pyfstat.py 70.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
""" Classes for various types of searches using ComputeFstatistic """
import os
import sys
import itertools
import logging
import argparse
import copy
import glob
import inspect
from functools import wraps
11
import subprocess
12
from collections import OrderedDict
13
14
15

import numpy as np
import matplotlib
16
matplotlib.use('Agg')
17
18
19
20
import matplotlib.pyplot as plt
import emcee
import corner
import dill as pickle
21
import lal
22
23
import lalpulsar

24
plt.rcParams['text.usetex'] = True
25
plt.rcParams['axes.formatter.useoffset'] = False
26

27
28
29
30
31
32
33
config_file = os.path.expanduser('~')+'/.pyfstat.conf'
if os.path.isfile(config_file):
    d = {}
    with open(config_file, 'r') as f:
        for line in f:
            k, v = line.split('=')
            k = k.replace(' ', '')
34
            v = v.replace(' ', '').replace("'", "").replace('"', '').replace('\n', '')
35
36
37
38
39
40
            d[k] = v
    earth_ephem = d['earth_ephem']
    sun_ephem = d['sun_ephem']
else:
    logging.warning('No ~/.pyfstat.conf file found please provide the paths '
                    'when initialising searches')
41
42
43
    earth_ephem = None
    sun_ephem = None

44
45
46
47
48
parser = argparse.ArgumentParser()
parser.add_argument("-q", "--quite", help="Decrease output verbosity",
                    action="store_true")
parser.add_argument("-c", "--clean", help="Don't use cached data",
                    action="store_true")
49
parser.add_argument("-u", "--use-old-data", action="store_true")
50
51
52
53
54
55
56
57
58
59
60
61
62
parser.add_argument('unittest_args', nargs='*')
args, unknown = parser.parse_known_args()
sys.argv[1:] = args.unittest_args

if args.quite:
    log_level = logging.WARNING
else:
    log_level = logging.DEBUG

logging.basicConfig(level=log_level,
                    format='%(asctime)s %(levelname)-8s: %(message)s',
                    datefmt='%H:%M')

63
64

def initializer(func):
65
    """ Automatically assigns the parameters to self """
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    names, varargs, keywords, defaults = inspect.getargspec(func)

    @wraps(func)
    def wrapper(self, *args, **kargs):
        for name, arg in list(zip(names[1:], args)) + list(kargs.items()):
            setattr(self, name, arg)

        for name, default in zip(reversed(names), reversed(defaults)):
            if not hasattr(self, name):
                setattr(self, name, default)

        func(self, *args, **kargs)

    return wrapper


def read_par(label, outdir):
83
    """ Read in a .par file, returns a dictionary of the values """
84
85
86
87
    filename = '{}/{}.par'.format(outdir, label)
    d = {}
    with open(filename, 'r') as f:
        for line in f:
88
89
90
            if len(line.split('=')) > 1:
                key, val = line.rstrip('\n').split(' = ')
                key = key.strip()
91
                d[key] = np.float64(eval(val.rstrip('; ')))
92
93
94
95
    return d


class BaseSearchClass(object):
96
    """ The base search class, provides ephemeris and general utilities """
97
98
99
100

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

101
102
103
104
105
106
107
108
109
    def add_log_file(self):
        ' Log output to a log-file, requires class to have outdir and label '
        logfilename = '{}/{}.log'.format(self.outdir, self.label)
        fh = logging.FileHandler(logfilename)
        fh.setFormatter(logging.Formatter(
            '%(asctime)s %(levelname)-8s: %(message)s',
            datefmt='%y-%m-%d %H:%M'))
        logging.getLogger().addHandler(fh)

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    def shift_matrix(self, n, dT):
        """ Generate the shift matrix """
        m = np.zeros((n, n))
        factorial = np.math.factorial
        for i in range(n):
            for j in range(n):
                if i == j:
                    m[i, j] = 1.0
                elif i > j:
                    m[i, j] = 0.0
                else:
                    if i == 0:
                        m[i, j] = 2*np.pi*float(dT)**(j-i) / factorial(j-i)
                    else:
                        m[i, j] = float(dT)**(j-i) / factorial(j-i)

        return m

    def shift_coefficients(self, theta, dT):
        """ Shift a set of coefficients by dT

        Parameters
        ----------
        theta: array-like, shape (n,)
            vector of the expansion coefficients to transform starting from the
135
            lowest degree e.g [phi, F0, F1,...].
136
        dT: float
137
            difference between the two reference times as tref_new - tref_old.
138
139
140
141

        Returns
        -------
        theta_new: array-like shape (n,)
142
            vector of the coefficients as evaluate as the new reference time.
143
144
145
146
147
        """
        n = len(theta)
        m = self.shift_matrix(n, dT)
        return np.dot(m, theta)

148
    def calculate_thetas(self, theta, delta_thetas, tbounds, theta0_idx=0):
149
150
151
        """ Calculates the set of coefficients for the post-glitch signal """
        thetas = [theta]
        for i, dt in enumerate(delta_thetas):
152
153
154
155
156
157
158
159
160
161
162
163
164
            if i < theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[0], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch - dt
                thetas.insert(0, self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))

            elif i >= theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[i], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch + dt
                thetas.append(self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))
165
166
167
        return thetas


Gregory Ashton's avatar
Gregory Ashton committed
168
169
170
171
172
173
174
class ComputeFstat(object):
    """ Base class providing interface to lalpulsar.ComputeFstat """

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

    @initializer
175
    def __init__(self, tref, sftfilepath=None,
176
                 minStartTime=None, maxStartTime=None,
Gregory Ashton's avatar
Gregory Ashton committed
177
                 minCoverFreq=None, maxCoverFreq=None,
178
                 detector=None, earth_ephem=None, sun_ephem=None,
179
                 binary=False, transient=True, BSGL=False):
180
181
182
183
184
        """
        Parameters
        ----------
        tref: int
            GPS seconds of the reference time.
185
186
        sftfilepath: str
            File patern to match SFTs
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        minCoverFreq, maxCoverFreq: float
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput.
            If None defaults defined in BaseSearchClass will be used.
        binary: bool
            If true, search of binary parameters.
        transient: bool
            If true, allow for the Fstat to be computed over a transient range.
202
203
        BSGL: bool
            If true, compute the BSGL rather than the twoF value.
204
205

        """
Gregory Ashton's avatar
Gregory Ashton committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        self.init_computefstatistic_single_point()

    def init_computefstatistic_single_point(self):
        """ Initilisation step of run_computefstatistic for a single point """

        logging.info('Initialising SFTCatalog')
        constraints = lalpulsar.SFTConstraints()
        if self.detector:
            constraints.detector = self.detector
221
222
223
224
225
        if self.minStartTime:
            constraints.minStartTime = lal.LIGOTimeGPS(self.minStartTime)
        if self.maxStartTime:
            constraints.maxStartTime = lal.LIGOTimeGPS(self.maxStartTime)

226
        logging.info('Loading data matching pattern {}'.format(
227
228
                     self.sftfilepath))
        SFTCatalog = lalpulsar.SFTdataFind(self.sftfilepath, constraints)
Gregory Ashton's avatar
Gregory Ashton committed
229
        names = list(set([d.header.name for d in SFTCatalog.data]))
230
        epochs = [d.header.epoch for d in SFTCatalog.data]
231
        logging.info(
232
233
            'Loaded {} data files from detectors {} spanning {} to {}'.format(
                len(epochs), names, int(epochs[0]), int(epochs[-1])))
Gregory Ashton's avatar
Gregory Ashton committed
234
235
236
237
238
239

        logging.info('Initialising ephems')
        ephems = lalpulsar.InitBarycenter(self.earth_ephem, self.sun_ephem)

        logging.info('Initialising FstatInput')
        dFreq = 0
240
241
242
243
244
        if self.transient:
            self.whatToCompute = lalpulsar.FSTATQ_ATOMS_PER_DET
        else:
            self.whatToCompute = lalpulsar.FSTATQ_2F

Gregory Ashton's avatar
Gregory Ashton committed
245
246
247
248
249
250
251
252
        FstatOptionalArgs = lalpulsar.FstatOptionalArgsDefaults

        if self.minCoverFreq is None or self.maxCoverFreq is None:
            fA = SFTCatalog.data[0].header.f0
            numBins = SFTCatalog.data[0].numBins
            fB = fA + (numBins-1)*SFTCatalog.data[0].header.deltaF
            self.minCoverFreq = fA + 0.5
            self.maxCoverFreq = fB - 0.5
253
254
255
            logging.info('Min/max cover freqs not provided, using '
                         '{} and {}, est. from SFTs'.format(
                             self.minCoverFreq, self.maxCoverFreq))
Gregory Ashton's avatar
Gregory Ashton committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

        self.FstatInput = lalpulsar.CreateFstatInput(SFTCatalog,
                                                     self.minCoverFreq,
                                                     self.maxCoverFreq,
                                                     dFreq,
                                                     ephems,
                                                     FstatOptionalArgs
                                                     )

        logging.info('Initialising PulsarDoplerParams')
        PulsarDopplerParams = lalpulsar.PulsarDopplerParams()
        PulsarDopplerParams.refTime = self.tref
        PulsarDopplerParams.Alpha = 1
        PulsarDopplerParams.Delta = 1
        PulsarDopplerParams.fkdot = np.array([0, 0, 0, 0, 0, 0, 0])
        self.PulsarDopplerParams = PulsarDopplerParams

        logging.info('Initialising FstatResults')
        self.FstatResults = lalpulsar.FstatResults()

276
277
278
279
        if self.BSGL:
            logging.info('Initialising BSGL: this will fail if numDet < 2')
            # Tuning parameters - to be reviewed
            numDetectors = 2
Gregory Ashton's avatar
Gregory Ashton committed
280
            Fstar0sc = 15.
281
            oLGX = np.zeros(10)
Gregory Ashton's avatar
Gregory Ashton committed
282
            oLGX[:numDetectors] = 1./numDetectors
283
284
285
286
287
288
289
290
291
            self.BSGLSetup = lalpulsar.CreateBSGLSetup(numDetectors,
                                                       Fstar0sc,
                                                       oLGX,
                                                       False,
                                                       1)
            self.twoFX = np.zeros(10)
            self.whatToCompute = (lalpulsar.FSTATQ_2F +
                                  lalpulsar.FSTATQ_2F_PER_DET)

292
        if self.transient:
293
            logging.info('Initialising transient parameters')
294
295
296
297
298
299
            self.windowRange = lalpulsar.transientWindowRange_t()
            self.windowRange.type = lalpulsar.TRANSIENT_RECTANGULAR
            self.windowRange.t0Band = 0
            self.windowRange.dt0 = 1
            self.windowRange.tauBand = 0
            self.windowRange.dtau = 1
300

Gregory Ashton's avatar
Gregory Ashton committed
301
    def run_computefstatistic_single_point(self, tstart, tend, F0, F1,
302
303
304
                                           F2, Alpha, Delta, asini=None,
                                           period=None, ecc=None, tp=None,
                                           argp=None):
305
        """ Returns the twoF fully-coherently at a single point """
Gregory Ashton's avatar
Gregory Ashton committed
306
307
308
309

        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
310
311
312
313
314
315
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp
Gregory Ashton's avatar
Gregory Ashton committed
316
317
318
319

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
320
                               1,
Gregory Ashton's avatar
Gregory Ashton committed
321
322
323
                               self.whatToCompute
                               )

324
        if self.transient is False:
325
326
327
328
329
330
331
332
333
            if self.BSGL is False:
                return self.FstatResults.twoF[0]

            twoF = np.float(self.FstatResults.twoF[0])
            self.twoFX[0] = self.FstatResults.twoFPerDet(0)
            self.twoFX[1] = self.FstatResults.twoFPerDet(1)
            BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
                                         self.BSGLSetup)
            return BSGL
334

335
336
        self.windowRange.t0 = int(tstart)  # TYPE UINT4
        self.windowRange.tau = int(tend - tstart)  # TYPE UINT4
337

Gregory Ashton's avatar
Gregory Ashton committed
338
        FS = lalpulsar.ComputeTransientFstatMap(
339
            self.FstatResults.multiFatoms[0], self.windowRange, False)
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

        if self.BSGL is False:
            return 2*FS.F_mn.data[0][0]

        FstatResults_single = copy.copy(self.FstatResults)
        FstatResults_single.lenth = 1
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
        FS0 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
        FS1 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)

        self.twoFX[0] = 2*FS0.F_mn.data[0][0]
        self.twoFX[1] = 2*FS1.F_mn.data[0][0]
        BSGL = lalpulsar.ComputeBSGL(2*FS.F_mn.data[0][0], self.twoFX,
                                     self.BSGLSetup)

        return BSGL
Gregory Ashton's avatar
Gregory Ashton committed
359
360
361


class SemiCoherentGlitchSearch(BaseSearchClass, ComputeFstat):
362
363
364
365
366
367
368
369
370
    """ A semi-coherent glitch search

    This implements a basic `semi-coherent glitch F-stat in which the data
    is divided into two segments either side of the proposed glitch and the
    fully-coherent F-stat in each segment is averaged to give the semi-coherent
    F-stat
    """

    @initializer
Gregory Ashton's avatar
Gregory Ashton committed
371
    def __init__(self, label, outdir, tref, tstart, tend, nglitch=0,
372
                 sftfilepath=None, theta0_idx=0, BSGL=False,
373
374
375
                 minCoverFreq=None, maxCoverFreq=None, minStartTime=None,
                 maxStartTime=None, detector=None, earth_ephem=None,
                 sun_ephem=None):
376
377
378
379
        """
        Parameters
        ----------
        label, outdir: str
380
381
382
383
384
385
            A label and directory to read/write data from/to.
        tref, tstart, tend: int
            GPS seconds of the reference time, and start and end of the data.
        nglitch: int
            The (fixed) number of glitches; this can zero, but occasionally
            this causes issue (in which case just use ComputeFstat).
386
387
        sftfilepath: str
            File patern to match SFTs
388
389
390
391
        theta0_idx, int
            Index (zero-based) of which segment the theta refers to - uyseful
            if providing a tight prior on theta to allow the signal to jump
            too theta (and not just from)
392
        minCoverFreq, maxCoverFreq: float
393
394
395
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
396
397
        detector: str
            Two character reference to the data to use, specify None for no
398
            contraint.
399
400
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
401
402
            respectively at evenly spaced times, as passed to CreateFstatInput.
            If None defaults defined in BaseSearchClass will be used.
403
404
405
406
407
408
409
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
        if self.earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if self.sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default
410
411
        self.transient = True
        self.binary = False
412
413
414
        self.init_computefstatistic_single_point()

    def compute_nglitch_fstat(self, F0, F1, F2, Alpha, Delta, *args):
415
        """ Returns the semi-coherent glitch summed twoF """
416
417
418

        args = list(args)
        tboundaries = [self.tstart] + args[-self.nglitch:] + [self.tend]
419
420
421
422
423
424
425
426
        delta_F0s = args[-3*self.nglitch:-2*self.nglitch]
        delta_F1s = args[-2*self.nglitch:-self.nglitch]
        delta_F2 = np.zeros(len(delta_F0s))
        delta_phi = np.zeros(len(delta_F0s))
        theta = [0, F0, F1, F2]
        delta_thetas = np.atleast_2d(
                np.array([delta_phi, delta_F0s, delta_F1s, delta_F2]).T)

427
428
        thetas = self.calculate_thetas(theta, delta_thetas, tboundaries,
                                       theta0_idx=self.theta0_idx)
429
430

        twoFSum = 0
431
        for i, theta_i_at_tref in enumerate(thetas):
432
433
434
            ts, te = tboundaries[i], tboundaries[i+1]

            twoFVal = self.run_computefstatistic_single_point(
435
436
                ts, te, theta_i_at_tref[1], theta_i_at_tref[2],
                theta_i_at_tref[3], Alpha, Delta)
437
438
            twoFSum += twoFVal

439
440
441
        if np.isfinite(twoFSum):
            return twoFSum
        else:
442
            return -np.inf
443
444
445

    def compute_glitch_fstat_single(self, F0, F1, F2, Alpha, Delta, delta_F0,
                                    delta_F1, tglitch):
446
447
448
449
        """ Returns the semi-coherent glitch summed twoF for nglitch=1

        Note: used for testing
        """
450
451
452
453
454
455
456
457
458
459
460

        theta = [F0, F1, F2]
        delta_theta = [delta_F0, delta_F1, 0]
        tref = self.tref

        theta_at_glitch = self.shift_coefficients(theta, tglitch - tref)
        theta_post_glitch_at_glitch = theta_at_glitch + delta_theta
        theta_post_glitch = self.shift_coefficients(
            theta_post_glitch_at_glitch, tref - tglitch)

        twoFsegA = self.run_computefstatistic_single_point(
Gregory Ashton's avatar
Gregory Ashton committed
461
            self.tstart, tglitch, theta[0], theta[1], theta[2], Alpha,
462
463
464
465
466
467
            Delta)

        if tglitch == self.tend:
            return twoFsegA

        twoFsegB = self.run_computefstatistic_single_point(
Gregory Ashton's avatar
Gregory Ashton committed
468
            tglitch, self.tend, theta_post_glitch[0],
469
470
471
472
473
474
            theta_post_glitch[1], theta_post_glitch[2], Alpha,
            Delta)

        return twoFsegA + twoFsegB


Gregory Ashton's avatar
Gregory Ashton committed
475
476
class MCMCSearch(BaseSearchClass):
    """ MCMC search using ComputeFstat"""
477
    @initializer
478
    def __init__(self, label, outdir, sftfilepath, theta_prior, tref,
479
                 tstart, tend, nsteps=[100, 100, 100], nwalkers=100, ntemps=1,
480
                 log10temperature_min=-5, theta_initial=None, scatter_val=1e-4,
481
482
                 binary=False, BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detector=None, earth_ephem=None, sun_ephem=None, theta0_idx=0):
483
484
485
486
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
487
488
        sftfilepath: str
            File patern to match SFTs
489
        theta_prior: dict
490
491
492
493
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
494
495
496
497
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
498
499
500
501
502
503
504
        tref, tstart, tend: int
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
505
506
507
508
509
510
511
512
513
514
515
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
        binary: Bool
            If true, search over binary parameters
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
516
517
518
519
520
521
522
523
524
525
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

526
527
528
        self.minStartTime = tstart
        self.maxStartTime = tend

529
        self.add_log_file()
Gregory Ashton's avatar
Gregory Ashton committed
530
531
        logging.info(
            'Set-up MCMC search for model {} on data {}'.format(
532
                self.label, self.sftfilepath))
533
534
535
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
536
537
        self.theta_prior['tstart'] = self.tstart
        self.theta_prior['tend'] = self.tend
538
539
        self.unpack_input_theta()
        self.ndim = len(self.theta_keys)
540
541
        self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)

542
543
544
545
546
547
548
549
550
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

        self.old_data_is_okay_to_use = self.check_old_data_is_okay_to_use()
551
552
553
        self.log_input()

    def log_input(self):
554
        logging.info('theta_prior = {}'.format(self.theta_prior))
555
        logging.info('nwalkers={}'.format(self.nwalkers))
556
557
558
559
        logging.info('scatter_val = {}'.format(self.scatter_val))
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
        logging.info('log10temperature_min = {}'.format(
560
            self.log10temperature_min))
561
562
563

    def inititate_search_object(self):
        logging.info('Setting up search object')
Gregory Ashton's avatar
Gregory Ashton committed
564
        self.search = ComputeFstat(
565
566
567
568
            tref=self.tref, sftfilepath=self.sftfilepath,
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
            detector=self.detector, BSGL=self.BSGL, transient=False,
569
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime)
570
571

    def logp(self, theta_vals, theta_prior, theta_keys, search):
Gregory Ashton's avatar
Gregory Ashton committed
572
        H = [self.generic_lnprior(**theta_prior[key])(p) for p, key in
573
574
575
576
577
578
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
Gregory Ashton's avatar
Gregory Ashton committed
579
        FS = search.run_computefstatistic_single_point(*self.fixed_theta)
580
581
582
        return FS

    def unpack_input_theta(self):
Gregory Ashton's avatar
Gregory Ashton committed
583
584
        full_theta_keys = ['tstart', 'tend', 'F0', 'F1', 'F2', 'Alpha',
                           'Delta']
585
586
587
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
588
589
        full_theta_keys_copy = copy.copy(full_theta_keys)

Gregory Ashton's avatar
Gregory Ashton committed
590
591
        full_theta_symbols = ['_', '_', '$f$', '$\dot{f}$', '$\ddot{f}$',
                              r'$\alpha$', r'$\delta$']
592
593
594
595
        if self.binary:
            full_theta_symbols += [
                'asini', 'period', 'period', 'ecc', 'tp', 'argp']

596
597
        self.theta_keys = []
        fixed_theta_dict = {}
598
        for key, val in self.theta_prior.iteritems():
599
600
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
601
                self.theta_keys.append(key)
602
603
604
605
606
607
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
608
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

    def check_initial_points(self, p0):
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

                p0 = self.generate_new_p0_to_fix_initial_points(
                    p0, nt, initial_priors)

    def generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680

    def run(self):

        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
            d = self.get_saved_data()
            self.sampler = d['sampler']
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
            return

        self.inititate_search_object()

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
            loglargs=(self.search,), betas=self.betas)

Gregory Ashton's avatar
Gregory Ashton committed
681
682
        p0 = self.generate_initial_p0()
        p0 = self.apply_corrections_to_p0(p0)
683
684
685
686
687
        self.check_initial_points(p0)

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
688
                j+1, ninit_steps, n))
689
            sampler.run_mcmc(p0, n)
690
691
            logging.info("Mean acceptance fraction: {0:.3f}"
                         .format(np.mean(sampler.acceptance_fraction)))
692
693
694
            if self.ntemps > 1:
                logging.info("Tswap acceptance fraction: {}"
                             .format(sampler.tswap_acceptance_fraction))
Gregory Ashton's avatar
Gregory Ashton committed
695
            fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols)
696
697
698
            fig.savefig('{}/{}_init_{}_walkers.png'.format(
                self.outdir, self.label, j))

699
            p0 = self.get_new_p0(sampler)
Gregory Ashton's avatar
Gregory Ashton committed
700
            p0 = self.apply_corrections_to_p0(p0)
701
702
703
704
705
706
707
708
            self.check_initial_points(p0)
            sampler.reset()

        nburn = self.nsteps[-2]
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
        sampler.run_mcmc(p0, nburn+nprod)
709
710
        logging.info("Mean acceptance fraction: {0:.3f}"
                     .format(np.mean(sampler.acceptance_fraction)))
711
712
713
        if self.ntemps > 1:
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
714

Gregory Ashton's avatar
Gregory Ashton committed
715
        fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols)
716
717
718
719
720
721
722
723
724
725
726
        fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label))

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
        self.sampler = sampler
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
        self.save_data(sampler, samples, lnprobs, lnlikes)

727
    def plot_corner(self, figsize=(7, 7),  tglitch_ratio=False,
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
                    add_prior=False, nstds=None, label_offset=0.4,
                    dpi=300, rc_context={}, **kwargs):

        with plt.rc_context(rc_context):
            fig, axes = plt.subplots(self.ndim, self.ndim,
                                     figsize=figsize)

            samples_plt = copy.copy(self.samples)
            theta_symbols_plt = copy.copy(self.theta_symbols)
            theta_symbols_plt = [s.replace('_{glitch}', r'_\textrm{glitch}') for s
                                 in theta_symbols_plt]

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
                        samples_plt[:, j] = (s - self.tstart)/(
                                             self.tend - self.tstart)
                        theta_symbols_plt[j] = r'$R_{\textrm{glitch}}$'

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
            else:
                _range = None

            fig_triangle = corner.corner(samples_plt,
                                         labels=theta_symbols_plt,
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
                self.add_prior_to_corner(axes, samples_plt)

            fig_triangle.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
788
789
790
791
792
793

    def add_prior_to_corner(self, axes, samples):
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            xlim = ax.get_xlim()
            s = samples[:, i]
Gregory Ashton's avatar
Gregory Ashton committed
794
            prior = self.generic_lnprior(**self.theta_prior[key])
795
796
797
798
799
800
            x = np.linspace(s.min(), s.max(), 100)
            ax2 = ax.twinx()
            ax2.get_yaxis().set_visible(False)
            ax2.plot(x, [prior(xi) for xi in x], '-r')
            ax.set_xlim(xlim)

Gregory Ashton's avatar
Gregory Ashton committed
801
    def generic_lnprior(self, **kwargs):
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
        """ Return a lambda function of the pdf

        Parameters
        ----------
        kwargs: dict
            A dictionary containing 'type' of pdf and shape parameters

        """

        def logunif(x, a, b):
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

        def halfnorm(x, loc, scale):
            if x < 0:
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
            return lambda x: logunif(x, kwargs['lower'], kwargs['upper'])
        elif kwargs['type'] == 'halfnorm':
            return lambda x: halfnorm(x, kwargs['loc'], kwargs['scale'])
844
845
        elif kwargs['type'] == 'neghalfnorm':
            return lambda x: halfnorm(-x, kwargs['loc'], kwargs['scale'])
846
847
848
849
850
851
852
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

Gregory Ashton's avatar
Gregory Ashton committed
853
    def generate_rv(self, **kwargs):
854
855
856
857
858
859
860
861
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
862
863
864
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
865
866
867
868
869
870
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

Gregory Ashton's avatar
Gregory Ashton committed
871
872
    def plot_walkers(self, sampler, symbols=None, alpha=0.4, color="k", temp=0,
                     start=None, stop=None, draw_vline=None):
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
        """ Plot all the chains from a sampler """

        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
            chain = sampler.chain[:, :, :]
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
            chain = sampler.chain[temp, :, :, :]

        with plt.style.context(('classic')):
            fig, axes = plt.subplots(ndim, 1, sharex=True, figsize=(8, 4*ndim))

            if ndim > 1:
                for i in range(ndim):
893
                    axes[i].ticklabel_format(useOffset=False, axis='y')
894
895
                    cs = chain[:, start:stop, i].T
                    axes[i].plot(cs, color="k", alpha=alpha)
896
897
898
899
                    if symbols:
                        axes[i].set_ylabel(symbols[i])
                    if draw_vline is not None:
                        axes[i].axvline(draw_vline, lw=2, ls="--")
900
901
902
903
904

            else:
                cs = chain[:, start:stop, 0].T
                axes.plot(cs, color='k', alpha=alpha)
                axes.ticklabel_format(useOffset=False, axis='y')
905
906
907

        return fig, axes

Gregory Ashton's avatar
Gregory Ashton committed
908
909
910
911
912
    def apply_corrections_to_p0(self, p0):
        """ Apply any correction to the initial p0 values """
        return p0

    def generate_scattered_p0(self, p):
913
        """ Generate a set of p0s scattered about p """
Gregory Ashton's avatar
Gregory Ashton committed
914
        p0 = [[p + self.scatter_val * p * np.random.randn(self.ndim)
915
916
917
918
               for i in xrange(self.nwalkers)]
              for j in xrange(self.ntemps)]
        return p0

Gregory Ashton's avatar
Gregory Ashton committed
919
    def generate_initial_p0(self):
920
921
922
        """ Generate a set of init vals for the walkers """

        if type(self.theta_initial) == dict:
923
924
925
            logging.info('Generate initial values from initial dictionary')
            if self.nglitch > 1:
                raise ValueError('Initial dict not implemented for nglitch>1')
Gregory Ashton's avatar
Gregory Ashton committed
926
            p0 = [[[self.generate_rv(**self.theta_initial[key])
927
928
929
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
930
931
932
933
934
935
        elif type(self.theta_initial) == list:
            logging.info('Generate initial values from list of theta_initial')
            p0 = [[[self.generate_rv(**val)
                    for val in self.theta_initial]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
936
        elif self.theta_initial is None:
937
            logging.info('Generate initial values from prior dictionary')
Gregory Ashton's avatar
Gregory Ashton committed
938
            p0 = [[[self.generate_rv(**self.theta_prior[key])
939
940
941
942
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
        elif len(self.theta_initial) == self.ndim:
Gregory Ashton's avatar
Gregory Ashton committed
943
            p0 = self.generate_scattered_p0(self.theta_initial)
944
945
946
947
948
        else:
            raise ValueError('theta_initial not understood')

        return p0

949
    def get_new_p0(self, sampler):
950
951
952
953
954
955
956
957
958
959
960
961
        """ Returns new initial positions for walkers are burn0 stage

        This returns new positions for all walkers by scattering points about
        the maximum posterior with scale `scatter_val`.

        """
        if sampler.chain[:, :, -1, :].shape[0] == 1:
            ntemps_temp = 1
        else:
            ntemps_temp = self.ntemps
        pF = sampler.chain[:, :, -1, :].reshape(
            ntemps_temp, self.nwalkers, self.ndim)[0, :, :]
962
963
        lnl = sampler.lnlikelihood[:, :, -1].reshape(
            self.ntemps, self.nwalkers)[0, :]
964
965
        lnp = sampler.lnprobability[:, :, -1].reshape(
            self.ntemps, self.nwalkers)[0, :]
966
967

        # General warnings about the state of lnp
968
        if any(np.isnan(lnp)):
969
970
971
972
973
974
975
976
977
978
979
            logging.warning(
                "Of {} lnprobs {} are nan".format(
                    len(lnp), np.sum(np.isnan(lnp))))
        if any(np.isposinf(lnp)):
            logging.warning(
                "Of {} lnprobs {} are +np.inf".format(
                    len(lnp), np.sum(np.isposinf(lnp))))
        if any(np.isneginf(lnp)):
            logging.warning(
                "Of {} lnprobs {} are -np.inf".format(
                    len(lnp), np.sum(np.isneginf(lnp))))
980

981
982
983
        lnp_finite = copy.copy(lnp)
        lnp_finite[np.isinf(lnp)] = np.nan
        p = pF[np.nanargmax(lnp_finite)]
984
985
        logging.info('Generating new p0 from max lnp which had twoF={}'
                     .format(lnl[np.nanargmax(lnp_finite)]))
986
        p0 = self.generate_scattered_p0(p)
987
988
989
990
991
992

        return p0

    def get_save_data_dictionary(self):
        d = dict(nsteps=self.nsteps, nwalkers=self.nwalkers,
                 ntemps=self.ntemps, theta_keys=self.theta_keys,
Gregory Ashton's avatar
Gregory Ashton committed
993
                 theta_prior=self.theta_prior, scatter_val=self.scatter_val,
994
995
                 log10temperature_min=self.log10temperature_min,
                 theta0_idx=self.theta0_idx)
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
        return d

    def save_data(self, sampler, samples, lnprobs, lnlikes):
        d = self.get_save_data_dictionary()
        d['sampler'] = sampler
        d['samples'] = samples
        d['lnprobs'] = lnprobs
        d['lnlikes'] = lnlikes

        if os.path.isfile(self.pickle_path):
            logging.info('Saving backup of {} as {}.old'.format(
                self.pickle_path, self.pickle_path))
            os.rename(self.pickle_path, self.pickle_path+".old")
        with open(self.pickle_path, "wb") as File:
            pickle.dump(d, File)

    def get_list_of_matching_sfts(self):
1013
        matches = glob.glob(self.sftfilepath)
1014
1015
1016
1017
        if len(matches) > 0:
            return matches
        else:
            raise IOError('No sfts found matching {}'.format(
1018
                self.sftfilepath))
1019
1020
1021
1022
1023
1024
1025

    def get_saved_data(self):
        with open(self.pickle_path, "r") as File:
            d = pickle.load(File)
        return d

    def check_old_data_is_okay_to_use(self):
1026
1027
1028
1029
        if args.use_old_data:
            logging.info("Forcing use of old data")
            return True

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
        if os.path.isfile(self.pickle_path) is False:
            logging.info('No pickled data found')
            return False

        oldest_sft = min([os.path.getmtime(f) for f in
                          self.get_list_of_matching_sfts()])
        if os.path.getmtime(self.pickle_path) < oldest_sft:
            logging.info('Pickled data outdates sft files')
            return False

        old_d = self.get_saved_data().copy()
        new_d = self.get_save_data_dictionary().copy()

        old_d.pop('samples')
        old_d.pop('sampler')
        old_d.pop('lnprobs')
        old_d.pop('lnlikes')

        mod_keys = []
        for key in new_d.keys():
            if key in old_d:
                if new_d[key] != old_d[key]:
                    mod_keys.append((key, old_d[key], new_d[key]))
            else:
1054
                raise ValueError('Keys {} not in old dictionary'.format(key))
1055
1056
1057
1058
1059
1060
1061
1062
1063

        if len(mod_keys) == 0:
            return True
        else:
            logging.warning("Saved data differs from requested")
            logging.info("Differences found in following keys:")
            for key in mod_keys:
                if len(key) == 3:
                    if np.isscalar(key[1]) or key[0] == 'nsteps':
1064
                        logging.info("    {} : {} -> {}".format(*key))
1065
                    else:
1066
                        logging.info("    " + key[0])
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
                else:
                    logging.info(key)
            return False

    def get_max_twoF(self, threshold=0.05):
        """ Returns the max 2F sample and the corresponding 2F value

        Note: the sample is returned as a dictionary along with an estimate of
        the standard deviation calculated from the std of all samples with a
        twoF within `threshold` (relative) to the max twoF

        """
        if any(np.isposinf(self.lnlikes)):
            logging.info('twoF values contain positive infinite values')
        if any(np.isneginf(self.lnlikes)):
            logging.info('twoF values contain negative infinite values')
        if any(np.isnan(self.lnlikes)):
            logging.info('twoF values contain nan')
        idxs = np.isfinite(self.lnlikes)
        jmax = np.nanargmax(self.lnlikes[idxs])
        maxtwoF = self.lnlikes[jmax]
1088
        d = OrderedDict()
1089

Gregory Ashton's avatar
Gregory Ashton committed
1090
        repeats = []
1091
        for i, k in enumerate(self.theta_keys):
Gregory Ashton's avatar
Gregory Ashton committed
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
            if k in d and k not in repeats:
                d[k+'_0'] = d[k]  # relabel the old key
                d.pop(k)
                repeats.append(k)
            if k in repeats:
                k = k + '_0'
                count = 1
                while k in d:
                    k = k.replace('_{}'.format(count-1), '_{}'.format(count))
                    count += 1
1102
1103
1104
1105
1106
            d[k] = self.samples[jmax][i]
        return d, maxtwoF

    def get_median_stds(self):
        """ Returns a dict of the median and std of all production samples """
1107
        d = OrderedDict()
Gregory Ashton's avatar
Gregory Ashton committed
1108
        repeats = []
1109
        for s, k in zip(self.samples.T, self.theta_keys):
Gregory Ashton's avatar
Gregory Ashton committed
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
            if k in d and k not in repeats:
                d[k+'_0'] = d[k]  # relabel the old key
                d[k+'_0_std'] = d[k+'_std']
                d.pop(k)
                d.pop(k+'_std')
                repeats.append(k)
            if k in repeats:
                k = k + '_0'
                count = 1
                while k in d:
                    k = k.replace('_{}'.format(count-1), '_{}'.format(count))
                    count += 1

1123
1124
1125
1126
1127
1128
1129
1130
            d[k] = np.median(s)
            d[k+'_std'] = np.std(s)
        return d

    def write_par(self, method='med'):
        """ Writes a .par of the best-fit params with an estimated std """
        logging.info('Writing {}/{}.par using the {} method'.format(
            self.outdir, self.label, method))
1131
1132
1133
1134
1135
1136
1137

        median_std_d = self.get_median_stds()
        max_twoF_d, max_twoF = self.get_max_twoF()

        filename = '{}/{}.par'.format(self.outdir, self.label)
        with open(filename, 'w+') as f:
            f.write('MaxtwoF = {}\n'.format(max_twoF))
1138
            f.write('theta0_index = {}\n'.format(self.theta0_idx))
1139
            if method == 'med':
1140
1141
                for key, val in median_std_d.iteritems():
                    f.write('{} = {:1.16e}\n'.format(key, val))
1142
            if method == 'twoFmax':
1143
1144
1145
1146
                for key, val in max_twoF_d.iteritems():
                    f.write('{} = {:1.16e}\n'.format(key, val))

    def print_summary(self):
Gregory Ashton's avatar
Gregory Ashton committed
1147
        max_twoFd, max_twoF = self.get_max_twoF()
1148
        median_std_d = self.get_median_stds()
Gregory Ashton's avatar
Gregory Ashton committed
1149
        print('\nSummary:')
1150
        print('theta0 index: {}'.format(self.theta0_idx))
Gregory Ashton's avatar
Gregory Ashton committed
1151
1152
1153
1154
        print('Max twoF: {} with parameters:'.format(max_twoF))
        for k in np.sort(max_twoFd.keys()):
            print('  {:10s} = {:1.9e}'.format(k, max_twoFd[k]))
        print('\nMedian +/- std for production values')
1155
        for k in np.sort(median_std_d.keys()):
1156
            if 'std' not in k:
Gregory Ashton's avatar
Gregory Ashton committed
1157
                print('  {:10s} = {:1.9e} +/- {:1.9e}'.format(
1158
                    k, median_std_d[k], median_std_d[k+'_std']))
1159
1160


Gregory Ashton's avatar
Gregory Ashton committed
1161
1162
1163
class MCMCGlitchSearch(MCMCSearch):
    """ MCMC search using the SemiCoherentGlitchSearch """
    @initializer
1164
    def __init__(self, label, outdir, sftfilepath, theta_prior, tref,
1165
1166
                 tstart, tend, nglitch=1, nsteps=[100, 100, 100], nwalkers=100,
                 ntemps=1, log10temperature_min=-5, theta_initial=None,
1167
                 scatter_val=1e-4, dtglitchmin=1*86400, theta0_idx=0,
1168
                 detector=None, BSGL=False,
1169
                 minCoverFreq=None, maxCoverFreq=None, earth_ephem=None,
Gregory Ashton's avatar
Gregory Ashton committed
1170
1171
1172
1173
1174
                 sun_ephem=None):
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
1175
1176
_        sftfilepath: str
            File patern to match SFTs
Gregory Ashton's avatar
Gregory Ashton committed
1177
1178
1179
1180
1181
1182
1183
1184
1185
        theta_prior: dict
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
1186
1187
1188
1189
        scatter_val, float or ndim array
            Size of scatter to use about the initialisation step, if given as
            an array it must be of length ndim and the order is given by
            theta_keys
Gregory Ashton's avatar
Gregory Ashton committed
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
        nglitch: int
            The number of glitches to allow
        tref, tstart, tend: int
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
        dtglitchmin: int
            The minimum duration (in seconds) of a segment between two glitches
            or a glitch and the start/end of the data
1202
1203
1204
1205
1206
1207
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
1208
1209
1210
1211
        theta0_idx, int
            Index (zero-based) of which segment the theta refers to - uyseful
            if providing a tight prior on theta to allow the signal to jump
            too theta (and not just from)
1212
1213
1214
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
Gregory Ashton's avatar
Gregory Ashton committed
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

1225
        self.add_log_file()
Gregory Ashton's avatar
Gregory Ashton committed
1226
1227
        logging.info(('Set-up MCMC glitch search with {} glitches for model {}'
                      ' on data {}').format(self.nglitch, self.label,
1228
                                            self.sftfilepath))
Gregory Ashton's avatar
Gregory Ashton committed
1229
1230
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
1231
1232
        self.minStartTime = tstart
        self.maxStartTime = tend
Gregory Ashton's avatar
Gregory Ashton committed
1233
1234
1235
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
        self.unpack_input_theta()
        self.ndim = len(self.theta_keys)
1236
        self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
Gregory Ashton's avatar
Gregory Ashton committed
1237
1238
1239
1240
1241
1242
1243
1244
1245
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

        self.old_data_is_okay_to_use = self.check_old_data_is_okay_to_use()
1246
        self.log_input()
Gregory Ashton's avatar
Gregory Ashton committed
1247
1248
1249
1250

    def inititate_search_object(self):
        logging.info('Setting up search object')
        self.search = SemiCoherentGlitchSearch(
1251
1252
            label=self.label, outdir=self.outdir, sftfilepath=self.sftfilepath,
            tref=self.tref, tstart=self.tstart,
Gregory Ashton's avatar
Gregory Ashton committed
1253
1254
            tend=self.tend, minCoverFreq=self.minCoverFreq,
            maxCoverFreq=self.maxCoverFreq, earth_ephem=self.earth_ephem,
1255
            sun_ephem=self.sun_ephem, detector=self.detector, BSGL=self.BSGL,
1256
1257
            nglitch=self.nglitch, theta0_idx=self.theta0_idx,
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime)
Gregory Ashton's avatar
Gregory Ashton committed
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339

    def logp(self, theta_vals, theta_prior, theta_keys, search):
        if self.nglitch > 1:
            ts = [self.tstart] + theta_vals[-self.nglitch:] + [self.tend]
            if np.array_equal(ts, np.sort(ts)) is False:
                return -np.inf
            if any(np.diff(ts) < self.dtglitchmin):
                return -np.inf

        H = [self.generic_lnprior(**theta_prior[key])(p) for p, key in
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
        FS = search.compute_nglitch_fstat(*self.fixed_theta)
        return FS

    def unpack_input_theta(self):
        glitch_keys = ['delta_F0', 'delta_F1', 'tglitch']
        full_glitch_keys = list(np.array(
            [[gk]*self.nglitch for gk in glitch_keys]).flatten())
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']+full_glitch_keys
        full_theta_keys_copy = copy.copy(full_theta_keys)

        glitch_symbols = ['$\delta f$', '$\delta \dot{f}$', r'$t_{glitch}$']
        full_glitch_symbols = list(np.array(
            [[gs]*self.nglitch for gs in glitch_symbols]).flatten())
        full_theta_symbols = (['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                               r'$\delta$'] + full_glitch_symbols)
        self.theta_keys = []
        fixed_theta_dict = {}
        for key, val in self.theta_prior.iteritems():
            if type(val) is dict:
                fixed_theta_dict[key] = 0
                if key in glitch_keys:
                    for i in range(self.nglitch):
                        self.theta_keys.append(key)
                else:
                    self.theta_keys.append(key)
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
            if key in glitch_keys:
                for i in range(self.nglitch):
                    full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
            else:
                full_theta_keys_copy.pop(full_theta_keys_copy.index(key))

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

        # Correct for number of glitches in the idxs
        self.theta_idxs = np.array(self.theta_idxs)
        while np.sum(self.theta_idxs[:-1] == self.theta_idxs[1:]) > 0:
            for i, idx in enumerate(self.theta_idxs):
                if idx in self.theta_idxs[:i]:
                    self.theta_idxs[i] += 1

    def apply_corrections_to_p0(self, p0):
        p0 = np.array(p0)
        if self.nglitch > 1:
            p0[:, :, -self.nglitch:] = np.sort(p0[:, :, -self.nglitch:],
                                               axis=2)
        return p0


Gregory Ashton's avatar
Gregory Ashton committed
1340
1341
class GridSearch(BaseSearchClass):
    """ Gridded search using ComputeFstat """
1342
    @initializer
1343
    def __init__(self, label, outdir, sftfilepath, F0s=[0],
Gregory Ashton's avatar
Gregory Ashton committed
1344
1345
                 F1s=[0], F2s=[0], Alphas=[0], Deltas=[0], tref=None,
                 tstart=None, tend=None, minCoverFreq=None, maxCoverFreq=None,
1346
                 earth_ephem=None, sun_ephem=None, detector=None, BSGL=False):
1347
1348
1349
1350
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
1351
1352
        sftfilepath: str
            File patern to match SFTs
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0].
        tref, tstart, tend: int
            GPS seconds of the reference time, start time and end time
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """
1367

1368
<