axes must be of the right shape,
            namely (ndim, ndim)
        save_fig: bool
            If true, save the figure, else return the fig, axes
647
648
        **kwargs:
            Passed to corner.corner
649

650
651
652
653
        Returns
        -------
        fig, axes:
            The matplotlib figure and axes, only returned if save_fig = False
654
655

        """
656

657
658
659
660
        if 'truths' in kwargs and len(kwargs['truths']) != self.ndim:
            logging.warning('len(Truths) != ndim, Truths will be ignored')
            kwargs['truths'] = None

Gregory Ashton's avatar
Gregory Ashton committed
661
662
        if self.ndim < 2:
            with plt.rc_context(rc_context):
663
664
665
666
                if fig_and_axes is None:
                    fig, ax = plt.subplots(figsize=figsize)
                else:
                    fig, ax = fig_and_axes
Gregory Ashton's avatar
Gregory Ashton committed
667
668
669
670
671
672
673
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

674
        with plt.rc_context(rc_context):
675
676
677
678
679
            if fig_and_axes is None:
                fig, axes = plt.subplots(self.ndim, self.ndim,
                                         figsize=figsize)
            else:
                fig, axes = fig_and_axes
680
681

            samples_plt = copy.copy(self.samples)
682
            labels = self._get_labels()
683

684
            samples_plt = self._scale_samples(samples_plt, self.theta_keys)
685
686
687
688
689

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
690
691
692
                        samples_plt[:, j] = (
                            s - self.minStartTime)/(
                                self.maxStartTime - self.minStartTime)
693
                        labels[j] = r'$R_{\textrm{glitch}}$'
694
695
696
697
698
699
700

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
701
702
            elif 'range' in kwargs:
                _range = kwargs.pop('range')
703
704
705
            else:
                _range = None

706
707
708
709
            hist_kwargs = kwargs.pop('hist_kwargs', dict())
            if 'normed' not in hist_kwargs:
                hist_kwargs['normed'] = True

710
            fig_triangle = corner.corner(samples_plt,
711
                                         labels=labels,
712
713
714
715
716
717
718
719
720
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
721
                                         hist_kwargs=hist_kwargs,
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
738
                self._add_prior_to_corner(axes, self.samples, add_prior)
739

740
741
742
743
744
            if save_fig:
                fig_triangle.savefig('{}/{}_corner.png'.format(
                    self.outdir, self.label), dpi=dpi)
            else:
                return fig, axes
745

746
    def _add_prior_to_corner(self, axes, samples, add_prior):
747
748
749
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            s = samples[:, i]
750
751
752
753
754
755
756
757
758
759
            lnprior = self._generic_lnprior(**self.theta_prior[key])
            if add_prior == 'full' and self.theta_prior[key]['type'] == 'unif':
                lower = self.theta_prior[key]['lower']
                upper = self.theta_prior[key]['upper']
                r = upper-lower
                xlim = [lower-0.05*r, upper+0.05*r]
                x = np.linspace(xlim[0], xlim[1], 1000)
            else:
                xlim = ax.get_xlim()
                x = np.linspace(s.min(), s.max(), 1000)
760
761
            multiplier = self._get_rescale_multiplier_for_key(key)
            subtractor = self._get_rescale_subtractor_for_key(key)
762
763
764
765
766
767
768
769
            ax.plot((x-subtractor)*multiplier,
                    [np.exp(lnprior(xi)) for xi in x], '-C3',
                    label='prior')

            for j in range(i, self.ndim):
                axes[j][i].set_xlim(xlim[0], xlim[1])
            for k in range(0, i):
                axes[i][k].set_ylim(xlim[0], xlim[1])
770

771
772
773
774
775
776
777
778
    def plot_prior_posterior(self, normal_stds=2):
        """ Plot the posterior in the context of the prior """
        fig, axes = plt.subplots(nrows=self.ndim, figsize=(8, 4*self.ndim))
        N = 1000
        from scipy.stats import gaussian_kde

        for i, (ax, key) in enumerate(zip(axes, self.theta_keys)):
            prior_dict = self.theta_prior[key]
779
            prior_func = self._generic_lnprior(**prior_dict)
780
781
782
783
784
            if prior_dict['type'] == 'unif':
                x = np.linspace(prior_dict['lower'], prior_dict['upper'], N)
                prior = prior_func(x)
                prior[0] = 0
                prior[-1] = 0
Gregory Ashton's avatar
Gregory Ashton committed
785
786
787
788
789
            elif prior_dict['type'] == 'log10unif':
                upper = prior_dict['log10upper']
                lower = prior_dict['log10lower']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
790
791
792
793
794
            elif prior_dict['type'] == 'norm':
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = prior_func(x)
795
796
797
798
799
            elif prior_dict['type'] == 'halfnorm':
                lower = prior_dict['loc']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
Gregory Ashton's avatar
Gregory Ashton committed
800
801
802
803
804
            elif prior_dict['type'] == 'neghalfnorm':
                upper = prior_dict['loc']
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
805
806
807
            else:
                raise ValueError('Not implemented for prior type {}'.format(
                    prior_dict['type']))
808
            priorln = ax.plot(x, prior, 'C3', label='prior')
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
            ax.set_xlabel(self.theta_symbols[i])

            s = self.samples[:, i]
            while len(s) > 10**4:
                # random downsample to avoid slow calculation of kde
                s = np.random.choice(s, size=int(len(s)/2.))
            kde = gaussian_kde(s)
            ax2 = ax.twinx()
            postln = ax2.plot(x, kde.pdf(x), 'k', label='posterior')
            ax2.set_yticklabels([])
            ax.set_yticklabels([])

        lns = priorln + postln
        labs = [l.get_label() for l in lns]
        axes[0].legend(lns, labs, loc=1, framealpha=0.8)

        fig.savefig('{}/{}_prior_posterior.png'.format(
            self.outdir, self.label))

828
    def plot_cumulative_max(self, **kwargs):
829
830
831
832
        """ Plot the cumulative twoF for the maximum posterior estimate

        See the pyfstat.core.plot_twoF_cumulative function for further details
        """
Gregory Ashton's avatar
Gregory Ashton committed
833
834
835
836
        d, maxtwoF = self.get_max_twoF()
        for key, val in self.theta_prior.iteritems():
            if key not in d:
                d[key] = val
837

838
839
840
        if 'add_pfs' in kwargs:
            self.generate_loudest()

841
        if hasattr(self, 'search') is False:
842
            self._initiate_search_object()
843
844
845
        if self.binary is False:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
846
                Alpha=d['Alpha'], Delta=d['Delta'],
847
                tstart=self.minStartTime, tend=self.maxStartTime,
848
                **kwargs)
849
850
851
852
853
        else:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
                Alpha=d['Alpha'], Delta=d['Delta'], asini=d['asini'],
                period=d['period'], ecc=d['ecc'], argp=d['argp'], tp=d['argp'],
854
                tstart=self.minStartTime, tend=self.maxStartTime, **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
855

856
    def _generic_lnprior(self, **kwargs):
857
858
859
860
        """ Return a lambda function of the pdf

        Parameters
        ----------
861
        **kwargs:
862
863
864
865
            A dictionary containing 'type' of pdf and shape parameters

        """

Gregory Ashton's avatar
Gregory Ashton committed
866
        def log_of_unif(x, a, b):
867
868
869
870
871
872
873
874
875
876
877
878
879
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

Gregory Ashton's avatar
Gregory Ashton committed
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
        def log_of_log10unif(x, log10lower, log10upper):
            log10x = np.log10(x)
            above = log10x < log10upper
            below = log10x > log10lower
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(x*np.log(10)*(log10upper-log10lower))
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(x*np.log(10)*(log10upper-log10lower))
                return p

        def log_of_halfnorm(x, loc, scale):
896
            if x < loc:
897
898
899
900
901
902
903
904
905
906
907
908
909
910
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
Gregory Ashton's avatar
Gregory Ashton committed
911
912
913
914
            return lambda x: log_of_unif(x, kwargs['lower'], kwargs['upper'])
        if kwargs['type'] == 'log10unif':
            return lambda x: log_of_log10unif(
                x, kwargs['log10lower'], kwargs['log10upper'])
915
        elif kwargs['type'] == 'halfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
916
            return lambda x: log_of_halfnorm(x, kwargs['loc'], kwargs['scale'])
917
        elif kwargs['type'] == 'neghalfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
918
919
            return lambda x: log_of_halfnorm(
                -x, kwargs['loc'], kwargs['scale'])
920
921
922
923
924
925
926
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

927
    def _generate_rv(self, **kwargs):
928
929
930
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
Gregory Ashton's avatar
Gregory Ashton committed
931
932
933
        if dist_type == "log10unif":
            return 10**(np.random.uniform(low=kwargs['log10lower'],
                                          high=kwargs['log10upper']))
934
935
936
937
938
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
939
940
941
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
942
943
944
945
946
947
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

948
    def _plot_walkers(self, sampler, symbols=None, alpha=0.8, color="k",
949
950
                      temp=0, lw=0.1, nprod=0, add_det_stat_burnin=False,
                      fig=None, axes=None, xoffset=0, plot_det_stat=False,
951
                      context='ggplot', subtractions=None, labelpad=0.05):
952
953
        """ Plot all the chains from a sampler """

954
955
956
957
958
        if context not in plt.style.available:
            raise ValueError((
                'The requested context {} is not available; please select a'
                ' context from `plt.style.available`').format(context))

959
960
961
        if np.ndim(axes) > 1:
            axes = axes.flatten()

962
963
964
965
966
967
968
969
970
971
972
973
974
        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
            chain = sampler.chain[:, :, :]
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
            chain = sampler.chain[temp, :, :, :]

975
976
        if subtractions is None:
            subtractions = [0 for i in range(ndim)]
977
978
979
        else:
            if len(subtractions) != self.ndim:
                raise ValueError('subtractions must be of length ndim')
980

981
982
983
984
        if plot_det_stat:
            extra_subplots = 1
        else:
            extra_subplots = 0
985
        with plt.style.context((context)):
Gregory Ashton's avatar
Gregory Ashton committed
986
            plt.rcParams['text.usetex'] = True
Gregory Ashton's avatar
Gregory Ashton committed
987
            if fig is None and axes is None:
988
                fig = plt.figure(figsize=(4, 3.0*ndim))
989
990
                ax = fig.add_subplot(ndim+extra_subplots, 1, 1)
                axes = [ax] + [fig.add_subplot(ndim+extra_subplots, 1, i)
Gregory Ashton's avatar
Gregory Ashton committed
991
                               for i in range(2, ndim+1)]
992

Gregory Ashton's avatar
Gregory Ashton committed
993
            idxs = np.arange(chain.shape[1])
994
            burnin_idx = chain.shape[1] - nprod
995
996
997
998
            #if hasattr(self, 'convergence_idx'):
            #    last_idx = self.convergence_idx
            #else:
            last_idx = burnin_idx
999
1000
            if ndim > 1:
                for i in range(ndim):
1001
                    axes[i].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
1002
                    cs = chain[:, :, i].T
1003
                    if burnin_idx > 0:
1004
1005
                        axes[i].plot(xoffset+idxs[:last_idx+1],
                                     cs[:last_idx+1]-subtractions[i],
1006
                                     color="C3", alpha=alpha,
Gregory Ashton's avatar
Gregory Ashton committed
1007
                                     lw=lw)
1008
                        axes[i].axvline(xoffset+last_idx,
1009
                                        color='k', ls='--', lw=0.5)
1010
1011
                    axes[i].plot(xoffset+idxs[burnin_idx:],
                                 cs[burnin_idx:]-subtractions[i],
Gregory Ashton's avatar
Gregory Ashton committed
1012
                                 color="k", alpha=alpha, lw=lw)
Gregory Ashton's avatar
Gregory Ashton committed
1013
1014

                    axes[i].set_xlim(0, xoffset+idxs[-1])
1015
                    if symbols:
1016
                        if subtractions[i] == 0:
1017
                            axes[i].set_ylabel(symbols[i], labelpad=labelpad)
1018
1019
                        else:
                            axes[i].set_ylabel(
1020
                                symbols[i]+'$-$'+symbols[i]+'$^\mathrm{s}$',
1021
                                labelpad=labelpad)
1022

1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
#                    if hasattr(self, 'convergence_diagnostic'):
#                        ax = axes[i].twinx()
#                        axes[i].set_zorder(ax.get_zorder()+1)
#                        axes[i].patch.set_visible(False)
#                        c_x = np.array(self.convergence_diagnosticx)
#                        c_y = np.array(self.convergence_diagnostic)
#                        break_idx = np.argmin(np.abs(c_x - burnin_idx))
#                        ax.plot(c_x[:break_idx], c_y[:break_idx, i], '-C0',
#                                zorder=-10)
#                        ax.plot(c_x[break_idx:], c_y[break_idx:, i], '-C0',
#                                zorder=-10)
#                        if self.convergence_test_type == 'autocorr':
#                            ax.set_ylabel(r'$\tau_\mathrm{exp}$')
#                        elif self.convergence_test_type == 'GR':
#                            ax.set_ylabel('PSRF')
#                        ax.ticklabel_format(useOffset=False)
1039
            else:
Gregory Ashton's avatar
Gregory Ashton committed
1040
                axes[0].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
1041
                cs = chain[:, :, temp].T
Gregory Ashton's avatar
Gregory Ashton committed
1042
1043
                if burnin_idx:
                    axes[0].plot(idxs[:burnin_idx], cs[:burnin_idx],
1044
                                 color="C3", alpha=alpha, lw=lw)
Gregory Ashton's avatar
Gregory Ashton committed
1045
1046
1047
                axes[0].plot(idxs[burnin_idx:], cs[burnin_idx:], color="k",
                             alpha=alpha, lw=lw)
                if symbols:
1048
                    axes[0].set_ylabel(symbols[0], labelpad=labelpad)
1049

Gregory Ashton's avatar
Gregory Ashton committed
1050
1051
            axes[-1].set_xlabel(r'$\textrm{Number of steps}$', labelpad=0.2)

1052
            if plot_det_stat:
1053
1054
1055
                if len(axes) == ndim:
                    axes.append(fig.add_subplot(ndim+1, 1, ndim+1))

1056
1057
1058
                lnl = sampler.lnlikelihood[temp, :, :]
                if burnin_idx and add_det_stat_burnin:
                    burn_in_vals = lnl[:, :burnin_idx].flatten()
1059
                    try:
1060
1061
1062
1063
                        twoF_burnin = (burn_in_vals[~np.isnan(burn_in_vals)]
                                       - self.likelihoodcoef)
                        axes[-1].hist(twoF_burnin, bins=50, histtype='step',
                                      color='C3')
1064
1065
1066
1067
                    except ValueError:
                        logging.info('Det. Stat. hist failed, most likely all '
                                     'values where the same')
                        pass
1068
                else:
1069
                    twoF_burnin = []
1070
                prod_vals = lnl[:, burnin_idx:].flatten()
1071
                try:
1072
1073
                    twoF = prod_vals[~np.isnan(prod_vals)]-self.likelihoodcoef
                    axes[-1].hist(twoF, bins=50, histtype='step', color='k')
1074
1075
1076
1077
                except ValueError:
                    logging.info('Det. Stat. hist failed, most likely all '
                                 'values where the same')
                    pass
1078
1079
1080
1081
1082
                if self.BSGL:
                    axes[-1].set_xlabel(r'$\mathcal{B}_\mathrm{S/GL}$')
                else:
                    axes[-1].set_xlabel(r'$\widetilde{2\mathcal{F}}$')
                axes[-1].set_ylabel(r'$\textrm{Counts}$')
1083
                combined_vals = np.append(twoF_burnin, twoF)
1084
1085
1086
1087
1088
1089
                if len(combined_vals) > 0:
                    minv = np.min(combined_vals)
                    maxv = np.max(combined_vals)
                    Range = abs(maxv-minv)
                    axes[-1].set_xlim(minv-0.1*Range, maxv+0.1*Range)

1090
                xfmt = matplotlib.ticker.ScalarFormatter()
1091
                xfmt.set_powerlimits((-4, 4))
1092
1093
                axes[-1].xaxis.set_major_formatter(xfmt)

1094
1095
        return fig, axes

1096
    def _apply_corrections_to_p0(self, p0):
Gregory Ashton's avatar
Gregory Ashton committed
1097
1098
1099
        """ Apply any correction to the initial p0 values """
        return p0

1100
    def _generate_scattered_p0(self, p):
1101
        """ Generate a set of p0s scattered about p """
Gregory Ashton's avatar
Gregory Ashton committed
1102
        p0 = [[p + self.scatter_val * p * np.random.randn(self.ndim)
1103
1104
1105
1106
               for i in xrange(self.nwalkers)]
              for j in xrange(self.ntemps)]
        return p0

1107
    def _generate_initial_p0(self):
1108
1109
1110
        """ Generate a set of init vals for the walkers """

        if type(self.theta_initial) == dict:
1111
            logging.info('Generate initial values from initial dictionary')
1112
            if hasattr(self, 'nglitch') and self.nglitch > 1:
1113
                raise ValueError('Initial dict not implemented for nglitch>1')
1114
            p0 = [[[self._generate_rv(**self.theta_initial[key])
1115
1116
1117
1118
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
        elif self.theta_initial is None:
1119
            logging.info('Generate initial values from prior dictionary')
1120
            p0 = [[[self._generate_rv(**self.theta_prior[key])
1121
1122
1123
1124
1125
1126
1127