mcmc_based_searches.py 88.1 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
2
""" Searches using MCMC-based methods """

3
import sys
Gregory Ashton's avatar
Gregory Ashton committed
4
import os
5
import copy
Gregory Ashton's avatar
Gregory Ashton committed
6
import logging
7
from collections import OrderedDict
8
9
10
11
12
13
14
15

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import emcee
import corner
import dill as pickle

16
import core
Gregory Ashton's avatar
Gregory Ashton committed
17
from core import tqdm, args, earth_ephem, sun_ephem
18
from optimal_setup_functions import get_V_estimate
Gregory Ashton's avatar
Gregory Ashton committed
19
20
from optimal_setup_functions import get_optimal_setup
import helper_functions
21
22


23
class MCMCSearch(core.BaseSearchClass):
Gregory Ashton's avatar
Gregory Ashton committed
24
    """ MCMC search using ComputeFstat"""
25
26

    symbol_dictionary = dict(
27
        F0='$f$', F1='$\dot{f}$', F2='$\ddot{f}$', Alpha=r'$\alpha$',
28
29
        Delta='$\delta$', asini='asini', period='P', ecc='ecc', tp='tp',
        argp='argp')
30
    unit_dictionary = dict(
31
32
        F0='Hz', F1='Hz/s', F2='Hz/s$^2$', Alpha=r'rad', Delta='rad',
        asini='', period='s', ecc='', tp='', argp='')
33
34
35
    rescale_dictionary = {}


Gregory Ashton's avatar
Gregory Ashton committed
36
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
37
38
    def __init__(self, label, outdir, theta_prior, tref, minStartTime,
                 maxStartTime, sftfilepath=None, nsteps=[100, 100],
39
40
                 nwalkers=100, ntemps=1, log10temperature_min=-5,
                 theta_initial=None, scatter_val=1e-10,
41
                 binary=False, BSGL=False, minCoverFreq=None,
42
                 maxCoverFreq=None, detectors=None, earth_ephem=None,
43
                 sun_ephem=None, injectSources=None, assumeSqrtSX=None):
44
45
46
47
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
48
        sftfilepath: str
49
50
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
51
        theta_prior: dict
52
53
54
55
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
56
57
58
59
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
60
        tref, minStartTime, maxStartTime: int
61
62
63
64
65
66
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
67
68
69
70
71
72
73
74
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
        binary: Bool
            If true, search over binary parameters
75
        detectors: str
76
77
            Two character reference to the data to use, specify None for no
            contraint.
78
79
80
81
82
83
84
85
86
87
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

Gregory Ashton's avatar
Gregory Ashton committed
88
89
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
90
        self._add_log_file()
Gregory Ashton's avatar
Gregory Ashton committed
91
92
        logging.info(
            'Set-up MCMC search for model {} on data {}'.format(
93
                self.label, self.sftfilepath))
94
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
95
        self._unpack_input_theta()
96
        self.ndim = len(self.theta_keys)
97
98
99
100
        if self.log10temperature_min:
            self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
        else:
            self.betas = None
101

102
103
104
105
106
107
108
109
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

110
        self._log_input()
111

112
    def _log_input(self):
113
        logging.info('theta_prior = {}'.format(self.theta_prior))
114
        logging.info('nwalkers={}'.format(self.nwalkers))
115
116
117
118
        logging.info('scatter_val = {}'.format(self.scatter_val))
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
        logging.info('log10temperature_min = {}'.format(
119
            self.log10temperature_min))
120

121
    def _initiate_search_object(self):
122
        logging.info('Setting up search object')
123
        self.search = core.ComputeFstat(
124
125
126
            tref=self.tref, sftfilepath=self.sftfilepath,
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
127
            detectors=self.detectors, BSGL=self.BSGL, transient=False,
128
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
129
130
            binary=self.binary, injectSources=self.injectSources,
            assumeSqrtSX=self.assumeSqrtSX)
131
132

    def logp(self, theta_vals, theta_prior, theta_keys, search):
133
        H = [self._generic_lnprior(**theta_prior[key])(p) for p, key in
134
135
136
137
138
139
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
140
141
        FS = search.compute_fullycoherent_det_stat_single_point(
            *self.fixed_theta)
142
143
        return FS

144
    def _unpack_input_theta(self):
145
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']
146
147
148
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
149
150
        full_theta_keys_copy = copy.copy(full_theta_keys)

151
152
        full_theta_symbols = ['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                              r'$\delta$']
153
154
        if self.binary:
            full_theta_symbols += [
155
                'asini', 'period', 'ecc', 'tp', 'argp']
156

157
158
        self.theta_keys = []
        fixed_theta_dict = {}
159
        for key, val in self.theta_prior.iteritems():
160
161
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
162
                self.theta_keys.append(key)
163
164
165
166
167
168
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
169
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

185
    def _check_initial_points(self, p0):
186
187
188
189
190
191
192
193
194
195
196
197
198
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

199
                p0 = self._generate_new_p0_to_fix_initial_points(
200
201
                    p0, nt, initial_priors)

202
    def _generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
222

223
    def _OLD_run_sampler_with_progress_bar(self, sampler, ns, p0):
224
225
        for result in tqdm(sampler.sample(p0, iterations=ns), total=ns):
            pass
Gregory Ashton's avatar
Gregory Ashton committed
226
227
        return sampler

228
229
    def setup_convergence_testing(
            self, convergence_period=10, convergence_length=10,
230
            convergence_burnin_fraction=0.25, convergence_threshold_number=10,
231
            convergence_threshold=1.2, convergence_prod_threshold=2,
232
            convergence_plot_upper_lim=2, convergence_early_stopping=True):
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
        """
        If called, convergence testing is used during the MCMC simulation

        This uses the Gelmanr-Rubin statistic based on the ratio of between and
        within walkers variance. The original statistic was developed for
        multiple (independent) MCMC simulations, in this context we simply use
        the walkers

        Parameters
        ----------
        convergence_period: int
            period (in number of steps) at which to test convergence
        convergence_length: int
            number of steps to use in testing convergence - this should be
            large enough to measure the variance, but if it is too long
            this will result in incorect early convergence tests
        convergence_burnin_fraction: float [0, 1]
            the fraction of the burn-in period after which to start testing
        convergence_threshold_number: int
            the number of consecutive times where the test passes after which
            to break the burn-in and go to production
        convergence_threshold: float
            the threshold to use in diagnosing convergence. Gelman & Rubin
            recomend a value of 1.2, 1.1 for strict convergence
        convergence_prod_threshold: float
            the threshold to test the production values with
259
260
        convergence_plot_upper_lim: float
            the upper limit to use in the diagnostic plot
261
262
        convergence_early_stopping: bool
            if true, stop the burnin early if convergence is reached
263
        """
264
265
266
267
268
269
270

        if convergence_length > convergence_period:
            raise ValueError('convergence_length must be < convergence_period')
        logging.info('Setting up convergence testing')
        self.convergence_length = convergence_length
        self.convergence_period = convergence_period
        self.convergence_burnin_fraction = convergence_burnin_fraction
271
        self.convergence_prod_threshold = convergence_prod_threshold
272
273
274
275
276
        self.convergence_diagnostic = []
        self.convergence_diagnosticx = []
        self.convergence_threshold_number = convergence_threshold_number
        self.convergence_threshold = convergence_threshold
        self.convergence_number = 0
277
        self.convergence_plot_upper_lim = convergence_plot_upper_lim
278
        self.convergence_early_stopping = convergence_early_stopping
279

280
    def _get_convergence_statistic(self, i, sampler):
281
        s = sampler.chain[0, :, i-self.convergence_length+1:i+1, :]
282
283
284
        N = float(self.convergence_length)
        M = float(self.nwalkers)
        W = np.mean(np.var(s, axis=1), axis=0)
285
286
        per_walker_mean = np.mean(s, axis=1)
        mean = np.mean(per_walker_mean, axis=0)
287
288
289
        B = N / (M-1.) * np.sum((per_walker_mean-mean)**2, axis=0)
        Vhat = (N-1)/N * W + (M+1)/(M*N) * B
        c = Vhat/W
290
        self.convergence_diagnostic.append(c)
291
        self.convergence_diagnosticx.append(i - self.convergence_length/2)
292
293
        return c

294
    def _burnin_convergence_test(self, i, sampler, nburn):
295
296
        if i < self.convergence_burnin_fraction*nburn:
            return False
297
        if np.mod(i+1, self.convergence_period) != 0:
298
            return False
299
        c = self._get_convergence_statistic(i, sampler)
300
301
        if np.all(c < self.convergence_threshold):
            self.convergence_number += 1
302
303
        else:
            self.convergence_number = 0
304
305
        if self.convergence_early_stopping:
            return self.convergence_number > self.convergence_threshold_number
306

307
    def _prod_convergence_test(self, i, sampler, nburn):
308
309
310
        testA = i > nburn + self.convergence_length
        testB = np.mod(i+1, self.convergence_period) == 0
        if testA and testB:
311
            self._get_convergence_statistic(i, sampler)
312

313
    def _check_production_convergence(self, k):
314
315
316
317
318
319
320
321
        bools = np.any(
            np.array(self.convergence_diagnostic)[k:, :]
            > self.convergence_prod_threshold, axis=1)
        if np.any(bools):
            logging.warning(
                '{} convergence tests in the production run of {} failed'
                .format(np.sum(bools), len(bools)))

322
    def _run_sampler(self, sampler, p0, nprod=0, nburn=0):
323
        if hasattr(self, 'convergence_period'):
324
325
326
327
            logging.info('Running {} burn-in steps with convergence testing'
                         .format(nburn))
            iterator = tqdm(sampler.sample(p0, iterations=nburn), total=nburn)
            for i, output in enumerate(iterator):
328
                if self._burnin_convergence_test(i, sampler, nburn):
329
330
331
332
333
334
335
336
337
338
339
                    logging.info(
                        'Converged at {} before max number {} of steps reached'
                        .format(i, nburn))
                    self.convergence_idx = i
                    break
            iterator.close()
            logging.info('Running {} production steps'.format(nprod))
            j = nburn
            k = len(self.convergence_diagnostic)
            for result in tqdm(sampler.sample(output[0], iterations=nprod),
                               total=nprod):
340
                self._prod_convergence_test(j, sampler, nburn)
341
                j += 1
342
            self._check_production_convergence(k)
343
344
345
346
347
348
            return sampler
        else:
            for result in tqdm(sampler.sample(p0, iterations=nburn+nprod),
                               total=nburn+nprod):
                pass
            return sampler
349

350
    def run(self, proposal_scale_factor=2, create_plots=True, **kwargs):
351
        """ Run the MCMC simulatation """
352

353
        self.old_data_is_okay_to_use = self._check_old_data_is_okay_to_use()
354
355
356
        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
357
            d = self.get_saved_data_dictionary()
358
359
360
361
362
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
            return

363
        self._initiate_search_object()
364
365
366
367

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
368
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
369

370
371
372
        p0 = self._generate_initial_p0()
        p0 = self._apply_corrections_to_p0(p0)
        self._check_initial_points(p0)
373
374
375
376

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
Gregory Ashton's avatar
Gregory Ashton committed
377
                j, ninit_steps, n))
378
            sampler = self._run_sampler(sampler, p0, nburn=n)
379
380
            logging.info("Mean acceptance fraction: {}"
                         .format(np.mean(sampler.acceptance_fraction, axis=1)))
381
382
383
            if self.ntemps > 1:
                logging.info("Tswap acceptance fraction: {}"
                             .format(sampler.tswap_acceptance_fraction))
384
            if create_plots:
385
                fig, axes = self._plot_walkers(sampler,
386
387
388
389
                                              symbols=self.theta_symbols,
                                              **kwargs)
                fig.tight_layout()
                fig.savefig('{}/{}_init_{}_walkers.png'.format(
390
                    self.outdir, self.label, j), dpi=400)
391

392
393
394
            p0 = self._get_new_p0(sampler)
            p0 = self._apply_corrections_to_p0(p0)
            self._check_initial_points(p0)
395
396
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
397
398
399
400
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
401
402
403
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
404
        sampler = self._run_sampler(sampler, p0, nburn=nburn, nprod=nprod)
405
406
        logging.info("Mean acceptance fraction: {}"
                     .format(np.mean(sampler.acceptance_fraction, axis=1)))
407
408
409
        if self.ntemps > 1:
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
410

411
        if create_plots:
412
            fig, axes = self._plot_walkers(sampler, symbols=self.theta_symbols,
413
                                          nprod=nprod, **kwargs)
414
415
416
            fig.tight_layout()
            fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label),
                        dpi=200)
417
418
419
420

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
421
        all_lnlikelihood = sampler.lnlikelihood
422
423
424
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
425
426
        self.all_lnlikelihood = all_lnlikelihood
        self._save_data(sampler, samples, lnprobs, lnlikes, all_lnlikelihood)
427

428
    def _get_rescale_multiplier_for_key(self, key):
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
        """ Get the rescale multiplier from the rescale_dictionary

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
        if key not in self.rescale_dictionary:
            return 1

        if 'multiplier' in self.rescale_dictionary[key]:
            val = self.rescale_dictionary[key]['multiplier']
            if type(val) == str:
                if hasattr(self, val):
                    multiplier = getattr(
                        self, self.rescale_dictionary[key]['multiplier'])
                else:
                    raise ValueError(
                        "multiplier {} not a class attribute".format(val))
            else:
                multiplier = val
        else:
            multiplier = 1
        return multiplier

453
    def _get_rescale_subtractor_for_key(self, key):
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
        """ Get the rescale subtractor from the rescale_dictionary

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
        if key not in self.rescale_dictionary:
            return 0

        if 'subtractor' in self.rescale_dictionary[key]:
            val = self.rescale_dictionary[key]['subtractor']
            if type(val) == str:
                if hasattr(self, val):
                    subtractor = getattr(
                        self, self.rescale_dictionary[key]['subtractor'])
                else:
                    raise ValueError(
                        "subtractor {} not a class attribute".format(val))
            else:
                subtractor = val
        else:
            subtractor = 0
        return subtractor

478
    def _scale_samples(self, samples, theta_keys):
479
        """ Scale the samples using the rescale_dictionary """
480
481
482
483
        for key in theta_keys:
            if key in self.rescale_dictionary:
                idx = theta_keys.index(key)
                s = samples[:, idx]
484
                subtractor = self._get_rescale_subtractor_for_key(key)
485
                s = s - subtractor
486
                multiplier = self._get_rescale_multiplier_for_key(key)
487
                s *= multiplier
488
489
                samples[:, idx] = s

490
491
        return samples

492
    def _get_labels(self):
493
        """ Combine the units, symbols and rescaling to give labels """
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
        labels = []
        for key in self.theta_keys:
            label = None
            s = self.symbol_dictionary[key]
            s.replace('_{glitch}', r'_\textrm{glitch}')
            u = self.unit_dictionary[key]
            if key in self.rescale_dictionary:
                if 'symbol' in self.rescale_dictionary[key]:
                    s = self.rescale_dictionary[key]['symbol']
                if 'label' in self.rescale_dictionary[key]:
                    label = self.rescale_dictionary[key]['label']
                if 'unit' in self.rescale_dictionary[key]:
                    u = self.rescale_dictionary[key]['unit']
            if label is None:
                label = '{} \n [{}]'.format(s, u)
            labels.append(label)
        return labels
512

513
514
    def plot_corner(self, figsize=(7, 7), add_prior=False, nstds=None,
                    label_offset=0.4, dpi=300, rc_context={},
515
                    tglitch_ratio=False, fig_and_axes=None, save_fig=True,
516
                    **kwargs):
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
        """ Generate a corner plot of the posterior

        Using the `corner` package (https://pypi.python.org/pypi/corner/),
        generate estimates of the posterior from the production samples.

        Parameters
        ----------
        figsize: tuple (7, 7)
            Figure size in inches (passed to plt.subplots)
        add_prior: bool
            If true, plot the prior as a red line
        nstds: float
            The number of standard deviations to plot centered on the mean
        label_offset: float
            Offset the labels from the plot: useful to precent overlapping the
            tick labels with the axis labels
        dpi: int
            Passed to plt.savefig
        rc_context: dict
            Dictionary of rc values to set while generating the figure (see
            matplotlib rc for more details)
        tglitch_ratio: bool
            If true, and tglitch is a parameter, plot posteriors as the
            fractional time at which the glitch occurs instead of the actual
            time
542
543
544
545
546
        fig_and_axes: tuple
            fig and axes to plot on, the axes must be of the right shape,
            namely (ndim, ndim)
        save_fig: bool
            If true, save the figure, else return the fig, axes
547
548
549
550

        Note: kwargs are passed on to corner.coner

        """
551

552
553
554
555
        if 'truths' in kwargs and len(kwargs['truths']) != self.ndim:
            logging.warning('len(Truths) != ndim, Truths will be ignored')
            kwargs['truths'] = None

Gregory Ashton's avatar
Gregory Ashton committed
556
557
        if self.ndim < 2:
            with plt.rc_context(rc_context):
558
559
560
561
                if fig_and_axes is None:
                    fig, ax = plt.subplots(figsize=figsize)
                else:
                    fig, ax = fig_and_axes
Gregory Ashton's avatar
Gregory Ashton committed
562
563
564
565
566
567
568
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

569
        with plt.rc_context(rc_context):
570
571
572
573
574
            if fig_and_axes is None:
                fig, axes = plt.subplots(self.ndim, self.ndim,
                                         figsize=figsize)
            else:
                fig, axes = fig_and_axes
575
576

            samples_plt = copy.copy(self.samples)
577
            labels = self._get_labels()
578

579
            samples_plt = self._scale_samples(samples_plt, self.theta_keys)
580
581
582
583
584

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
585
586
587
                        samples_plt[:, j] = (
                            s - self.minStartTime)/(
                                self.maxStartTime - self.minStartTime)
588
                        labels[j] = r'$R_{\textrm{glitch}}$'
589
590
591
592
593
594
595

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
596
597
            elif 'range' in kwargs:
                _range = kwargs.pop('range')
598
599
600
601
            else:
                _range = None

            fig_triangle = corner.corner(samples_plt,
602
                                         labels=labels,
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
628
                self._add_prior_to_corner(axes, self.samples)
629

630
631
632
633
634
            if save_fig:
                fig_triangle.savefig('{}/{}_corner.png'.format(
                    self.outdir, self.label), dpi=dpi)
            else:
                return fig, axes
635

636
    def _add_prior_to_corner(self, axes, samples):
637
638
639
640
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            xlim = ax.get_xlim()
            s = samples[:, i]
641
            prior = self._generic_lnprior(**self.theta_prior[key])
642
            x = np.linspace(s.min(), s.max(), 100)
643
644
            multiplier = self._get_rescale_multiplier_for_key(key)
            subtractor = self._get_rescale_subtractor_for_key(key)
645
646
            ax2 = ax.twinx()
            ax2.get_yaxis().set_visible(False)
647
648
            ax2.plot((x-subtractor)*multiplier, [prior(xi) for xi in x], '-r')
            ax2.set_xlim(xlim)
649

650
651
652
653
654
655
656
657
    def plot_prior_posterior(self, normal_stds=2):
        """ Plot the posterior in the context of the prior """
        fig, axes = plt.subplots(nrows=self.ndim, figsize=(8, 4*self.ndim))
        N = 1000
        from scipy.stats import gaussian_kde

        for i, (ax, key) in enumerate(zip(axes, self.theta_keys)):
            prior_dict = self.theta_prior[key]
658
            prior_func = self._generic_lnprior(**prior_dict)
659
660
661
662
663
664
665
666
667
668
            if prior_dict['type'] == 'unif':
                x = np.linspace(prior_dict['lower'], prior_dict['upper'], N)
                prior = prior_func(x)
                prior[0] = 0
                prior[-1] = 0
            elif prior_dict['type'] == 'norm':
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = prior_func(x)
669
670
671
672
673
            elif prior_dict['type'] == 'halfnorm':
                lower = prior_dict['loc']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
Gregory Ashton's avatar
Gregory Ashton committed
674
675
676
677
678
            elif prior_dict['type'] == 'neghalfnorm':
                upper = prior_dict['loc']
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
            else:
                raise ValueError('Not implemented for prior type {}'.format(
                    prior_dict['type']))
            priorln = ax.plot(x, prior, 'r', label='prior')
            ax.set_xlabel(self.theta_symbols[i])

            s = self.samples[:, i]
            while len(s) > 10**4:
                # random downsample to avoid slow calculation of kde
                s = np.random.choice(s, size=int(len(s)/2.))
            kde = gaussian_kde(s)
            ax2 = ax.twinx()
            postln = ax2.plot(x, kde.pdf(x), 'k', label='posterior')
            ax2.set_yticklabels([])
            ax.set_yticklabels([])

        lns = priorln + postln
        labs = [l.get_label() for l in lns]
        axes[0].legend(lns, labs, loc=1, framealpha=0.8)

        fig.savefig('{}/{}_prior_posterior.png'.format(
            self.outdir, self.label))

702
    def plot_cumulative_max(self, **kwargs):
703
704
705
706
        """ Plot the cumulative twoF for the maximum posterior estimate

        See the pyfstat.core.plot_twoF_cumulative function for further details
        """
Gregory Ashton's avatar
Gregory Ashton committed
707
708
709
710
        d, maxtwoF = self.get_max_twoF()
        for key, val in self.theta_prior.iteritems():
            if key not in d:
                d[key] = val
711
712

        if hasattr(self, 'search') is False:
713
            self._initiate_search_object()
714
715
716
        if self.binary is False:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
717
                Alpha=d['Alpha'], Delta=d['Delta'],
718
                tstart=self.minStartTime, tend=self.maxStartTime,
719
                **kwargs)
720
721
722
723
724
        else:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
                Alpha=d['Alpha'], Delta=d['Delta'], asini=d['asini'],
                period=d['period'], ecc=d['ecc'], argp=d['argp'], tp=d['argp'],
725
                tstart=self.minStartTime, tend=self.maxStartTime, **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
726

727
    def _generic_lnprior(self, **kwargs):
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
        """ Return a lambda function of the pdf

        Parameters
        ----------
        kwargs: dict
            A dictionary containing 'type' of pdf and shape parameters

        """

        def logunif(x, a, b):
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

        def halfnorm(x, loc, scale):
752
            if x < loc:
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
            return lambda x: logunif(x, kwargs['lower'], kwargs['upper'])
        elif kwargs['type'] == 'halfnorm':
            return lambda x: halfnorm(x, kwargs['loc'], kwargs['scale'])
770
771
        elif kwargs['type'] == 'neghalfnorm':
            return lambda x: halfnorm(-x, kwargs['loc'], kwargs['scale'])
772
773
774
775
776
777
778
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

779
    def _generate_rv(self, **kwargs):
780
781
782
783
784
785
786
787
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
788
789
790
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
791
792
793
794
795
796
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

797
798
799
    def _plot_walkers(self, sampler, symbols=None, alpha=0.4, color="k",
                      temp=0, lw=0.1, nprod=0, add_det_stat_burnin=False,
                      fig=None, axes=None, xoffset=0, plot_det_stat=False,
800
                      context='ggplot', subtractions=None, labelpad=0.05):
801
802
        """ Plot all the chains from a sampler """

803
804
805
806
807
        if context not in plt.style.available:
            raise ValueError((
                'The requested context {} is not available; please select a'
                ' context from `plt.style.available`').format(context))

808
809
810
        if np.ndim(axes) > 1:
            axes = axes.flatten()

811
812
813
814
815
816
817
818
819
820
821
822
823
        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
            chain = sampler.chain[:, :, :]
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
            chain = sampler.chain[temp, :, :, :]

824
825
        if subtractions is None:
            subtractions = [0 for i in range(ndim)]
826
827
828
        else:
            if len(subtractions) != self.ndim:
                raise ValueError('subtractions must be of length ndim')
829

830
831
832
833
        if plot_det_stat:
            extra_subplots = 1
        else:
            extra_subplots = 0
834
        with plt.style.context((context)):
Gregory Ashton's avatar
Gregory Ashton committed
835
            plt.rcParams['text.usetex'] = True
Gregory Ashton's avatar
Gregory Ashton committed
836
            if fig is None and axes is None:
837
                fig = plt.figure(figsize=(4, 3.0*ndim))
838
839
                ax = fig.add_subplot(ndim+extra_subplots, 1, 1)
                axes = [ax] + [fig.add_subplot(ndim+extra_subplots, 1, i)
Gregory Ashton's avatar
Gregory Ashton committed
840
                               for i in range(2, ndim+1)]
841

Gregory Ashton's avatar
Gregory Ashton committed
842
            idxs = np.arange(chain.shape[1])
843
844
845
846
847
            burnin_idx = chain.shape[1] - nprod
            if hasattr(self, 'convergence_idx'):
                convergence_idx = self.convergence_idx
            else:
                convergence_idx = burnin_idx
848
849
            if ndim > 1:
                for i in range(ndim):
850
                    axes[i].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
851
                    cs = chain[:, :, i].T
852
                    if burnin_idx > 0:
853
854
                        axes[i].plot(xoffset+idxs[:convergence_idx+1],
                                     cs[:convergence_idx+1]-subtractions[i],
855
                                     color="r", alpha=alpha,
Gregory Ashton's avatar
Gregory Ashton committed
856
                                     lw=lw)
857
                        axes[i].axvline(xoffset+convergence_idx,
858
                                        color='k', ls='--', lw=0.25)
859
860
                    axes[i].plot(xoffset+idxs[burnin_idx:],
                                 cs[burnin_idx:]-subtractions[i],
Gregory Ashton's avatar
Gregory Ashton committed
861
                                 color="k", alpha=alpha, lw=lw)
862
                    if symbols:
863
                        if subtractions[i] == 0:
864
                            axes[i].set_ylabel(symbols[i], labelpad=labelpad)
865
866
                        else:
                            axes[i].set_ylabel(
867
868
                                symbols[i]+'$-$'+symbols[i]+'$_0$',
                                labelpad=labelpad)
869

870
871
                    if hasattr(self, 'convergence_diagnostic'):
                        ax = axes[i].twinx()
872
873
                        c_x = np.array(self.convergence_diagnosticx)
                        c_y = np.array(self.convergence_diagnostic)
874
875
876
877
                        break_idx = np.argmin(np.abs(c_x - burnin_idx))
                        ax.plot(c_x[:break_idx], c_y[:break_idx, i], '-b')
                        ax.plot(c_x[break_idx:], c_y[break_idx:, i], '-b')
                        ax.set_ylabel('PSRF')
878
                        ax.ticklabel_format(useOffset=False)
879
                        ax.set_ylim(0.5, self.convergence_plot_upper_lim)
880
            else:
Gregory Ashton's avatar
Gregory Ashton committed
881
                axes[0].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
882
                cs = chain[:, :, temp].T
Gregory Ashton's avatar
Gregory Ashton committed
883
884
885
886
887
888
                if burnin_idx:
                    axes[0].plot(idxs[:burnin_idx], cs[:burnin_idx],
                                 color="r", alpha=alpha, lw=lw)
                axes[0].plot(idxs[burnin_idx:], cs[burnin_idx:], color="k",
                             alpha=alpha, lw=lw)
                if symbols:
889
                    axes[0].set_ylabel(symbols[0], labelpad=labelpad)
890

891
            if plot_det_stat:
892
893
894
                if len(axes) == ndim:
                    axes.append(fig.add_subplot(ndim+1, 1, ndim+1))

895
896
897
                lnl = sampler.lnlikelihood[temp, :, :]
                if burnin_idx and add_det_stat_burnin:
                    burn_in_vals = lnl[:, :burnin_idx].flatten()
898
899
900
901
902
903
904
                    try:
                        axes[-1].hist(burn_in_vals[~np.isnan(burn_in_vals)],
                                      bins=50, histtype='step', color='r')
                    except ValueError:
                        logging.info('Det. Stat. hist failed, most likely all '
                                     'values where the same')
                        pass
905
906
907
                else:
                    burn_in_vals = []
                prod_vals = lnl[:, burnin_idx:].flatten()
908
909
910
911
912
913
914
                try:
                    axes[-1].hist(prod_vals[~np.isnan(prod_vals)], bins=50,
                                  histtype='step', color='k')
                except ValueError:
                    logging.info('Det. Stat. hist failed, most likely all '
                                 'values where the same')
                    pass
915
916
917
918
919
920
921
922
923
924
925
926
                if self.BSGL:
                    axes[-1].set_xlabel(r'$\mathcal{B}_\mathrm{S/GL}$')
                else:
                    axes[-1].set_xlabel(r'$\widetilde{2\mathcal{F}}$')
                axes[-1].set_ylabel(r'$\textrm{Counts}$')
                combined_vals = np.append(burn_in_vals, prod_vals)
                if len(combined_vals) > 0:
                    minv = np.min(combined_vals)
                    maxv = np.max(combined_vals)
                    Range = abs(maxv-minv)
                    axes[-1].set_xlim(minv-0.1*Range, maxv+0.1*Range)

927
                xfmt = matplotlib.ticker.ScalarFormatter()
928
                xfmt.set_powerlimits((-4, 4))
929
930
                axes[-1].xaxis.set_major_formatter(xfmt)

931
            axes[-2].set_xlabel(r'$\textrm{Number of steps}$', labelpad=0.2)
932
933
        return fig, axes

934
    def _apply_corrections_to_p0(self, p0):
Gregory Ashton's avatar
Gregory Ashton committed
935
936
937
        """ Apply any correction to the initial p0 values """
        return p0

938
    def _generate_scattered_p0(self, p):
939
        """ Generate a set of p0s scattered about p """
Gregory Ashton's avatar
Gregory Ashton committed
940
        p0 = [[p + self.scatter_val * p * np.random.randn(self.ndim)
941
942
943
944
               for i in xrange(self.nwalkers)]
              for j in xrange(self.ntemps)]
        return p0

945
    def _generate_initial_p0(self):
946
947
948
        """ Generate a set of init vals for the walkers """

        if type(self.theta_initial) == dict:
949
            logging.info('Generate initial values from initial dictionary')
950
            if hasattr(self, 'nglitch') and self.nglitch > 1:
951
                raise ValueError('Initial dict not implemented for nglitch>1')
952
            p0 = [[[self._generate_rv(**self.theta_initial[key])
953
954
955
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
956
957
        elif type(self.theta_initial) == list:
            logging.info('Generate initial values from list of theta_initial')
958
            p0 = [[[self._generate_rv(**val)
959
960
961
                    for val in self.theta_initial]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
962
        elif self.theta_initial is None:
963
            logging.info('Generate initial values from prior dictionary')
964
            p0 = [[[self._generate_rv(**self.theta_prior[key])
965
966
967
968
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
        elif len(self.theta_initial) == self.ndim:
969
            p0 = self._generate_scattered_p0(self.theta_initial)
970
971
972
973
974
        else:
            raise ValueError('theta_initial not understood')

        return p0

975
    def _get_new_p0(self, sampler):
976
977
978
979
980
981
        """ Returns new initial positions for walkers are burn0 stage

        This returns new positions for all walkers by scattering points about
        the maximum posterior with scale `scatter_val`.

        """
Gregory Ashton's avatar
Gregory Ashton committed
982
983
984
985
        temp_idx = 0
        pF = sampler.chain[temp_idx, :, :, :]
        lnl = sampler.lnlikelihood[temp_idx, :, :]
        lnp = sampler.lnprobability[temp_idx, :, :]
986
987

        # General warnings about the state of lnp
Gregory Ashton's avatar
Gregory Ashton committed
988
        if np.any(np.isnan(lnp)):
989
990
            logging.warning(
                "Of {} lnprobs {} are nan".format(
Gregory Ashton's avatar
Gregory Ashton committed
991
992
                    np.shape(lnp), np.sum(np.isnan(lnp))))
        if np.any(np.isposinf(lnp)):
993
994
            logging.warning(
                "Of {} lnprobs {} are +np.inf".format(
Gregory Ashton's avatar
Gregory Ashton committed
995
996
                    np.shape(lnp), np.sum(np.isposinf(lnp))))
        if np.any(np.isneginf(lnp)):
997
998
            logging.warning(
                "Of {} lnprobs {} are -np.inf".format(
Gregory Ashton's avatar
Gregory Ashton committed
999
                    np.shape(lnp), np.sum(np.isneginf(lnp))))
1000

1001
1002
        lnp_finite = copy.copy(lnp)
        lnp_finite[np.isinf(lnp)] = np.nan
Gregory Ashton's avatar
Gregory Ashton committed
1003
1004
        idx = np.unravel_index(np.nanargmax(lnp_finite), lnp_finite.shape)
        p = pF[idx]
1005
        p0 = self._generate_scattered_p0(p)
1006

1007
1008
1009
1010
1011
1012
1013
1014
        self.search.BSGL = False
        twoF = self.logl(p, self.search)
        self.search.BSGL = self.BSGL

        logging.info(('Gen. new p0 from pos {} which had det. stat.={:2.1f},'
                      ' twoF={:2.1f} and lnp={:2.1f}')
                     .format(idx[1], lnl[idx], twoF, lnp_finite[idx]))

1015
1016
        return p0

1017
    def _get_data_dictionary_to_save(self):
1018
1019
        d = dict(nsteps=self.nsteps, nwalkers=self.nwalkers,
                 ntemps=self.ntemps, theta_keys=self.theta_keys,
Gregory Ashton's avatar
Gregory Ashton committed
1020
                 theta_prior=self.theta_prior, scatter_val=self.scatter_val,
1021
                 log10temperature_min=self.log10temperature_min,
1022
                 BSGL=self.BSGL)
1023
1024
        return d

1025
    def _save_data(self, sampler, samples, lnprobs, lnlikes, all_lnlikelihood):
1026
        d = self._get_data_dictionary_to_save()
1027
1028
1029
        d['samples'] = samples
        d['lnprobs'] = lnprobs
        d['lnlikes'] = lnlikes
1030
        d['all_lnlikelihood'] = all_lnlikelihood
1031
1032
1033
1034
1035
1036
1037
1038

        if os.path.isfile(self.pickle_path):
            logging.info('Saving backup of {} as {}.old'.format(
                self.pickle_path, self.pickle_path))
            os.rename(self.pickle_path, self.pickle_path+".old")
        with open(self.pickle_path, "wb") as File:
            pickle.dump(d, File)

1039
1040
    def get_saved_data_dictionary(self):
        """ Returns dictionary of the data saved as pickle """
1041
1042
1043
1044
        with open(self.pickle_path, "r") as File:
            d = pickle.load(File)
        return d

1045
    def _check_old_data_is_okay_to_use(self):
1046
1047
1048
1049
        if args.use_old_data:
            logging.info("Forcing use of old data")
            return True

1050
1051
1052
1053
        if os.path.isfile(self.pickle_path) is False:
            logging.info('No pickled data found')
            return False

Gregory Ashton's avatar
Gregory Ashton committed
1054
1055
        if self.sftfilepath is not None:
            oldest_sft = min([os.path.getmtime(f) for f in
1056
                              self._get_list_of_matching_sfts()])
Gregory Ashton's avatar
Gregory Ashton committed
1057
1058
1059
            if os.path.getmtime(self.pickle_path) < oldest_sft:
                logging.info('Pickled data outdates sft files')
                return False
1060

1061
1062
        old_d = self.get_saved_data_dictionary().copy()
        new_d = self._get_data_dictionary_to_save().copy()
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073

        old_d.pop('samples')
        old_d.pop('lnprobs')
        old_d.pop('lnlikes')

        mod_keys = []
        for key in new_d.keys():
            if key in old_d:
                if new_d[key] != old_d[key]:
                    mod_keys.append((key, old_d[key], new_d[key]))
            else:
1074
                raise ValueError('Keys {} not in old dictionary'.format(key))
1075
1076
1077
1078
1079
1080
1081
1082