core.py 48 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" The core tools used in pyfstat """
2 3
from __future__ import division, absolute_import, print_function

Gregory Ashton's avatar
Gregory Ashton committed
4 5 6 7
import os
import logging
import copy

8
import glob
Gregory Ashton's avatar
Gregory Ashton committed
9
import numpy as np
10 11 12 13 14
import scipy.special
import scipy.optimize

import lal
import lalpulsar
15
import pyfstat.helper_functions as helper_functions
16
import pyfstat.tcw_fstat_map_funcs as tcw
17 18

# workaround for matplotlib on X-less remote logins
19
if 'DISPLAY' in os.environ:
20 21
    import matplotlib.pyplot as plt
else:
22 23
    logging.info('No $DISPLAY environment variable found, so importing \
                  matplotlib.pyplot with non-interactive "Agg" backend.')
24 25 26 27
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt

Gregory Ashton's avatar
Gregory Ashton committed
28
helper_functions.set_up_matplotlib_defaults()
29
args, tqdm = helper_functions.set_up_command_line_arguments()
30
detector_colors = {'h1': 'C0', 'l1': 'C1'}
Gregory Ashton's avatar
Gregory Ashton committed
31 32


Gregory Ashton's avatar
Gregory Ashton committed
33
class Bunch(object):
34 35
    """ Turns dictionary into object with attribute-style access

36 37
    Parameters
    ----------
38 39 40 41 42 43 44 45 46 47 48 49 50 51
    dict
        Input dictionary

    Examples
    --------
    >>> data = Bunch(dict(x=1, y=[1, 2, 3], z=True))
    >>> print(data.x)
    1
    >>> print(data.y)
    [1, 2, 3]
    >>> print(data.z)
    True

    """
Gregory Ashton's avatar
Gregory Ashton committed
52 53 54 55 56
    def __init__(self, dictionary):
        self.__dict__.update(dictionary)


def read_par(filename=None, label=None, outdir=None, suffix='par',
57 58
             return_type='dict', comments=['%', '#'], raise_error=False):
    """ Read in a .par or .loudest file, returns a dict or Bunch of the data
59

Gregory Ashton's avatar
Gregory Ashton committed
60 61
    Parameters
    ----------
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    filename : str
        Filename (path) containing rows of `key=val` data to read in.
    label, outdir, suffix : str, optional
        If filename is None, form the file to read as `outdir/label.suffix`.
    return_type : {'dict', 'bunch'}, optional
        If `dict`, return a dictionary, if 'bunch' return a Bunch
    comments : str or list of strings, optional
        Characters denoting that a row is a comment.
    raise_error : bool, optional
        If True, raise an error for lines which are not comments, but cannot
        be read.

    Notes
    -----
    This can also be used to read in .loudest files, or any file which has
    rows of `key=val` data (in which the val can be understood using eval(val)
Gregory Ashton's avatar
Gregory Ashton committed
78 79 80 81 82

    Returns
    -------
    d: Bunch or dict
        The par values as either a `Bunch` or dict type
83

84 85 86 87
    """
    if filename is None:
        filename = '{}/{}.{}'.format(outdir, label, suffix)
    if os.path.isfile(filename) is False:
88
        raise ValueError("No file {} found".format(filename))
Gregory Ashton's avatar
Gregory Ashton committed
89 90
    d = {}
    with open(filename, 'r') as f:
91
        d = _get_dictionary_from_lines(f, comments, raise_error)
Gregory Ashton's avatar
Gregory Ashton committed
92 93 94 95 96 97
    if return_type in ['bunch', 'Bunch']:
        return Bunch(d)
    elif return_type in ['dict', 'dictionary']:
        return d
    else:
        raise ValueError('return_type {} not understood'.format(return_type))
Gregory Ashton's avatar
Gregory Ashton committed
98 99


100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
def _get_dictionary_from_lines(lines, comments, raise_error):
    """ Return dictionary of key=val pairs for each line in lines

    Parameters
    ----------
    comments : str or list of strings
        Characters denoting that a row is a comment.
    raise_error : bool
        If True, raise an error for lines which are not comments, but cannot
        be read.

    Returns
    -------
    d: Bunch or dict
        The par values as either a `Bunch` or dict type

    """
117 118
    d = {}
    for line in lines:
119
        if line[0] not in comments and len(line.split('=')) == 2:
120 121 122
            try:
                key, val = line.rstrip('\n').split('=')
                key = key.strip()
Gregory Ashton's avatar
Gregory Ashton committed
123 124 125 126
                try:
                    d[key] = np.float64(eval(val.rstrip('; ')))
                except NameError:
                    d[key] = val.rstrip('; ')
127
            except SyntaxError:
128 129
                if raise_error:
                    raise IOError('Line {} not understood'.format(line))
130 131 132 133 134
                pass
    return d


def predict_fstat(h0, cosi, psi, Alpha, Delta, Freq, sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
135 136
                  minStartTime, maxStartTime, IFO=None, assumeSqrtSX=None,
                  **kwargs):
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    """ Wrapper to lalapps_PredictFstat

    Parameters
    ----------
    h0, cosi, psi, Alpha, Delta, Freq : float
        Signal properties, see `lalapps_PredictFstat --help` for more info.
    sftfilepattern : str
        Pattern matching the sftfiles to use.
    minStartTime, maxStartTime : int
    IFO : str
        See `lalapps_PredictFstat --help`
    assumeSqrtSX : float or None
        See `lalapps_PredictFstat --help`, if None this option is not used

    Returns
    -------
    twoF_expected, twoF_sigma : float
        The expectation and standard deviation of 2F

    """
157 158
    tempory_filename = 'fs.tmp'

159 160 161 162 163 164 165 166 167 168
    cl_pfs = []
    cl_pfs.append("lalapps_PredictFstat")
    cl_pfs.append("--h0={}".format(h0))
    cl_pfs.append("--cosi={}".format(cosi))
    cl_pfs.append("--psi={}".format(psi))
    cl_pfs.append("--Alpha={}".format(Alpha))
    cl_pfs.append("--Delta={}".format(Delta))
    cl_pfs.append("--Freq={}".format(Freq))

    cl_pfs.append("--DataFiles='{}'".format(sftfilepattern))
169
    if assumeSqrtSX:
170
        cl_pfs.append("--assumeSqrtSX={}".format(assumeSqrtSX))
171
    if IFO:
172 173 174 175 176
        if ',' in IFO:
            logging.warning('Multiple detector selection not available, using'
                            ' all available data')
        else:
            cl_pfs.append("--IFO={}".format(IFO))
177

178 179
    cl_pfs.append("--minStartTime={}".format(int(minStartTime)))
    cl_pfs.append("--maxStartTime={}".format(int(maxStartTime)))
180
    cl_pfs.append("--outputFstat={}".format(tempory_filename))
181

182 183
    cl_pfs = " ".join(cl_pfs)
    helper_functions.run_commandline(cl_pfs)
184 185
    d = read_par(filename=tempory_filename)
    os.remove(tempory_filename)
186 187 188
    return float(d['twoF_expected']), float(d['twoF_sigma'])


Gregory Ashton's avatar
Gregory Ashton committed
189
class BaseSearchClass(object):
190
    """ The base search class providing parent methods to other searches """
Gregory Ashton's avatar
Gregory Ashton committed
191

192
    def _add_log_file(self):
Gregory Ashton's avatar
Gregory Ashton committed
193 194 195 196 197 198 199 200 201
        """ Log output to a file, requires class to have outdir and label """
        logfilename = '{}/{}.log'.format(self.outdir, self.label)
        fh = logging.FileHandler(logfilename)
        fh.setLevel(logging.INFO)
        fh.setFormatter(logging.Formatter(
            '%(asctime)s %(levelname)-8s: %(message)s',
            datefmt='%y-%m-%d %H:%M'))
        logging.getLogger().addHandler(fh)

202
    def _shift_matrix(self, n, dT):
Gregory Ashton's avatar
Gregory Ashton committed
203 204 205 206
        """ Generate the shift matrix

        Parameters
        ----------
207
        n : int
Gregory Ashton's avatar
Gregory Ashton committed
208
            The dimension of the shift-matrix to generate
209
        dT : float
Gregory Ashton's avatar
Gregory Ashton committed
210 211 212 213
            The time delta of the shift matrix

        Returns
        -------
214 215
        m : ndarray, shape (n,)
            The shift matrix.
Gregory Ashton's avatar
Gregory Ashton committed
216

217
        """
Gregory Ashton's avatar
Gregory Ashton committed
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        m = np.zeros((n, n))
        factorial = np.math.factorial
        for i in range(n):
            for j in range(n):
                if i == j:
                    m[i, j] = 1.0
                elif i > j:
                    m[i, j] = 0.0
                else:
                    if i == 0:
                        m[i, j] = 2*np.pi*float(dT)**(j-i) / factorial(j-i)
                    else:
                        m[i, j] = float(dT)**(j-i) / factorial(j-i)
        return m

233
    def _shift_coefficients(self, theta, dT):
Gregory Ashton's avatar
Gregory Ashton committed
234 235 236 237
        """ Shift a set of coefficients by dT

        Parameters
        ----------
238 239
        theta : array-like, shape (n,)
            Vector of the expansion coefficients to transform starting from the
Gregory Ashton's avatar
Gregory Ashton committed
240
            lowest degree e.g [phi, F0, F1,...].
241 242
        dT : float
            Difference between the two reference times as tref_new - tref_old.
Gregory Ashton's avatar
Gregory Ashton committed
243 244 245

        Returns
        -------
246 247
        theta_new : ndarray, shape (n,)
            Vector of the coefficients as evaluated as the new reference time.
Gregory Ashton's avatar
Gregory Ashton committed
248 249
        """
        n = len(theta)
250
        m = self._shift_matrix(n, dT)
Gregory Ashton's avatar
Gregory Ashton committed
251 252
        return np.dot(m, theta)

253
    def _calculate_thetas(self, theta, delta_thetas, tbounds, theta0_idx=0):
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
        """ Calculates the set of thetas given delta_thetas, the jumps

        This is used when generating data containing glitches or timing noise.
        Specifically, the source parameters of the signal are not constant in
        time, but jump by `delta_theta` at `tbounds`.

        Parameters
        ----------
        theta : array_like
            The source parameters of size (n,).
        delta_thetas : array_like
            The jumps in the source parameters of size (m, n) where m is the
            number of jumps.
        tbounds : array_like
            Time boundaries of the jumps of size (m+2,).
        theta0_idx : int
            Index of the segment for which the theta are defined.

        Returns
        -------
        ndarray
            The set of thetas, shape (m+1, n).

        """
Gregory Ashton's avatar
Gregory Ashton committed
278 279 280
        thetas = [theta]
        for i, dt in enumerate(delta_thetas):
            if i < theta0_idx:
281
                pre_theta_at_ith_glitch = self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
282 283
                    thetas[0], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch - dt
284
                thetas.insert(0, self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
285 286 287
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))

            elif i >= theta0_idx:
288
                pre_theta_at_ith_glitch = self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
289 290
                    thetas[i], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch + dt
291
                thetas.append(self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
292
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))
293
        self.thetas_at_tref = thetas
Gregory Ashton's avatar
Gregory Ashton committed
294 295
        return thetas

296
    def _get_list_of_matching_sfts(self):
297
        """ Returns a list of sfts matching the attribute sftfilepattern """
298 299
        sftfilepatternlist = np.atleast_1d(self.sftfilepattern.split(';'))
        matches = [glob.glob(p) for p in sftfilepatternlist]
300
        matches = [item for sublist in matches for item in sublist]
301 302 303 304
        if len(matches) > 0:
            return matches
        else:
            raise IOError('No sfts found matching {}'.format(
305
                self.sftfilepattern))
306

307 308
    def set_ephemeris_files(self, earth_ephem=None, sun_ephem=None):
        """ Set the ephemeris files to use for the Earth and Sun
Gregory Ashton's avatar
Gregory Ashton committed
309

310 311 312 313 314
        Parameters
        ----------
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
Gregory Ashton's avatar
Gregory Ashton committed
315

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
        Note: If not manually set, default values in ~/.pyfstat are used

        """

        earth_ephem_default, sun_ephem_default = (
                helper_functions.get_ephemeris_files())

        if earth_ephem is None:
            self.earth_ephem = earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = sun_ephem_default


class ComputeFstat(BaseSearchClass):
    """ Base class providing interface to `lalpulsar.ComputeFstat` """
Gregory Ashton's avatar
Gregory Ashton committed
331 332

    @helper_functions.initializer
333
    def __init__(self, tref, sftfilepattern=None, minStartTime=None,
David Keitel's avatar
David Keitel committed
334 335
                 maxStartTime=None, binary=False, BSGL=False,
                 transientWindowType=None, t0Band=None, tauBand=None,
336
                 dt0=None, dtau=None,
337
                 detectors=None, minCoverFreq=None, maxCoverFreq=None,
338
                 injectSources=None, injectSqrtSX=None, assumeSqrtSX=None,
339
                 SSBprec=None,
340
                 tCWFstatMapVersion='lal', cudaDeviceName=None):
Gregory Ashton's avatar
Gregory Ashton committed
341 342 343
        """
        Parameters
        ----------
344
        tref : int
Gregory Ashton's avatar
Gregory Ashton committed
345
            GPS seconds of the reference time.
346
        sftfilepattern : str
347 348
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
349
        minStartTime, maxStartTime : float GPStime
Gregory Ashton's avatar
Gregory Ashton committed
350 351
            Only use SFTs with timestemps starting from (including, excluding)
            this epoch
352
        binary : bool
Gregory Ashton's avatar
Gregory Ashton committed
353
            If true, search of binary parameters.
Gregory Ashton's avatar
Gregory Ashton committed
354 355
        BSGL : bool
            If true, compute the BSGL rather than the twoF value.
David Keitel's avatar
David Keitel committed
356 357 358
        transientWindowType: str
            If 'rect' or 'exp',
            allow for the Fstat to be computed over a transient range.
Gregory Ashton's avatar
Gregory Ashton committed
359 360
            ('none' instead of None explicitly calls the transient-window
            function, but with the full range, for debugging)
361 362 363 364 365
        t0Band, tauBand: int
            if >0, search t0 in (minStartTime,minStartTime+t0Band)
                   and tau in (2*Tsft,2*Tsft+tauBand).
            if =0, only compute CW Fstat with t0=minStartTime,
                   tau=maxStartTime-minStartTime.
366 367 368
        dt0, dtau: int
            grid resolutions in transient start-time and duration,
            both default to Tsft
369
        detectors : str
Gregory Ashton's avatar
Gregory Ashton committed
370
            Two character reference to the data to use, specify None for no
371
            contraint. If multiple-separate by comma.
372
        minCoverFreq, maxCoverFreq : float
Gregory Ashton's avatar
Gregory Ashton committed
373 374 375
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
376
        injectSources : dict or str
377 378
            Either a dictionary of the values to inject, or a string pointing
            to the .cff file to inject
379
        injectSqrtSX :
380
            Not yet implemented
381
        assumeSqrtSX : float
382 383 384
            Don't estimate noise-floors but assume (stationary) per-IFO
            sqrt{SX} (if single value: use for all IFOs). If signal only,
            set sqrtSX=1
385
        SSBprec : int
386 387
            Flag to set the SSB calculation: 0=Newtonian, 1=relativistic,
            2=relativisitic optimised, 3=DMoff, 4=NO_SPIN
388 389 390
        tCWFstatMapVersion: str
            Choose between standard 'lal' implementation,
            'pycuda' for gpu, and some others for devel/debug.
391 392
        cudaDeviceName: str
            GPU name to be matched against drv.Device output.
Gregory Ashton's avatar
Gregory Ashton committed
393 394 395

        """

396
        self.set_ephemeris_files()
Gregory Ashton's avatar
Gregory Ashton committed
397 398
        self.init_computefstatistic_single_point()

399 400 401 402 403 404 405 406 407 408 409
    def _get_SFTCatalog(self):
        """ Load the SFTCatalog

        If sftfilepattern is specified, load the data. If not, attempt to
        create data on the fly.

        Returns
        -------
        SFTCatalog: lalpulsar.SFTCatalog

        """
Gregory Ashton's avatar
Gregory Ashton committed
410 411
        if hasattr(self, 'SFTCatalog'):
            return
412
        if self.sftfilepattern is None:
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
            for k in ['minStartTime', 'maxStartTime', 'detectors']:
                if getattr(self, k) is None:
                    raise ValueError('You must provide "{}" to injectSources'
                                     .format(k))
            C1 = getattr(self, 'injectSources', None) is None
            C2 = getattr(self, 'injectSqrtSX', None) is None
            if C1 and C2:
                raise ValueError('You must specify either one of injectSources'
                                 ' or injectSqrtSX')
            SFTCatalog = lalpulsar.SFTCatalog()
            Tsft = 1800
            Toverlap = 0
            Tspan = self.maxStartTime - self.minStartTime
            detNames = lal.CreateStringVector(
                *[d for d in self.detectors.split(',')])
            multiTimestamps = lalpulsar.MakeMultiTimestamps(
                self.minStartTime, Tspan, Tsft, Toverlap, detNames.length)
            SFTCatalog = lalpulsar.MultiAddToFakeSFTCatalog(
                SFTCatalog, detNames, multiTimestamps)
            return SFTCatalog

Gregory Ashton's avatar
Gregory Ashton committed
434 435
        logging.info('Initialising SFTCatalog')
        constraints = lalpulsar.SFTConstraints()
436
        if self.detectors:
437
            if ',' in self.detectors:
438 439
                logging.warning('Multiple detector selection not available,'
                                ' using all available data')
440 441
            else:
                constraints.detector = self.detectors
Gregory Ashton's avatar
Gregory Ashton committed
442 443 444 445 446
        if self.minStartTime:
            constraints.minStartTime = lal.LIGOTimeGPS(self.minStartTime)
        if self.maxStartTime:
            constraints.maxStartTime = lal.LIGOTimeGPS(self.maxStartTime)
        logging.info('Loading data matching pattern {}'.format(
447 448
                     self.sftfilepattern))
        SFTCatalog = lalpulsar.SFTdataFind(self.sftfilepattern, constraints)
449

Gregory Ashton's avatar
Gregory Ashton committed
450
        SFT_timestamps = [d.header.epoch for d in SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
451
        self.SFT_timestamps = [float(s) for s in SFT_timestamps]
452 453
        if len(SFT_timestamps) == 0:
            raise ValueError('Failed to load any data')
Gregory Ashton's avatar
Gregory Ashton committed
454 455 456 457 458
        if args.quite is False and args.no_interactive is False:
            try:
                from bashplotlib.histogram import plot_hist
                print('Data timestamps histogram:')
                plot_hist(SFT_timestamps, height=5, bincount=50)
Gregory Ashton's avatar
Gregory Ashton committed
459
            except ImportError:
Gregory Ashton's avatar
Gregory Ashton committed
460
                pass
461

462
        cl_tconv1 = 'lalapps_tconvert {}'.format(int(SFT_timestamps[0]))
463 464
        output = helper_functions.run_commandline(cl_tconv1,
                                                  log_level=logging.DEBUG)
465 466
        tconvert1 = output.rstrip('\n')
        cl_tconv2 = 'lalapps_tconvert {}'.format(int(SFT_timestamps[-1]))
467 468
        output = helper_functions.run_commandline(cl_tconv2,
                                                  log_level=logging.DEBUG)
469
        tconvert2 = output.rstrip('\n')
Gregory Ashton's avatar
Gregory Ashton committed
470 471
        logging.info('Data spans from {} ({}) to {} ({})'.format(
            int(SFT_timestamps[0]),
472
            tconvert1,
Gregory Ashton's avatar
Gregory Ashton committed
473
            int(SFT_timestamps[-1]),
474
            tconvert2))
475 476 477 478 479 480 481 482 483 484 485 486 487

        if self.minStartTime is None:
            self.minStartTime = int(SFT_timestamps[0])
        if self.maxStartTime is None:
            self.maxStartTime = int(SFT_timestamps[-1])

        detector_names = list(set([d.header.name for d in SFTCatalog.data]))
        self.detector_names = detector_names
        if len(detector_names) == 0:
            raise ValueError('No data loaded.')
        logging.info('Loaded {} data files from detectors {}'.format(
            len(SFT_timestamps), detector_names))

488
        return SFTCatalog
Gregory Ashton's avatar
Gregory Ashton committed
489 490 491 492

    def init_computefstatistic_single_point(self):
        """ Initilisation step of run_computefstatistic for a single point """

493
        SFTCatalog = self._get_SFTCatalog()
Gregory Ashton's avatar
Gregory Ashton committed
494 495 496 497 498 499

        logging.info('Initialising ephems')
        ephems = lalpulsar.InitBarycenter(self.earth_ephem, self.sun_ephem)

        logging.info('Initialising FstatInput')
        dFreq = 0
David Keitel's avatar
David Keitel committed
500
        if self.transientWindowType:
Gregory Ashton's avatar
Gregory Ashton committed
501 502 503 504 505 506
            self.whatToCompute = lalpulsar.FSTATQ_ATOMS_PER_DET
        else:
            self.whatToCompute = lalpulsar.FSTATQ_2F

        FstatOAs = lalpulsar.FstatOptionalArgs()
        FstatOAs.randSeed = lalpulsar.FstatOptionalArgsDefaults.randSeed
507 508 509 510 511
        if self.SSBprec:
            logging.info('Using SSBprec={}'.format(self.SSBprec))
            FstatOAs.SSBprec = self.SSBprec
        else:
            FstatOAs.SSBprec = lalpulsar.FstatOptionalArgsDefaults.SSBprec
Gregory Ashton's avatar
Gregory Ashton committed
512 513 514
        FstatOAs.Dterms = lalpulsar.FstatOptionalArgsDefaults.Dterms
        FstatOAs.runningMedianWindow = lalpulsar.FstatOptionalArgsDefaults.runningMedianWindow
        FstatOAs.FstatMethod = lalpulsar.FstatOptionalArgsDefaults.FstatMethod
515 516 517 518 519 520 521 522
        if self.assumeSqrtSX is None:
            FstatOAs.assumeSqrtSX = lalpulsar.FstatOptionalArgsDefaults.assumeSqrtSX
        else:
            mnf = lalpulsar.MultiNoiseFloor()
            assumeSqrtSX = np.atleast_1d(self.assumeSqrtSX)
            mnf.sqrtSn[:len(assumeSqrtSX)] = assumeSqrtSX
            mnf.length = len(assumeSqrtSX)
            FstatOAs.assumeSqrtSX = mnf
Gregory Ashton's avatar
Gregory Ashton committed
523 524 525
        FstatOAs.prevInput = lalpulsar.FstatOptionalArgsDefaults.prevInput
        FstatOAs.collectTiming = lalpulsar.FstatOptionalArgsDefaults.collectTiming

Gregory Ashton's avatar
Gregory Ashton committed
526
        if hasattr(self, 'injectSources') and type(self.injectSources) == dict:
Gregory Ashton's avatar
Gregory Ashton committed
527 528 529 530 531 532 533 534 535 536
            logging.info('Injecting source with params: {}'.format(
                self.injectSources))
            PPV = lalpulsar.CreatePulsarParamsVector(1)
            PP = PPV.data[0]
            PP.Amp.h0 = self.injectSources['h0']
            PP.Amp.cosi = self.injectSources['cosi']
            PP.Amp.phi0 = self.injectSources['phi0']
            PP.Amp.psi = self.injectSources['psi']
            PP.Doppler.Alpha = self.injectSources['Alpha']
            PP.Doppler.Delta = self.injectSources['Delta']
Gregory Ashton's avatar
Gregory Ashton committed
537 538 539 540 541 542
            if 'fkdot' in self.injectSources:
                PP.Doppler.fkdot = np.array(self.injectSources['fkdot'])
            else:
                PP.Doppler.fkdot = np.zeros(lalpulsar.PULSAR_MAX_SPINS)
                for i, key in enumerate(['F0', 'F1', 'F2']):
                    PP.Doppler.fkdot[i] = self.injectSources[key]
Gregory Ashton's avatar
Gregory Ashton committed
543 544 545 546
            PP.Doppler.refTime = self.tref
            if 't0' not in self.injectSources:
                PP.Transient.type = lalpulsar.TRANSIENT_NONE
            FstatOAs.injectSources = PPV
Gregory Ashton's avatar
Gregory Ashton committed
547
        elif hasattr(self, 'injectSources') and type(self.injectSources) == str:
548 549 550 551
            logging.info('Injecting source from param file: {}'.format(
                self.injectSources))
            PPV = lalpulsar.PulsarParamsFromFile(self.injectSources, self.tref)
            FstatOAs.injectSources = PPV
Gregory Ashton's avatar
Gregory Ashton committed
552 553
        else:
            FstatOAs.injectSources = lalpulsar.FstatOptionalArgsDefaults.injectSources
554 555 556 557
        if hasattr(self, 'injectSqrtSX') and self.injectSqrtSX is not None:
            raise ValueError('injectSqrtSX not implemented')
        else:
            FstatOAs.InjectSqrtSX = lalpulsar.FstatOptionalArgsDefaults.injectSqrtSX
Gregory Ashton's avatar
Gregory Ashton committed
558
        if self.minCoverFreq is None or self.maxCoverFreq is None:
559
            fAs = [d.header.f0 for d in SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
560
            fBs = [d.header.f0 + (d.numBins-1)*d.header.deltaF
561
                   for d in SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
562 563 564 565 566 567
            self.minCoverFreq = np.min(fAs) + 0.5
            self.maxCoverFreq = np.max(fBs) - 0.5
            logging.info('Min/max cover freqs not provided, using '
                         '{} and {}, est. from SFTs'.format(
                             self.minCoverFreq, self.maxCoverFreq))

568
        self.FstatInput = lalpulsar.CreateFstatInput(SFTCatalog,
Gregory Ashton's avatar
Gregory Ashton committed
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
                                                     self.minCoverFreq,
                                                     self.maxCoverFreq,
                                                     dFreq,
                                                     ephems,
                                                     FstatOAs
                                                     )

        logging.info('Initialising PulsarDoplerParams')
        PulsarDopplerParams = lalpulsar.PulsarDopplerParams()
        PulsarDopplerParams.refTime = self.tref
        PulsarDopplerParams.Alpha = 1
        PulsarDopplerParams.Delta = 1
        PulsarDopplerParams.fkdot = np.array([0, 0, 0, 0, 0, 0, 0])
        self.PulsarDopplerParams = PulsarDopplerParams

        logging.info('Initialising FstatResults')
        self.FstatResults = lalpulsar.FstatResults()

        if self.BSGL:
            if len(self.detector_names) < 2:
589
                raise ValueError("Can't use BSGL with single detectors data")
Gregory Ashton's avatar
Gregory Ashton committed
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
            else:
                logging.info('Initialising BSGL')

            # Tuning parameters - to be reviewed
            numDetectors = 2
            if hasattr(self, 'nsegs'):
                p_val_threshold = 1e-6
                Fstar0s = np.linspace(0, 1000, 10000)
                p_vals = scipy.special.gammaincc(2*self.nsegs, Fstar0s)
                Fstar0 = Fstar0s[np.argmin(np.abs(p_vals - p_val_threshold))]
                if Fstar0 == Fstar0s[-1]:
                    raise ValueError('Max Fstar0 exceeded')
            else:
                Fstar0 = 15.
            logging.info('Using Fstar0 of {:1.2f}'.format(Fstar0))
            oLGX = np.zeros(10)
            oLGX[:numDetectors] = 1./numDetectors
            self.BSGLSetup = lalpulsar.CreateBSGLSetup(numDetectors,
                                                       Fstar0,
                                                       oLGX,
                                                       True,
                                                       1)
            self.twoFX = np.zeros(10)
            self.whatToCompute = (self.whatToCompute +
                                  lalpulsar.FSTATQ_2F_PER_DET)

David Keitel's avatar
David Keitel committed
616
        if self.transientWindowType:
Gregory Ashton's avatar
Gregory Ashton committed
617 618
            logging.info('Initialising transient parameters')
            self.windowRange = lalpulsar.transientWindowRange_t()
David Keitel's avatar
David Keitel committed
619 620 621 622 623 624
            transientWindowTypes = {'none': lalpulsar.TRANSIENT_NONE,
                                    'rect': lalpulsar.TRANSIENT_RECTANGULAR,
                                    'exp':  lalpulsar.TRANSIENT_EXPONENTIAL}
            if self.transientWindowType in transientWindowTypes:
                self.windowRange.type = transientWindowTypes[self.transientWindowType]
            else:
Gregory Ashton's avatar
Gregory Ashton committed
625 626 627 628
                raise ValueError(
                    'Unknown window-type ({}) passed as input, [{}] allows.'
                    .format(self.transientWindowType,
                            ', '.join(transientWindowTypes)))
David Keitel's avatar
David Keitel committed
629

630
            # default spacing
David Keitel's avatar
David Keitel committed
631
            self.Tsft = int(1.0/SFTCatalog.data[0].header.deltaF)
632 633 634 635 636 637
            self.windowRange.dt0 = self.Tsft
            self.windowRange.dtau = self.Tsft

            # special treatment of window_type = none ==> replace by rectangular window spanning all the data
            if self.windowRange.type == lalpulsar.TRANSIENT_NONE:
                self.windowRange.t0 = int(self.minStartTime)
Gregory Ashton's avatar
Gregory Ashton committed
638
                self.windowRange.t0Band = 0
639
                self.windowRange.tau = int(self.maxStartTime-self.minStartTime)
David Keitel's avatar
David Keitel committed
640
                self.windowRange.tauBand = 0
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
            else: # user-set bands and spacings
                if self.t0Band is None:
                    self.windowRange.t0Band = 0
                else:
                    if not isinstance(self.t0Band, int):
                        logging.warn('Casting non-integer t0Band={} to int...'
                                     .format(self.t0Band))
                        self.t0Band = int(self.t0Band)
                    self.windowRange.t0Band = self.t0Band
                    if self.dt0:
                        self.windowRange.dt0 = self.dt0
                if self.tauBand is None:
                    self.windowRange.tauBand = 0
                else:
                    if not isinstance(self.tauBand, int):
                        logging.warn('Casting non-integer tauBand={} to int...'
                                     .format(self.tauBand))
                        self.tauBand = int(self.tauBand)
                    self.windowRange.tauBand = self.tauBand
                    if self.dtau:
                        self.windowRange.dtau = self.dtau
Gregory Ashton's avatar
Gregory Ashton committed
662

663
            self.tCWFstatMapFeatures, self.gpu_context = tcw.init_transient_fstat_map_features(self.cudaDeviceName)
664

665 666 667
    def get_fullycoherent_twoF(self, tstart, tend, F0, F1, F2, Alpha, Delta,
                               asini=None, period=None, ecc=None, tp=None,
                               argp=None):
Gregory Ashton's avatar
Gregory Ashton committed
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
        """ Returns twoF or ln(BSGL) fully-coherently at a single point """
        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
                               1,
                               self.whatToCompute
                               )

David Keitel's avatar
David Keitel committed
686
        if not self.transientWindowType:
Gregory Ashton's avatar
Gregory Ashton committed
687 688 689 690 691 692 693 694 695 696 697
            if self.BSGL is False:
                return self.FstatResults.twoF[0]

            twoF = np.float(self.FstatResults.twoF[0])
            self.twoFX[0] = self.FstatResults.twoFPerDet(0)
            self.twoFX[1] = self.FstatResults.twoFPerDet(1)
            log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
                                               self.BSGLSetup)
            return log10_BSGL/np.log10(np.exp(1))

        self.windowRange.t0 = int(tstart)  # TYPE UINT4
David Keitel's avatar
David Keitel committed
698 699 700 701 702
        if self.windowRange.tauBand == 0:
            # true single-template search also in transient params:
            # actual (t0,tau) window was set with tstart, tend before
            self.windowRange.tau = int(tend - tstart)  # TYPE UINT4
        else:
Gregory Ashton's avatar
Gregory Ashton committed
703 704
            # grid search: start at minimum tau required for nondegenerate
            # F-stat computation
David Keitel's avatar
David Keitel committed
705
            self.windowRange.tau = int(2*self.Tsft)
Gregory Ashton's avatar
Gregory Ashton committed
706

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
        #logging.debug('Calling "%s" version of ComputeTransientFstatMap() with windowRange: (type=%d (%s), t0=%f, t0Band=%f, dt0=%f, tau=%f, tauBand=%f, dtau=%f)...' % (self.tCWFstatMapVersion, self.windowRange.type, self.transientWindowType, self.windowRange.t0, self.windowRange.t0Band, self.windowRange.dt0, self.windowRange.tau, self.windowRange.tauBand, self.windowRange.dtau))
        self.FstatMap = tcw.call_compute_transient_fstat_map( self.tCWFstatMapVersion,
                                                         self.tCWFstatMapFeatures,
                                                         self.FstatResults.multiFatoms[0],
                                                         self.windowRange
                                                       )
        if self.tCWFstatMapVersion == 'lal':
            F_mn = self.FstatMap.F_mn.data
        else:
            F_mn = self.FstatMap.F_mn

        #logging.debug('maxF:   {}'.format(FstatMap.maxF))
        #logging.debug('t0_ML:  %ds=T0+%fd' % (FstatMap.t0_ML, (FstatMap.t0_ML-tstart)/(3600.*24.)))
        #logging.debug('tau_ML: %ds=%fd' % (FstatMap.tau_ML, FstatMap.tau_ML/(3600.*24.)))
        #logging.debug('F_mn:   {}'.format(F_mn))
Gregory Ashton's avatar
Gregory Ashton committed
722

723
        twoF = 2*np.max(F_mn)
Gregory Ashton's avatar
Gregory Ashton committed
724
        if self.BSGL is False:
725 726 727 728
            if np.isnan(twoF):
                return 0
            else:
                return twoF
Gregory Ashton's avatar
Gregory Ashton committed
729 730 731 732 733 734 735 736 737 738

        FstatResults_single = copy.copy(self.FstatResults)
        FstatResults_single.lenth = 1
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
        FS0 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
        FS1 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)

739 740 741 742 743
        # for now, use the Doppler parameter with
        # multi-detector F maximised over t0,tau
        # to return BSGL
        # FIXME: should we instead compute BSGL over the whole F_mn
        # and return the maximum of that?
744
        idx_maxTwoF = np.argmax(F_mn)
745 746 747

        self.twoFX[0] = 2*FS0.F_mn.data[idx_maxTwoF]
        self.twoFX[1] = 2*FS1.F_mn.data[idx_maxTwoF]
Gregory Ashton's avatar
Gregory Ashton committed
748
        log10_BSGL = lalpulsar.ComputeBSGL(
749
                twoF, self.twoFX, self.BSGLSetup)
Gregory Ashton's avatar
Gregory Ashton committed
750 751 752 753 754 755

        return log10_BSGL/np.log10(np.exp(1))

    def calculate_twoF_cumulative(self, F0, F1, F2, Alpha, Delta, asini=None,
                                  period=None, ecc=None, tp=None, argp=None,
                                  tstart=None, tend=None, npoints=1000,
756 757
                                  ):
        """ Calculate the cumulative twoF along the obseration span
758 759 760

        Parameters
        ----------
761 762
        F0, F1, F2, Alpha, Delta: float
            Parameters at which to compute the cumulative twoF
763 764
        asini, period, ecc, tp, argp: float, optional
            Binary parameters at which to compute the cumulative 2F
765 766 767 768 769 770
        tstart, tend: int
            GPS times to restrict the range of data used - automatically
            truncated to the span of data available
        npoints: int
            Number of points to compute twoF along the span

771 772 773
        Notes
        -----
        The minimum cumulatibe twoF is hard-coded to be computed over
774 775 776 777 778 779
        the first 6 hours from either the first timestampe in the data (if
        tstart is smaller than it) or tstart.

        """
        SFTminStartTime = self.SFT_timestamps[0]
        SFTmaxStartTime = self.SFT_timestamps[-1]
Gregory Ashton's avatar
Gregory Ashton committed
780
        tstart = np.max([SFTminStartTime, tstart])
781 782 783
        min_tau = np.max([SFTminStartTime - tstart, 0]) + 3600*6
        max_tau = SFTmaxStartTime - tstart
        taus = np.linspace(min_tau, max_tau, npoints)
Gregory Ashton's avatar
Gregory Ashton committed
784
        twoFs = []
David Keitel's avatar
David Keitel committed
785 786 787
        if not self.transientWindowType:
            # still call the transient-Fstat-map function, but using the full range
            self.transientWindowType = 'none'
Gregory Ashton's avatar
Gregory Ashton committed
788 789
            self.init_computefstatistic_single_point()
        for tau in taus:
790
            detstat = self.get_fullycoherent_twoF(
Gregory Ashton's avatar
Gregory Ashton committed
791 792
                tstart=tstart, tend=tstart+tau, F0=F0, F1=F1, F2=F2,
                Alpha=Alpha, Delta=Delta, asini=asini, period=period, ecc=ecc,
793 794
                tp=tp, argp=argp)
            twoFs.append(detstat)
Gregory Ashton's avatar
Gregory Ashton committed
795 796 797

        return taus, np.array(twoFs)

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
    def _calculate_predict_fstat_cumulative(self, N, label=None, outdir=None,
                                            IFO=None, pfs_input=None):
        """ Calculates the predicted 2F and standard deviation cumulatively

        Parameters
        ----------
        N : int
            Number of timesteps to use between minStartTime and maxStartTime.
        label, outdir : str, optional
            The label and directory to read in the .loudest file from
        IFO : str
        pfs_input : dict, optional
            Input kwargs to predict_fstat (alternative to giving label and
            outdir).

        Returns
        -------
        times, pfs, pfs_sigma : ndarray, size (N,)

        """
Gregory Ashton's avatar
Gregory Ashton committed
818 819 820 821 822

        if pfs_input is None:
            if os.path.isfile('{}/{}.loudest'.format(outdir, label)) is False:
                raise ValueError(
                    'Need a loudest file to add the predicted Fstat')
823
            loudest = read_par(label=label, outdir=outdir, suffix='loudest')
Gregory Ashton's avatar
Gregory Ashton committed
824 825
            pfs_input = {key: loudest[key] for key in
                         ['h0', 'cosi', 'psi', 'Alpha', 'Delta', 'Freq']}
826 827 828
        times = np.linspace(self.minStartTime, self.maxStartTime, N+1)[1:]
        times = np.insert(times, 0, self.minStartTime + 86400/2.)
        out = [predict_fstat(minStartTime=self.minStartTime, maxStartTime=t,
829
                             sftfilepattern=self.sftfilepattern, IFO=IFO,
830 831 832 833
                             **pfs_input) for t in times]
        pfs, pfs_sigma = np.array(out).T
        return times, pfs, pfs_sigma

834 835
    def plot_twoF_cumulative(self, label, outdir, add_pfs=False, N=15,
                             injectSources=None, ax=None, c='k', savefig=True,
836
                             title=None, plt_label=None, **kwargs):
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
        """ Plot the twoF value cumulatively

        Parameters
        ----------
        label, outdir : str
        add_pfs : bool
            If true, plot the predicted 2F and standard deviation
        N : int
            Number of points to use
        injectSources : dict
            See `ComputeFstat`
        ax : matplotlib.axes._subplots_AxesSubplot, optional
            Axis to add the plot to.
        c : str
            Colour
        savefig : bool
            If true, save the figure in outdir
854 855
        title, plt_label: str
            Figure title and label
856 857 858 859 860 861 862 863 864

        Returns
        -------
        tauS, tauF : ndarray shape (N,)
            If savefig, the times and twoF (cumulative) values
        ax : matplotlib.axes._subplots_AxesSubplot, optional
            If savefig is False

        """
Gregory Ashton's avatar
Gregory Ashton committed
865 866
        if ax is None:
            fig, ax = plt.subplots()
Gregory Ashton's avatar
Gregory Ashton committed
867 868 869 870 871 872 873
        if injectSources:
            pfs_input = dict(
                h0=injectSources['h0'], cosi=injectSources['cosi'],
                psi=injectSources['psi'], Alpha=injectSources['Alpha'],
                Delta=injectSources['Delta'], Freq=injectSources['fkdot'][0])
        else:
            pfs_input = None
874 875

        taus, twoFs = self.calculate_twoF_cumulative(**kwargs)
876
        ax.plot(taus/86400., twoFs, label=plt_label, color=c)
877
        if len(self.detector_names) > 1:
878 879
            detector_names = self.detector_names
            detectors = self.detectors
880 881 882 883
            for d in self.detector_names:
                self.detectors = d
                self.init_computefstatistic_single_point()
                taus, twoFs = self.calculate_twoF_cumulative(**kwargs)
884 885 886 887 888 889
                ax.plot(taus/86400., twoFs, label='{}'.format(d),
                        color=detector_colors[d.lower()])
            self.detectors = detectors
            self.detector_names = detector_names

        if add_pfs:
890 891
            times, pfs, pfs_sigma = self._calculate_predict_fstat_cumulative(
                N=N, label=label, outdir=outdir, pfs_input=pfs_input)
892 893
            ax.fill_between(
                (times-self.minStartTime)/86400., pfs-pfs_sigma, pfs+pfs_sigma,
Gregory Ashton's avatar
Gregory Ashton committed
894
                color=c,
895 896
                label=(r'Predicted $\langle 2\mathcal{F} '
                       r'\rangle\pm $ 1-$\sigma$ band'),
897 898 899
                zorder=-10, alpha=0.2)
            if len(self.detector_names) > 1:
                for d in self.detector_names:
900 901 902 903
                    out = self._calculate_predict_fstat_cumulative(
                        N=N, label=label, outdir=outdir, IFO=d.upper(),
                        pfs_input=pfs_input)
                    times, pfs, pfs_sigma = out
904 905 906 907 908 909 910 911
                    ax.fill_between(
                        (times-self.minStartTime)/86400., pfs-pfs_sigma,
                        pfs+pfs_sigma, color=detector_colors[d.lower()],
                        alpha=0.5,
                        label=(
                            'Predicted $2\mathcal{{F}}$ 1-$\sigma$ band ({})'
                            .format(d.upper())),
                        zorder=-10)
912

Gregory Ashton's avatar
Gregory Ashton committed
913 914 915 916 917 918 919
        ax.set_xlabel(r'Days from $t_{{\rm start}}={:.0f}$'.format(
            kwargs['tstart']))
        if self.BSGL:
            ax.set_ylabel(r'$\log_{10}(\mathrm{BSGL})_{\rm cumulative}$')
        else:
            ax.set_ylabel(r'$\widetilde{2\mathcal{F}}_{\rm cumulative}$')
        ax.set_xlim(0, taus[-1]/86400)
920 921
        if plt_label:
            ax.legend(frameon=False, loc=2, fontsize=6)
Gregory Ashton's avatar
Gregory Ashton committed
922 923 924 925 926 927 928 929 930
        if title:
            ax.set_title(title)
        if savefig:
            plt.tight_layout()
            plt.savefig('{}/{}_twoFcumulative.png'.format(outdir, label))
            return taus, twoFs
        else:
            return ax

931 932 933 934 935 936 937 938 939 940 941 942
    def write_atoms_to_file(self, fnamebase=''):
        multiFatoms = getattr(self.FstatResults, 'multiFatoms', None)
        if multiFatoms and multiFatoms[0]:
            dopplerName = lalpulsar.PulsarDopplerParams2String ( self.PulsarDopplerParams )
            #fnameAtoms = os.path.join(self.outdir,'Fstatatoms_%s.dat' % dopplerName)
            fnameAtoms = fnamebase + '_Fstatatoms_%s.dat' % dopplerName
            fo = lal.FileOpen(fnameAtoms, 'w')
            lalpulsar.write_MultiFstatAtoms_to_fp ( fo, multiFatoms[0] )
            del fo # instead of lal.FileClose() which is not SWIG-exported
        else:
            raise RuntimeError('Cannot print atoms vector to file: no FstatResults.multiFatoms, or it is None!')

Gregory Ashton's avatar
Gregory Ashton committed
943

944 945 946 947 948 949 950 951 952
    def __del__(self):
        """
        In pyCuda case without autoinit,
        we need to make sure the context is removed at the end
        """
        if hasattr(self,'gpu_context') and self.gpu_context:
            self.gpu_context.detach()


953
class SemiCoherentSearch(ComputeFstat):
Gregory Ashton's avatar
Gregory Ashton committed
954 955 956
    """ A semi-coherent search """

    @helper_functions.initializer
957
    def __init__(self, label, outdir, tref, nsegs=None, sftfilepattern=None,
Gregory Ashton's avatar
Gregory Ashton committed
958 959
                 binary=False, BSGL=False, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
960 961
                 detectors=None, injectSources=None, assumeSqrtSX=None,
                 SSBprec=None):
Gregory Ashton's avatar
Gregory Ashton committed
962 963 964 965 966 967 968 969 970
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, and start and end of the data.
        nsegs: int
            The (fixed) number of segments
971 972 973
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
974 975 976 977 978

        For all other parameters, see pyfstat.ComputeFStat.
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
979
        self.set_ephemeris_files()
David Keitel's avatar
David Keitel committed
980 981 982
        self.transientWindowType = 'rect'
        self.t0Band  = None
        self.tauBand = None
983
        self.tCWFstatMapVersion = 'lal'
Gregory Ashton's avatar
Gregory Ashton committed
984 985 986 987 988 989 990
        self.init_computefstatistic_single_point()
        self.init_semicoherent_parameters()

    def init_semicoherent_parameters(self):
        logging.info(('Initialising semicoherent parameters from {} to {} in'
                      ' {} segments').format(
            self.minStartTime, self.maxStartTime, self.nsegs))
David Keitel's avatar
David Keitel committed
991
        self.transientWindowType = 'rect'
Gregory Ashton's avatar
Gregory Ashton committed
992 993 994
        self.whatToCompute = lalpulsar.FSTATQ_2F+lalpulsar.FSTATQ_ATOMS_PER_DET
        self.tboundaries = np.linspace(self.minStartTime, self.maxStartTime,
                                       self.nsegs+1)
995
        self.Tcoh = self.tboundaries[1] - self.tboundaries[0]
Gregory Ashton's avatar
Gregory Ashton committed
996

997 998 999 1000 1001 1002 1003 1004 1005
        if hasattr(self, 'SFT_timestamps'):
            if self.tboundaries[0] < self.SFT_timestamps[0]:
                logging.debug(
                    'Semi-coherent start time {} before first SFT timestamp {}'
                    .format(self.tboundaries[0], self.SFT_timestamps[0]))
            if self.tboundaries[-1] > self.SFT_timestamps[-1]:
                logging.debug(
                    'Semi-coherent end time {} after last SFT timestamp {}'
                    .format(self.tboundaries[-1], self.SFT_timestamps[-1]))
Gregory Ashton's avatar
Gregory Ashton committed
1006

1007
    def get_semicoherent_twoF(
1008 1009 1010 1011 1012
            self, F0, F1, F2, Alpha, Delta, asini=None,
            period=None, ecc=None, tp=None, argp=None,
            record_segments=False):
        """ Returns twoF or ln(BSGL) semi-coherently at a single point """

Gregory Ashton's avatar
Gregory Ashton committed
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
                               1,
                               self.whatToCompute
                               )

David Keitel's avatar
David Keitel committed
1030
        #if not self.transientWindowType:
1031 1032 1033 1034 1035 1036 1037 1038
        #    if self.BSGL is False:
        #        return self.FstatResults.twoF[0]
        #    twoF = np.float(self.FstatResults.twoF[0])
        #    self.twoFX[0] = self.FstatResults.twoFPerDet(0)
        #    self.twoFX[1] = self.FstatResults.twoFPerDet(1)
        #    log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
        #                                       self.BSGLSetup)
        #    return log10_BSGL/np.log10(np.exp(1))
Gregory Ashton's avatar
Gregory Ashton committed
1039 1040

        detStat = 0
1041 1042
        if record_segments:
            self.detStat_per_segment = []
Gregory Ashton's avatar
Gregory Ashton committed
1043

1044 1045 1046
        self.windowRange.tau = int(self.Tcoh)  # TYPE UINT4
        for tstart in self.tboundaries[:-1]:
            d_detStat = self._get_per_segment_det_stat(tstart)
1047 1048 1049
            detStat += d_detStat
            if record_segments:
                self.detStat_per_segment.append(d_detStat)
Gregory Ashton's avatar
Gregory Ashton committed
1050 1051 1052

        return detStat

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
    def _get_per_segment_det_stat(self, tstart):
        self.windowRange.t0 = int(tstart)  # TYPE UINT4

        FS = lalpulsar.ComputeTransientFstatMap(
            self.FstatResults.multiFatoms[0], self.windowRange, False)

        if self.BSGL is False:
            d_detStat = 2*FS.F_mn.data[0][0]
        else:
            FstatResults_single = copy.copy(self.FstatResults)
            FstatResults_single.lenth = 1
            FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
            FS0 = lalpulsar.ComputeTransientFstatMap(
                FstatResults_single.multiFatoms[0], self.windowRange, False)
            FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
            FS1 = lalpulsar.ComputeTransientFstatMap(
                FstatResults_single.multiFatoms[0], self.windowRange, False)

            self.twoFX[0] = 2*FS0.F_mn.data[0][0]
            self.twoFX[1] = 2*FS1.F_mn.data[0][0]
            log10_BSGL = lalpulsar.ComputeBSGL(
                    2*FS.F_mn.data[0][0], self.twoFX, self.BSGLSetup)
            d_detStat = log10_BSGL/np.log10(np.exp(1))
        if np.isnan(d_detStat):
            logging.debug('NaNs in semi-coherent twoF treated as zero')
            d_detStat = 0

        return d_detStat

Gregory Ashton's avatar
Gregory Ashton committed
1082

1083
class SemiCoherentGlitchSearch(ComputeFstat):
Gregory Ashton's avatar
Gregory Ashton committed
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
    """ A semi-coherent glitch search

    This implements a basic `semi-coherent glitch F-stat in which the data
    is divided into segments either side of the proposed glitches and the
    fully-coherent F-stat in each segment is summed to give the semi-coherent
    F-stat
    """

    @helper_functions.initializer
    def __init__(self, label, outdir, tref, minStartTime, maxStartTime,
1094
                 nglitch=1, sftfilepattern=None, theta0_idx=0, BSGL=False,
1095
                 minCoverFreq=None, maxCoverFreq=None, assumeSqrtSX=None,
1096
                 detectors=None, SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, and start and end of the data.
        nglitch: int
            The (fixed) number of glitches; this can zero, but occasionally
            this causes issue (in which case just use ComputeFstat).
1107 1108 1109
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
1110 1111 1112 1113 1114 1115 1116 1117 1118
        theta0_idx, int
            Index (zero-based) of which segment the theta refers to - uyseful
            if providing a tight prior on theta to allow the signal to jump
            too theta (and not just from)

        For all other parameters, see pyfstat.ComputeFStat.
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
1119
        self.set_ephemeris_files()
David Keitel's avatar
David Keitel committed
1120 1121 1122
        self