grid_based_searches.py 42.4 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" Searches using grid-based methods """
2
from __future__ import division, absolute_import, print_function
Gregory Ashton's avatar
Gregory Ashton committed
3
4
5
6
7

import os
import logging
import itertools
from collections import OrderedDict
Gregory Ashton's avatar
Gregory Ashton committed
8
9
10
import datetime
import getpass
import socket
Gregory Ashton's avatar
Gregory Ashton committed
11
12
13
14

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
15
from scipy.misc import logsumexp
Gregory Ashton's avatar
Gregory Ashton committed
16

17
18
19
import pyfstat.helper_functions as helper_functions
from pyfstat.core import (BaseSearchClass, ComputeFstat,
                          SemiCoherentGlitchSearch, SemiCoherentSearch, tqdm,
20
                          args, read_par)
Gregory Ashton's avatar
Gregory Ashton committed
21
22
import lalpulsar
import lal
Gregory Ashton's avatar
Gregory Ashton committed
23
24
25
26


class GridSearch(BaseSearchClass):
    """ Gridded search using ComputeFstat """
Gregory Ashton's avatar
Gregory Ashton committed
27
28
29
    tex_labels = {'F0': '$f$', 'F1': '$\dot{f}$', 'F2': '$\ddot{f}$',
                  'Alpha': r'$\alpha$', 'Delta': r'$\delta$'}
    tex_labels0 = {'F0': '$-f_0$', 'F1': '$-\dot{f}_0$', 'F2': '$-\ddot{f}_0$',
30
                   'Alpha': r'$-\alpha_0$', 'Delta': r'$-\delta_0$'}
Gregory Ashton's avatar
Gregory Ashton committed
31

Gregory Ashton's avatar
Gregory Ashton committed
32
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
33
34
35
36
    def __init__(self, label, outdir, sftfilepattern, F0s, F1s, F2s, Alphas,
                 Deltas, tref=None, minStartTime=None, maxStartTime=None,
                 nsegs=1, BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, SSBprec=None, injectSources=None,
37
                 input_arrays=False, assumeSqrtSX=None):
Gregory Ashton's avatar
Gregory Ashton committed
38
39
40
41
42
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
43
44
45
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
46
47
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
48
49
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
Gregory Ashton's avatar
Gregory Ashton committed
50
51
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
52
53
        input_arrays: bool
            if true, use the F0s, F1s, etc as is
Gregory Ashton's avatar
Gregory Ashton committed
54
55
56
57
58
59

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
60
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
61
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
62
63
64
        self.search_keys = [x+'s' for x in self.keys[2:]]
        for k in self.search_keys:
            setattr(self, k, np.atleast_1d(getattr(self, k)))
Gregory Ashton's avatar
Gregory Ashton committed
65
66
67

    def inititate_search_object(self):
        logging.info('Setting up search object')
68
69
        if self.nsegs == 1:
            self.search = ComputeFstat(
70
                tref=self.tref, sftfilepattern=self.sftfilepattern,
71
                minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
David Keitel's avatar
David Keitel committed
72
                detectors=self.detectors,
73
                minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
74
                BSGL=self.BSGL, SSBprec=self.SSBprec,
75
76
                injectSources=self.injectSources,
                assumeSqrtSX=self.assumeSqrtSX)
77
            self.search.get_det_stat = self.search.get_fullycoherent_twoF
78
79
80
        else:
            self.search = SemiCoherentSearch(
                label=self.label, outdir=self.outdir, tref=self.tref,
81
                nsegs=self.nsegs, sftfilepattern=self.sftfilepattern,
82
83
84
                BSGL=self.BSGL, minStartTime=self.minStartTime,
                maxStartTime=self.maxStartTime, minCoverFreq=self.minCoverFreq,
                maxCoverFreq=self.maxCoverFreq, detectors=self.detectors,
Gregory Ashton's avatar
Gregory Ashton committed
85
                injectSources=self.injectSources)
86
87

            def cut_out_tstart_tend(*vals):
88
                return self.search.get_semicoherent_twoF(*vals[2:])
89
            self.search.get_det_stat = cut_out_tstart_tend
Gregory Ashton's avatar
Gregory Ashton committed
90
91
92
93

    def get_array_from_tuple(self, x):
        if len(x) == 1:
            return np.array(x)
94
        elif len(x) == 3 and self.input_arrays is False:
Gregory Ashton's avatar
Gregory Ashton committed
95
            return np.arange(x[0], x[1], x[2])
Gregory Ashton's avatar
Gregory Ashton committed
96
        else:
Gregory Ashton's avatar
Gregory Ashton committed
97
98
            logging.info('Using tuple as is')
            return np.array(x)
Gregory Ashton's avatar
Gregory Ashton committed
99
100

    def get_input_data_array(self):
Gregory Ashton's avatar
Gregory Ashton committed
101
        logging.info("Generating input data array")
102
        coord_arrays = []
Gregory Ashton's avatar
Gregory Ashton committed
103
104
        for tup in ([self.minStartTime], [self.maxStartTime], self.F0s,
                    self.F1s, self.F2s, self.Alphas, self.Deltas):
105
            coord_arrays.append(self.get_array_from_tuple(tup))
Gregory Ashton's avatar
Gregory Ashton committed
106

107
108
109
110
        input_data = []
        for vals in itertools.product(*coord_arrays):
                input_data.append(vals)
        self.input_data = np.array(input_data)
111
        self.coord_arrays = coord_arrays
Gregory Ashton's avatar
Gregory Ashton committed
112
113
114
115
116

    def check_old_data_is_okay_to_use(self):
        if args.clean:
            return False
        if os.path.isfile(self.out_file) is False:
117
118
119
            logging.info(
                'No old data found in "{:s}", continuing with grid search'
                .format(self.out_file))
Gregory Ashton's avatar
Gregory Ashton committed
120
            return False
121
        if self.sftfilepattern is not None:
122
123
124
125
126
127
            oldest_sft = min([os.path.getmtime(f) for f in
                              self._get_list_of_matching_sfts()])
            if os.path.getmtime(self.out_file) < oldest_sft:
                logging.info('Search output data outdates sft files,'
                             + ' continuing with grid search')
                return False
128

129
        data = np.atleast_2d(np.genfromtxt(self.out_file, delimiter=' '))
130
131
        if np.all(data[:, 0: len(self.coord_arrays)] ==
                  self.input_data[:, 0:len(self.coord_arrays)]):
132
            logging.info(
133
134
                'Old data found in "{:s}" with matching input, no search '
                'performed'.format(self.out_file))
135
136
137
            return data
        else:
            logging.info(
138
139
                'Old data found in "{:s}", input differs, continuing with '
                'grid search'.format(self.out_file))
140
            return False
141
        return False
Gregory Ashton's avatar
Gregory Ashton committed
142
143
144
145
146
147
148
149

    def run(self, return_data=False):
        self.get_input_data_array()
        old_data = self.check_old_data_is_okay_to_use()
        if old_data is not False:
            self.data = old_data
            return

Gregory Ashton's avatar
Gregory Ashton committed
150
151
        if hasattr(self, 'search') is False:
            self.inititate_search_object()
Gregory Ashton's avatar
Gregory Ashton committed
152
153

        data = []
154
        for vals in tqdm(self.input_data):
155
            detstat = self.search.get_det_stat(*vals)
156
157
            thisCand = list(vals) + [detstat]
            data.append(thisCand)
Gregory Ashton's avatar
Gregory Ashton committed
158

159
        data = np.array(data, dtype=np.float)
Gregory Ashton's avatar
Gregory Ashton committed
160
161
162
        if return_data:
            return data
        else:
163
            self.save_array_to_disk(data)
Gregory Ashton's avatar
Gregory Ashton committed
164
165
            self.data = data

166
167
168
169
170
171
172
173
174
175
176
177
    def get_header(self):
        header = ';'.join(['date:{}'.format(str(datetime.datetime.now())),
                           'user:{}'.format(getpass.getuser()),
                           'hostname:{}'.format(socket.gethostname())])
        header += '\n' + ' '.join(self.keys)
        return header

    def save_array_to_disk(self, data):
        logging.info('Saving data to {}'.format(self.out_file))
        header = self.get_header()
        np.savetxt(self.out_file, data, delimiter=' ', header=header)

Gregory Ashton's avatar
Gregory Ashton committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    def convert_F0_to_mismatch(self, F0, F0hat, Tseg):
        DeltaF0 = F0[1] - F0[0]
        m_spacing = (np.pi*Tseg*DeltaF0)**2 / 12.
        N = len(F0)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def convert_F1_to_mismatch(self, F1, F1hat, Tseg):
        DeltaF1 = F1[1] - F1[0]
        m_spacing = (np.pi*Tseg**2*DeltaF1)**2 / 720.
        N = len(F1)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def add_mismatch_to_ax(self, ax, x, y, xkey, ykey, xhat, yhat, Tseg):
        axX = ax.twiny()
        axX.zorder = -10
        axY = ax.twinx()
        axY.zorder = -10

        if xkey == 'F0':
            m = self.convert_F0_to_mismatch(x, xhat, Tseg)
            axX.set_xlim(m[0], m[-1])

        if ykey == 'F1':
            m = self.convert_F1_to_mismatch(y, yhat, Tseg)
            axY.set_ylim(m[0], m[-1])

Gregory Ashton's avatar
Gregory Ashton committed
204
205
    def plot_1D(self, xkey, ax=None, x0=None, xrescale=1, savefig=True,
                xlabel=None, ylabel='$\widetilde{2\mathcal{F}}$'):
Gregory Ashton's avatar
Gregory Ashton committed
206
207
        if ax is None:
            fig, ax = plt.subplots()
Gregory Ashton's avatar
Gregory Ashton committed
208
209
        xidx = self.keys.index(xkey)
        x = np.unique(self.data[:, xidx])
210
211
        if x0:
            x = x - x0
Gregory Ashton's avatar
Gregory Ashton committed
212
        x = x * xrescale
Gregory Ashton's avatar
Gregory Ashton committed
213
        z = self.data[:, -1]
Gregory Ashton's avatar
Gregory Ashton committed
214
215
216
217
218
        ax.plot(x, z)
        if x0:
            ax.set_xlabel(self.tex_labels[xkey]+self.tex_labels0[xkey])
        else:
            ax.set_xlabel(self.tex_labels[xkey])
Gregory Ashton's avatar
Gregory Ashton committed
219
220
221
222
223

        if xlabel:
            ax.set_xlabel(xlabel)

        ax.set_ylabel(ylabel)
Gregory Ashton's avatar
Gregory Ashton committed
224
        if savefig:
Gregory Ashton's avatar
Gregory Ashton committed
225
            fig.tight_layout()
Gregory Ashton's avatar
Gregory Ashton committed
226
227
            fig.savefig('{}/{}_1D.png'.format(self.outdir, self.label))
        else:
228
            return ax
Gregory Ashton's avatar
Gregory Ashton committed
229
230
231

    def plot_2D(self, xkey, ykey, ax=None, save=True, vmin=None, vmax=None,
                add_mismatch=None, xN=None, yN=None, flat_keys=[],
Gregory Ashton's avatar
Gregory Ashton committed
232
                rel_flat_idxs=[], flatten_method=np.max, title=None,
Gregory Ashton's avatar
Gregory Ashton committed
233
234
                predicted_twoF=None, cm=None, cbarkwargs={}, x0=None, y0=None,
                colorbar=False):
Gregory Ashton's avatar
Gregory Ashton committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        """ Plots a 2D grid of 2F values

        Parameters
        ----------
        add_mismatch: tuple (xhat, yhat, Tseg)
            If not None, add a secondary axis with the metric mismatch from the
            point xhat, yhat with duration Tseg
        flatten_method: np.max
            Function to use in flattening the flat_keys
        """
        if ax is None:
            fig, ax = plt.subplots()
        xidx = self.keys.index(xkey)
        yidx = self.keys.index(ykey)
        flat_idxs = [self.keys.index(k) for k in flat_keys]

        x = np.unique(self.data[:, xidx])
252
253
        if x0:
            x = x-x0
Gregory Ashton's avatar
Gregory Ashton committed
254
        y = np.unique(self.data[:, yidx])
255
256
        if y0:
            y = y-y0
Gregory Ashton's avatar
Gregory Ashton committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        flat_vals = [np.unique(self.data[:, j]) for j in flat_idxs]
        z = self.data[:, -1]

        Y, X = np.meshgrid(y, x)
        shape = [len(x), len(y)] + [len(v) for v in flat_vals]
        Z = z.reshape(shape)

        if len(rel_flat_idxs) > 0:
            Z = flatten_method(Z, axis=tuple(rel_flat_idxs))

        if predicted_twoF:
            Z = (predicted_twoF - Z) / (predicted_twoF + 4)
            if cm is None:
                cm = plt.cm.viridis_r
        else:
            if cm is None:
                cm = plt.cm.viridis

        pax = ax.pcolormesh(X, Y, Z, cmap=cm, vmin=vmin, vmax=vmax)
Gregory Ashton's avatar
Gregory Ashton committed
276
277
278
        if colorbar:
            cb = plt.colorbar(pax, ax=ax, **cbarkwargs)
            cb.set_label('$2\mathcal{F}$')
Gregory Ashton's avatar
Gregory Ashton committed
279
280
281
282
283
284

        if add_mismatch:
            self.add_mismatch_to_ax(ax, x, y, xkey, ykey, *add_mismatch)

        ax.set_xlim(x[0], x[-1])
        ax.set_ylim(y[0], y[-1])
285
        if x0:
Gregory Ashton's avatar
Gregory Ashton committed
286
            ax.set_xlabel(self.tex_labels[xkey]+self.tex_labels0[xkey])
287
        else:
Gregory Ashton's avatar
Gregory Ashton committed
288
            ax.set_xlabel(self.tex_labels[xkey])
289
        if y0:
Gregory Ashton's avatar
Gregory Ashton committed
290
            ax.set_ylabel(self.tex_labels[ykey]+self.tex_labels0[ykey])
291
        else:
Gregory Ashton's avatar
Gregory Ashton committed
292
            ax.set_ylabel(self.tex_labels[ykey])
Gregory Ashton's avatar
Gregory Ashton committed
293

Gregory Ashton's avatar
Gregory Ashton committed
294
295
296
        if title:
            ax.set_title(title)

Gregory Ashton's avatar
Gregory Ashton committed
297
298
299
300
301
302
303
304
305
306
307
308
        if xN:
            ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(xN))
        if yN:
            ax.yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(yN))

        if save:
            fig.tight_layout()
            fig.savefig('{}/{}_2D.png'.format(self.outdir, self.label))
        else:
            return ax

    def get_max_twoF(self):
Gregory Ashton's avatar
Gregory Ashton committed
309
310
311
312
313
314
315
316
317
318
        """ Get the maximum twoF over the grid

        Returns
        -------
        d: dict
            Dictionary containing, 'minStartTime', 'maxStartTime', 'F0', 'F1',
            'F2', 'Alpha', 'Delta' and 'twoF' of maximum

        """

Gregory Ashton's avatar
Gregory Ashton committed
319
320
321
322
323
324
325
326
327
328
329
330
331
        twoF = self.data[:, -1]
        idx = np.argmax(twoF)
        v = self.data[idx, :]
        d = OrderedDict(minStartTime=v[0], maxStartTime=v[1], F0=v[2], F1=v[3],
                        F2=v[4], Alpha=v[5], Delta=v[6], twoF=v[7])
        return d

    def print_max_twoF(self):
        d = self.get_max_twoF()
        print('Max twoF values for {}:'.format(self.label))
        for k, v in d.iteritems():
            print('  {}={}'.format(k, v))

332
    def set_out_file(self, extra_label=None):
333
334
335
336
        if self.detectors:
            dets = self.detectors.replace(',', '')
        else:
            dets = 'NA'
337
338
339
340
341
342
343
344
        if extra_label:
            self.out_file = '{}/{}_{}_{}_{}.txt'.format(
                self.outdir, self.label, dets, type(self).__name__,
                extra_label)
        else:
            self.out_file = '{}/{}_{}_{}.txt'.format(
                self.outdir, self.label, dets, type(self).__name__)

Gregory Ashton's avatar
Gregory Ashton committed
345

346
347
348
349
350
351
352
353
354
355
class TransientGridSearch(GridSearch):
    """ Gridded transient-continous search using ComputeFstat """

    @helper_functions.initializer
    def __init__(self, label, outdir, sftfilepattern, F0s, F1s, F2s, Alphas,
                 Deltas, tref=None, minStartTime=None, maxStartTime=None,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, SSBprec=None, injectSources=None,
                 input_arrays=False, assumeSqrtSX=None,
                 transientWindowType=None, t0Band=None, tauBand=None,
356
                 dt0=None, dtau=None,
357
                 outputTransientFstatMap=False,
358
                 outputAtoms=False,
359
                 tCWFstatMapVersion='lal', cudaDeviceName=None):
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
        input_arrays: bool
            if true, use the F0s, F1s, etc as is
        transientWindowType: str
            If 'rect' or 'exp', compute atoms so that a transient (t0,tau) map
            can later be computed.  ('none' instead of None explicitly calls
            the transient-window function, but with the full range, for
            debugging). Currently only supported for nsegs=1.
        t0Band, tauBand: int
            if >0, search t0 in (minStartTime,minStartTime+t0Band)
                   and tau in (2*Tsft,2*Tsft+tauBand).
            if =0, only compute CW Fstat with t0=minStartTime,
                   tau=maxStartTime-minStartTime.
386
387
388
        dt0, dtau: int
            grid resolutions in transient start-time and duration,
            both default to Tsft
389
390
391
        outputTransientFstatMap: bool
            if true, write output files for (t0,tau) Fstat maps
            (one file for each doppler grid point!)
392
393
394
        tCWFstatMapVersion: str
            Choose between standard 'lal' implementation,
            'pycuda' for gpu, and some others for devel/debug.
395
396
        cudaDeviceName: str
            GPU name to be matched against drv.Device output.
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        self.nsegs = 1
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.set_out_file()
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
        self.search_keys = [x+'s' for x in self.keys[2:]]
        for k in self.search_keys:
            setattr(self, k, np.atleast_1d(getattr(self, k)))

    def inititate_search_object(self):
        logging.info('Setting up search object')
        self.search = ComputeFstat(
            tref=self.tref, sftfilepattern=self.sftfilepattern,
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            detectors=self.detectors,
            transientWindowType=self.transientWindowType,
            t0Band=self.t0Band, tauBand=self.tauBand,
418
            dt0=self.dt0, dtau=self.dtau,
419
420
421
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
            BSGL=self.BSGL, SSBprec=self.SSBprec,
            injectSources=self.injectSources,
422
            assumeSqrtSX=self.assumeSqrtSX,
423
424
            tCWFstatMapVersion=self.tCWFstatMapVersion,
            cudaDeviceName=self.cudaDeviceName)
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
        self.search.get_det_stat = self.search.get_fullycoherent_twoF

    def run(self, return_data=False):
        self.get_input_data_array()
        old_data = self.check_old_data_is_okay_to_use()
        if old_data is not False:
            self.data = old_data
            return

        if hasattr(self, 'search') is False:
            self.inititate_search_object()

        data = []
        for vals in tqdm(self.input_data):
            detstat = self.search.get_det_stat(*vals)
            windowRange = getattr(self.search, 'windowRange', None)
            FstatMap = getattr(self.search, 'FstatMap', None)
            thisCand = list(vals) + [detstat]
            if getattr(self, 'transientWindowType', None):
444
445
446
447
                if self.tCWFstatMapVersion == 'lal':
                    F_mn = FstatMap.F_mn.data
                else:
                    F_mn = FstatMap.F_mn
448
449
                if self.outputTransientFstatMap:
                    tCWfile = os.path.splitext(self.out_file)[0]+'_tCW_%.16f_%.16f_%.16f_%.16g_%.16g.dat' % (vals[2],vals[5],vals[6],vals[3],vals[4]) # freq alpha delta f1dot f2dot
450
451
452
453
454
                    if self.tCWFstatMapVersion == 'lal':
                        fo = lal.FileOpen(tCWfile, 'w')
                        lalpulsar.write_transientFstatMap_to_fp ( fo, FstatMap, windowRange, None )
                        del fo # instead of lal.FileClose() which is not SWIG-exported
                    else:
455
                        self.write_F_mn ( tCWfile, F_mn, windowRange)
456
                maxidx = np.unravel_index(F_mn.argmax(), F_mn.shape)
457
458
459
                thisCand += [windowRange.t0+maxidx[0]*windowRange.dt0,
                             windowRange.tau+maxidx[1]*windowRange.dtau]
            data.append(thisCand)
460
461
            if self.outputAtoms:
                self.search.write_atoms_to_file(os.path.splitext(self.out_file)[0])
462
463
464
465
466
467
468
469

        data = np.array(data, dtype=np.float)
        if return_data:
            return data
        else:
            self.save_array_to_disk(data)
            self.data = data

470
471
472
473
474
475
476
477
478
    def write_F_mn (self, tCWfile, F_mn, windowRange ):
        with open(tCWfile, 'w') as tfp:
            tfp.write('# t0 [s]     tau [s]     2F\n')
            for m, F_m in enumerate(F_mn):
                this_t0 = windowRange.t0 + m * windowRange.dt0
                for n, this_F in enumerate(F_m):
                    this_tau = windowRange.tau + n * windowRange.dtau;
                    tfp.write('  %10d %10d %- 11.8g\n' % (this_t0, this_tau, 2.0*this_F))

479
480
481
482
    def __del__(self):
        if hasattr(self,'search'):
            self.search.__del__()

483

Gregory Ashton's avatar
Gregory Ashton committed
484
485
486
class SliceGridSearch(GridSearch):
    """ Slice gridded search using ComputeFstat """
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
487
488
489
490
491
    def __init__(self, label, outdir, sftfilepattern, F0s, F1s, F2s, Alphas,
                 Deltas, tref=None, minStartTime=None, maxStartTime=None,
                 nsegs=1, BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, SSBprec=None, injectSources=None,
                 input_arrays=False, assumeSqrtSX=None, Lambda0=None):
Gregory Ashton's avatar
Gregory Ashton committed
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
        input_arrays: bool
            if true, use the F0s, F1s, etc as is

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.set_out_file()
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
516
517
518
        self.ndim = 0
        self.thetas = [F0s, F1s, Alphas, Deltas]
        self.ndim = 4
Gregory Ashton's avatar
Gregory Ashton committed
519

Gregory Ashton's avatar
Gregory Ashton committed
520
        self.search_keys = ['F0', 'F1', 'Alpha', 'Delta']
521
522
        if self.Lambda0 is None:
            raise ValueError('Lambda0 undefined')
Gregory Ashton's avatar
Gregory Ashton committed
523
        if len(self.Lambda0) != len(self.search_keys):
Gregory Ashton's avatar
Gregory Ashton committed
524
            raise ValueError(
Gregory Ashton's avatar
Gregory Ashton committed
525
                'Lambda0 must be of length {}'.format(len(self.search_keys)))
526
        self.Lambda0 = np.array(Lambda0)
Gregory Ashton's avatar
Gregory Ashton committed
527

528
529
    def run(self, factor=2, max_n_ticks=4, whspace=0.07, save=True,
            **kwargs):
Gregory Ashton's avatar
Gregory Ashton committed
530
        lbdim = 0.5 * factor   # size of left/bottom margin
531
        trdim = 0.4 * factor   # size of top/right margin
Gregory Ashton's avatar
Gregory Ashton committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
        plotdim = factor * self.ndim + factor * (self.ndim - 1.) * whspace
        dim = lbdim + plotdim + trdim

        fig, axes = plt.subplots(self.ndim, self.ndim, figsize=(dim, dim))

        # Format the figure.
        lb = lbdim / dim
        tr = (lbdim + plotdim) / dim
        fig.subplots_adjust(left=lb, bottom=lb, right=tr, top=tr,
                            wspace=whspace, hspace=whspace)

        search = GridSearch(
            self.label, self.outdir, self.sftfilepattern,
            F0s=self.Lambda0[0], F1s=self.Lambda0[1], F2s=self.F2s[0],
546
547
            Alphas=self.Lambda0[2], Deltas=self.Lambda0[3], tref=self.tref,
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime)
Gregory Ashton's avatar
Gregory Ashton committed
548
549
550

        for i, ikey in enumerate(self.search_keys):
            setattr(search, ikey+'s', self.thetas[i])
551
552
            search.label = '{}_{}'.format(self.label, ikey)
            search.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
553
            search.run()
554
555
556
            axes[i, i] = search.plot_1D(ikey, ax=axes[i, i], savefig=False,
                                        x0=self.Lambda0[i]
                                        )
Gregory Ashton's avatar
Gregory Ashton committed
557
            setattr(search, ikey+'s', [self.Lambda0[i]])
558
559
560
            axes[i, i].yaxis.tick_right()
            axes[i, i].yaxis.set_label_position("right")
            axes[i, i].set_xlabel('')
Gregory Ashton's avatar
Gregory Ashton committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

            for j, jkey in enumerate(self.search_keys):
                ax = axes[i, j]

                if j > i:
                    ax.set_frame_on(False)
                    ax.set_xticks([])
                    ax.set_yticks([])
                    continue

                ax.get_shared_x_axes().join(axes[self.ndim-1, j], ax)
                if i < self.ndim - 1:
                    ax.set_xticklabels([])
                if j < i:
                    ax.get_shared_y_axes().join(axes[i, i-1], ax)
                    if j > 0:
                        ax.set_yticklabels([])
                if j == i:
                    continue

                ax.xaxis.set_major_locator(
                    matplotlib.ticker.MaxNLocator(max_n_ticks, prune="upper"))
                ax.yaxis.set_major_locator(
                    matplotlib.ticker.MaxNLocator(max_n_ticks, prune="upper"))

                setattr(search, ikey+'s', self.thetas[i])
                setattr(search, jkey+'s', self.thetas[j])
588
589
                search.label = '{}_{}'.format(self.label, ikey+jkey)
                search.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
590
                search.run()
591
                ax = search.plot_2D(jkey, ikey, ax=ax, save=False,
592
593
                                    y0=self.Lambda0[i], x0=self.Lambda0[j],
                                    **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
594
595
596
                setattr(search, ikey+'s', [self.Lambda0[i]])
                setattr(search, jkey+'s', [self.Lambda0[j]])

597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
                ax.grid(lw=0.2, ls='--', zorder=10)
                ax.set_xlabel('')
                ax.set_ylabel('')

        for i, ikey in enumerate(self.search_keys):
            axes[-1, i].set_xlabel(
                self.tex_labels[ikey]+self.tex_labels0[ikey])
            if i > 0:
                axes[i, 0].set_ylabel(
                    self.tex_labels[ikey]+self.tex_labels0[ikey])
            axes[i, i].set_ylabel("$2\mathcal{F}$")

        if save:
            fig.savefig(
                '{}/{}_slice_projection.png'.format(self.outdir, self.label))
        else:
            return fig, axes
Gregory Ashton's avatar
Gregory Ashton committed
614
615


Gregory Ashton's avatar
Gregory Ashton committed
616
class GridUniformPriorSearch():
617
    @helper_functions.initializer
618
    def __init__(self, theta_prior, NF0, NF1, label, outdir, sftfilepattern,
619
                 tref, minStartTime, maxStartTime, minCoverFreq=None,
620
                 maxCoverFreq=None, BSGL=False, detectors=None, nsegs=1,
621
                 SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
622
623
624
625
        dF0 = (theta_prior['F0']['upper'] - theta_prior['F0']['lower'])/NF0
        dF1 = (theta_prior['F1']['upper'] - theta_prior['F1']['lower'])/NF1
        F0s = [theta_prior['F0']['lower'], theta_prior['F0']['upper'], dF0]
        F1s = [theta_prior['F1']['lower'], theta_prior['F1']['upper'], dF1]
626
        self.search = GridSearch(
627
            label, outdir, sftfilepattern, F0s=F0s, F1s=F1s, tref=tref,
Gregory Ashton's avatar
Gregory Ashton committed
628
629
            Alphas=[theta_prior['Alpha']], Deltas=[theta_prior['Delta']],
            minStartTime=minStartTime, maxStartTime=maxStartTime, BSGL=BSGL,
630
            detectors=detectors, minCoverFreq=minCoverFreq,
631
632
            injectSources=injectSources, maxCoverFreq=maxCoverFreq,
            nsegs=nsegs, SSBprec=SSBprec)
633

634
    def run(self):
635
        self.search.run()
636
637

    def get_2D_plot(self, **kwargs):
638
        return self.search.plot_2D('F0', 'F1', **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
639
640


Gregory Ashton's avatar
Gregory Ashton committed
641
642
643
class GridGlitchSearch(GridSearch):
    """ Grid search using the SemiCoherentGlitchSearch """
    @helper_functions.initializer
644
    def __init__(self, label, outdir='data', sftfilepattern=None, F0s=[0],
Gregory Ashton's avatar
Gregory Ashton committed
645
646
647
                 F1s=[0], F2s=[0], delta_F0s=[0], delta_F1s=[0], tglitchs=None,
                 Alphas=[0], Deltas=[0], tref=None, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
648
                 detectors=None):
Gregory Ashton's avatar
Gregory Ashton committed
649
        """
650
651
        Run a single-glitch grid search

Gregory Ashton's avatar
Gregory Ashton committed
652
653
654
655
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
656
657
658
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
659
660
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
661
662
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Note that
            tglitchs is referenced to zero at minStartTime.
Gregory Ashton's avatar
Gregory Ashton committed
663
664
665
666
667
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see pyfstat.ComputeFStat.
        """
668
669

        self.BSGL = False
670
        self.input_arrays = False
Gregory Ashton's avatar
Gregory Ashton committed
671
        if tglitchs is None:
672
            raise ValueError('You must specify `tglitchs`')
Gregory Ashton's avatar
Gregory Ashton committed
673
674

        self.search = SemiCoherentGlitchSearch(
675
            label=label, outdir=outdir, sftfilepattern=self.sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
676
677
678
            tref=tref, minStartTime=minStartTime, maxStartTime=maxStartTime,
            minCoverFreq=minCoverFreq, maxCoverFreq=maxCoverFreq,
            BSGL=self.BSGL)
679
        self.search.get_det_stat = self.search.get_semicoherent_nglitch_twoF
Gregory Ashton's avatar
Gregory Ashton committed
680
681
682

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
683
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
684
685
686
687
        self.keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta', 'delta_F0',
                     'delta_F1', 'tglitch']

    def get_input_data_array(self):
688
689
        logging.info("Generating input data array")
        coord_arrays = []
Gregory Ashton's avatar
Gregory Ashton committed
690
691
        for tup in (self.F0s, self.F1s, self.F2s, self.Alphas, self.Deltas,
                    self.delta_F0s, self.delta_F1s, self.tglitchs):
692
            coord_arrays.append(self.get_array_from_tuple(tup))
Gregory Ashton's avatar
Gregory Ashton committed
693
694

        input_data = []
695
        for vals in itertools.product(*coord_arrays):
Gregory Ashton's avatar
Gregory Ashton committed
696
697
            input_data.append(vals)
        self.input_data = np.array(input_data)
698
        self.coord_arrays = coord_arrays
Gregory Ashton's avatar
Gregory Ashton committed
699
700


Gregory Ashton's avatar
Gregory Ashton committed
701
702
703
class FrequencySlidingWindow(GridSearch):
    """ A sliding-window search over the Frequency """
    @helper_functions.initializer
704
    def __init__(self, label, outdir, sftfilepattern, F0s, F1, F2,
Gregory Ashton's avatar
Gregory Ashton committed
705
706
707
                 Alpha, Delta, tref, minStartTime=None,
                 maxStartTime=None, window_size=10*86400, window_delta=86400,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
708
                 detectors=None, SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
709
710
711
712
713
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
714
715
716
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
717
718
719
720
721
722
723
724
725
726
        F0s: array
            Frequency range
        F1, F2, Alpha, Delta: float
            Fixed values to compute twoF(F) over
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

727
728
729
730
        self.transientWindowType = None
        self.t0Band = None
        self.tauBand = None

Gregory Ashton's avatar
Gregory Ashton committed
731
732
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
733
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
734
735
736
737
738
        self.nsegs = 1
        self.F1s = [F1]
        self.F2s = [F2]
        self.Alphas = [Alpha]
        self.Deltas = [Delta]
739
        self.input_arrays = False
740
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
741

Gregory Ashton's avatar
Gregory Ashton committed
742
743
744
    def inititate_search_object(self):
        logging.info('Setting up search object')
        self.search = ComputeFstat(
745
            tref=self.tref, sftfilepattern=self.sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
746
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
David Keitel's avatar
David Keitel committed
747
            detectors=self.detectors, transientWindowType=self.transientWindowType,
Gregory Ashton's avatar
Gregory Ashton committed
748
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
Gregory Ashton's avatar
Gregory Ashton committed
749
750
            BSGL=self.BSGL, SSBprec=self.SSBprec,
            injectSources=self.injectSources)
Gregory Ashton's avatar
Gregory Ashton committed
751
        self.search.get_det_stat = (
752
            self.search.get_fullycoherent_twoF)
Gregory Ashton's avatar
Gregory Ashton committed
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775

    def get_input_data_array(self):
        arrays = []
        tstarts = [self.minStartTime]
        while tstarts[-1] + self.window_size < self.maxStartTime:
            tstarts.append(tstarts[-1]+self.window_delta)
        arrays = [tstarts]
        for tup in (self.F0s, self.F1s, self.F2s,
                    self.Alphas, self.Deltas):
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        input_data = np.array(input_data)
        input_data = np.insert(
            input_data, 1, input_data[:, 0] + self.window_size, axis=1)

        self.arrays = arrays
        self.input_data = np.array(input_data)

    def plot_sliding_window(self, F0=None, ax=None, savefig=True,
776
                            colorbar=True, timestamps=False):
Gregory Ashton's avatar
Gregory Ashton committed
777
778
779
780
781
782
783
784
785
786
787
        data = self.data
        if ax is None:
            ax = plt.subplot()
        tstarts = np.unique(data[:, 0])
        tends = np.unique(data[:, 1])
        frequencies = np.unique(data[:, 2])
        twoF = data[:, -1]
        tmids = (tstarts + tends) / 2.0
        dts = (tmids - self.minStartTime) / 86400.
        if F0:
            frequencies = frequencies - F0
788
            ax.set_ylabel('Frequency - $f_0$ [Hz] \n $f_0={:0.2f}$'.format(F0))
Gregory Ashton's avatar
Gregory Ashton committed
789
790
791
792
793
794
795
796
797
        else:
            ax.set_ylabel('Frequency [Hz]')
        twoF = twoF.reshape((len(tmids), len(frequencies)))
        Y, X = np.meshgrid(frequencies, dts)
        pax = ax.pcolormesh(X, Y, twoF)
        if colorbar:
            cb = plt.colorbar(pax, ax=ax)
            cb.set_label('$2\mathcal{F}$')
        ax.set_xlabel(
798
799
            r'Mid-point (days after $t_\mathrm{{start}}$={})'.format(
                self.minStartTime))
Gregory Ashton's avatar
Gregory Ashton committed
800
801
        ax.set_title(
            'Sliding window length = {} days in increments of {} days'
802
803
804
805
806
807
808
            .format(self.window_size/86400, self.window_delta/86400),
            )
        if timestamps:
            axT = ax.twiny()
            axT.set_xlim(tmids[0]*1e-9, tmids[-1]*1e-9)
            axT.set_xlabel('Mid-point timestamp [GPS $10^{9}$ s]')
            ax.set_title(ax.get_title(), y=1.18)
Gregory Ashton's avatar
Gregory Ashton committed
809
810
811
812
813
814
        if savefig:
            plt.tight_layout()
            plt.savefig(
                '{}/{}_sliding_window.png'.format(self.outdir, self.label))
        else:
            return ax
815
816


Gregory Ashton's avatar
Gregory Ashton committed
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
class EarthTest(GridSearch):
    """ """
    tex_labels = {'deltaRadius': '$\Delta R$ [m]',
                  'phaseOffset': 'phase-offset [rad]',
                  'deltaPspin': '$\Delta P_\mathrm{spin}$ [s]'}

    @helper_functions.initializer
    def __init__(self, label, outdir, sftfilepattern, deltaRadius,
                 phaseOffset, deltaPspin, F0, F1, F2, Alpha,
                 Delta, tref=None, minStartTime=None, maxStartTime=None,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, injectSources=None,
                 assumeSqrtSX=None):
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
        F0, F1, F2, Alpha, Delta: float
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """
844
845
846
847
        self.transientWindowType = None
        self.t0Band = None
        self.tauBand = None

848
849
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
Gregory Ashton's avatar
Gregory Ashton committed
850
851
852
853
854
855
        self.nsegs = 1
        self.F0s = [F0]
        self.F1s = [F1]
        self.F2s = [F2]
        self.Alphas = [Alpha]
        self.Deltas = [Delta]
856
        self.duration = maxStartTime - minStartTime
Gregory Ashton's avatar
Gregory Ashton committed
857
858
        self.deltaRadius = np.atleast_1d(deltaRadius)
        self.phaseOffset = np.atleast_1d(phaseOffset)
859
        self.phaseOffset = self.phaseOffset + 1e-12  # Hack to stop cached data being used
Gregory Ashton's avatar
Gregory Ashton committed
860
861
862
863
864
        self.deltaPspin = np.atleast_1d(deltaPspin)
        self.set_out_file()
        self.SSBprec = lalpulsar.SSBPREC_RELATIVISTIC
        self.keys = ['deltaRadius', 'phaseOffset', 'deltaPspin']

865
866
867
868
869
870
871
872
        self.prior_widths = [
            np.max(self.deltaRadius)-np.min(self.deltaRadius),
            np.max(self.phaseOffset)-np.min(self.phaseOffset),
            np.max(self.deltaPspin)-np.min(self.deltaPspin)]

        if hasattr(self, 'search') is False:
            self.inititate_search_object()

Gregory Ashton's avatar
Gregory Ashton committed
873
874
875
876
877
878
879
880
881
    def get_input_data_array(self):
        logging.info("Generating input data array")
        coord_arrays = [self.deltaRadius, self.phaseOffset, self.deltaPspin]
        input_data = []
        for vals in itertools.product(*coord_arrays):
                input_data.append(vals)
        self.input_data = np.array(input_data)
        self.coord_arrays = coord_arrays

882
883
884
885
886
887
888
889
890
891
892
893
    def run_special(self):
        vals = [self.minStartTime, self.maxStartTime, self.F0, self.F1,
                self.F2, self.Alpha, self.Delta]
        self.special_data = {'zero': [0, 0, 0]}
        for key, (dR, dphi, dP) in self.special_data.iteritems():
            rescaleRadius = (1 + dR / lal.REARTH_SI)
            rescalePeriod = (1 + dP / lal.DAYSID_SI)
            lalpulsar.BarycenterModifyEarthRotation(
                rescaleRadius, dphi, rescalePeriod, self.tref)
            FS = self.search.get_det_stat(*vals)
            self.special_data[key] = list([dR, dphi, dP]) + [FS]

Gregory Ashton's avatar
Gregory Ashton committed
894
    def run(self):
895
        self.run_special()
Gregory Ashton's avatar
Gregory Ashton committed
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
        self.get_input_data_array()
        old_data = self.check_old_data_is_okay_to_use()
        if old_data is not False:
            self.data = old_data
            return

        data = []
        vals = [self.minStartTime, self.maxStartTime, self.F0, self.F1,
                self.F2, self.Alpha, self.Delta]
        for (dR, dphi, dP) in tqdm(self.input_data):
            rescaleRadius = (1 + dR / lal.REARTH_SI)
            rescalePeriod = (1 + dP / lal.DAYSID_SI)
            lalpulsar.BarycenterModifyEarthRotation(
                rescaleRadius, dphi, rescalePeriod, self.tref)
            FS = self.search.get_det_stat(*vals)
            data.append(list([dR, dphi, dP]) + [FS])

        data = np.array(data, dtype=np.float)
        logging.info('Saving data to {}'.format(self.out_file))
        np.savetxt(self.out_file, data, delimiter=' ')
        self.data = data

918
919
920
921
    def marginalised_bayes_factor(self, prior_widths=None):
        if prior_widths is None:
            prior_widths = self.prior_widths

922
        ndims = self.data.shape[1] - 1
923
        params = np.array([np.unique(self.data[:, j]) for j in range(ndims)])
924
925
926
927
928
        twoF = self.data[:, -1].reshape(tuple([len(p) for p in params]))
        F = twoF / 2.0
        for i, x in enumerate(params[::-1]):
            if len(x) > 1:
                dx = x[1] - x[0]
929
                F = logsumexp(F, axis=-1)+np.log(dx)-np.log(prior_widths[-1-i])
930
931
            else:
                F = np.squeeze(F, axis=-1)
932
933
934
935
936
937
938
939
940
941
942
        marginalised_F = np.atleast_1d(F)[0]
        F_at_zero = self.special_data['zero'][-1]/2.0

        max_idx = np.argmax(self.data[:, -1])
        max_F = self.data[max_idx, -1]/2.0
        max_F_params = self.data[max_idx, :-1]
        logging.info('F at zero = {:.1f}, marginalised_F = {:.1f},'
                     ' max_F = {:.1f} ({})'.format(
                         F_at_zero, marginalised_F, max_F, max_F_params))
        return F_at_zero - marginalised_F, (F_at_zero - max_F) / F_at_zero

943
944
    def plot_corner(self, prior_widths=None, fig=None, axes=None,
                    projection='log_mean'):
945
946
947
948
949
950
951
952
953
954
955
956
        Bsa, FmaxMismatch = self.marginalised_bayes_factor(prior_widths)

        data = self.data[:, -1].reshape(
            (len(self.deltaRadius), len(self.phaseOffset),
             len(self.deltaPspin)))
        xyz = [self.deltaRadius/lal.REARTH_SI, self.phaseOffset/(np.pi),
               self.deltaPspin/60.]
        labels = [r'$\frac{\Delta R}{R_\mathrm{Earth}}$',
                  r'$\frac{\Delta \phi}{\pi}$',
                  r'$\Delta P_\mathrm{spin}$ [min]',
                  r'$2\mathcal{F}$']

957
958
959
960
961
962
        try:
            from gridcorner import gridcorner
        except ImportError:
            raise ImportError(
                "Python module 'gridcorner' not found, please install from "
                "https://gitlab.aei.uni-hannover.de/GregAshton/gridcorner")
963

964
965
        fig, axes = gridcorner(data, xyz, projection=projection, factor=1.6,
                               labels=labels)
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
        axes[-1][-1].axvline((lal.DAYJUL_SI - lal.DAYSID_SI)/60.0, color='C3')
        plt.suptitle(
            'T={:.1f} days, $f$={:.2f} Hz, $\log\mathcal{{B}}_{{S/A}}$={:.1f},'
            r' $\frac{{\mathcal{{F}}_0-\mathcal{{F}}_\mathrm{{max}}}}'
            r'{{\mathcal{{F}}_0}}={:.1e}$'
            .format(self.duration/86400, self.F0, Bsa, FmaxMismatch), y=0.99,
            size=14)
        fig.savefig('{}/{}_projection_matrix.png'.format(
            self.outdir, self.label))

    def plot(self, key, prior_widths=None):
        Bsa, FmaxMismatch = self.marginalised_bayes_factor(prior_widths)

        rescales_defaults = {'deltaRadius': 1/lal.REARTH_SI,
                             'phaseOffset': 1/np.pi,
                             'deltaPspin': 1}
        labels = {'deltaRadius': r'$\frac{\Delta R}{R_\mathrm{Earth}}$',
                  'phaseOffset': r'$\frac{\Delta \phi}{\pi}$',
                  'deltaPspin': r'$\Delta P_\mathrm{spin}$ [s]'
                  }

        fig, ax = self.plot_1D(key, xrescale=rescales_defaults[key],
                               xlabel=labels[key], savefig=False)
        ax.set_title(
            'T={} days, $f$={} Hz, $\log\mathcal{{B}}_{{S/A}}$={:.1f}'
            .format(self.duration/86400, self.F0, Bsa))
        fig.tight_layout()
        fig.savefig('{}/{}_1D.png'.format(self.outdir, self.label))
994

Gregory Ashton's avatar
Gregory Ashton committed
995

996
997
998
class DMoff_NO_SPIN(GridSearch):
    """ DMoff test using SSBPREC_NO_SPIN """
    @helper_functions.initializer
999
    def __init__(self, par, label, outdir, sftfilepattern, minStartTime=None,
1000
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
1001
                 detectors=None, injectSources=None, assumeSqrtSX=None):
1002
1003
1004
        """
        Parameters
        ----------
1005
1006
1007
        par: dict, str
            Either a par dictionary (containing 'F0', 'F1', 'Alpha', 'Delta'
            and 'tref') or a path to a .par file to read in the F0, F1 etc
1008
1009
        label, outdir: str
            A label and directory to read/write data from/to
1010
1011
1012
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
1013
1014
1015
1016
1017
1018
1019
1020
1021
        minStartTime, maxStartTime: int
            GPS seconds of the start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)

1022
1023
1024
1025
        if type(par) == dict:
            self.par = par
        elif type(par) == str and os.path.isfile(par):
            self.par = read_par(filename=par)
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
        else:
            raise ValueError('The .par file does not exist')

        self.nsegs = 1
        self.BSGL = False

        self.tref = self.par['tref']
        self.F1s = [self.par.get('F1', 0)]
        self.F2s = [self.par.get('F2', 0)]
        self.Alphas = [self.par['Alpha']]
        self.Deltas = [self.par['Delta']]
        self.Re = 6.371e6
        self.c = 2.998e8
1039
        a0 = self.Re/self.c  # *np.cos(self.par['Delta'])
1040
        self.m0 = np.max([4, int(np.ceil(2*np.pi*self.par['F0']*a0))])
1041
1042
        logging.info(
            'Setting up DMoff_NO_SPIN search with m0 = {}'.format(self.m0))
1043
1044
1045
1046
1047
1048
1049
1050
1051

    def get_results(self):
        """ Compute the three summed detection statistics

        Returns
        -------
            m0, twoF_SUM, twoFstar_SUM_SIDEREAL, twoFstar_SUM_TERRESTRIAL

        """
Gregory Ashton's avatar
Gregory Ashton committed
1052
1053
1054
        self.SSBprec = lalpulsar.SSBPREC_RELATIVISTIC
        self.set_out_file('SSBPREC_RELATIVISTIC')
        self.F0s = [self.par['F0']+j/lal.DAYSID_SI for j in range(-4, 5)]
1055
1056
1057
        self.run()
        twoF_SUM = np.sum(self.data[:, -1])

Gregory Ashton's avatar
Gregory Ashton committed
1058
1059
1060
        self.SSBprec = lalpulsar.SSBPREC_NO_SPIN
        self.set_out_file('SSBPREC_NO_SPIN')
        self.F0s = [self.par['F0']+j/lal.DAYSID_SI
1061
1062
1063
1064
                    for j in range(-self.m0, self.m0+1)]
        self.run()
        twoFstar_SUM = np.sum(self.data[:, -1])

Gregory Ashton's avatar
Gregory Ashton committed
1065
1066
        self.set_out_file('SSBPREC_NO_SPIN_TERRESTRIAL')
        self.F0s = [self.par['F0']+j/lal.DAYJUL_SI
1067
1068
1069
1070
1071
                    for j in range(-self.m0, self.m0+1)]
        self.run()
        twoFstar_SUM_terrestrial = np.sum(self.data[:, -1])

        return self.m0, twoF_SUM, twoFstar_SUM, twoFstar_SUM_terrestrial