grid_based_searches.py 25.4 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" Searches using grid-based methods """
2
from __future__ import division, absolute_import, print_function
Gregory Ashton's avatar
Gregory Ashton committed
3
4
5
6
7
8
9
10
11
12

import os
import logging
import itertools
from collections import OrderedDict

import numpy as np
import matplotlib
import matplotlib.pyplot as plt

13
14
15
import pyfstat.helper_functions as helper_functions
from pyfstat.core import (BaseSearchClass, ComputeFstat,
                          SemiCoherentGlitchSearch, SemiCoherentSearch, tqdm,
16
                          args, read_par)
Gregory Ashton's avatar
Gregory Ashton committed
17
18
import lalpulsar
import lal
Gregory Ashton's avatar
Gregory Ashton committed
19
20
21
22


class GridSearch(BaseSearchClass):
    """ Gridded search using ComputeFstat """
Gregory Ashton's avatar
Gregory Ashton committed
23
24
25
26
27
    tex_labels = {'F0': '$f$', 'F1': '$\dot{f}$', 'F2': '$\ddot{f}$',
                  'Alpha': r'$\alpha$', 'Delta': r'$\delta$'}
    tex_labels0 = {'F0': '$-f_0$', 'F1': '$-\dot{f}_0$', 'F2': '$-\ddot{f}_0$',
                   'Alpha': r'$-\alpha_0$', 'Deltas': r'$-\delta_0$'}

Gregory Ashton's avatar
Gregory Ashton committed
28
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
29
30
31
32
33
    def __init__(self, label, outdir, sftfilepattern, F0s, F1s, F2s, Alphas,
                 Deltas, tref=None, minStartTime=None, maxStartTime=None,
                 nsegs=1, BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, SSBprec=None, injectSources=None,
                 input_arrays=False, assumeSqrtSX=None):
Gregory Ashton's avatar
Gregory Ashton committed
34
35
36
37
38
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
39
40
41
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
42
43
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
44
45
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
Gregory Ashton's avatar
Gregory Ashton committed
46
47
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
48
49
        input_arrays: bool
            if true, use the F0s, F1s, etc as is
Gregory Ashton's avatar
Gregory Ashton committed
50
51
52
53
54
55

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
56
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
57
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
58
59
60
        self.search_keys = [x+'s' for x in self.keys[2:]]
        for k in self.search_keys:
            setattr(self, k, np.atleast_1d(getattr(self, k)))
Gregory Ashton's avatar
Gregory Ashton committed
61
62
63

    def inititate_search_object(self):
        logging.info('Setting up search object')
64
65
        if self.nsegs == 1:
            self.search = ComputeFstat(
66
                tref=self.tref, sftfilepattern=self.sftfilepattern,
67
68
69
                minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
                detectors=self.detectors, transient=False,
                minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
70
                BSGL=self.BSGL, SSBprec=self.SSBprec,
71
72
                injectSources=self.injectSources,
                assumeSqrtSX=self.assumeSqrtSX)
73
            self.search.get_det_stat = self.search.get_fullycoherent_twoF
74
75
76
        else:
            self.search = SemiCoherentSearch(
                label=self.label, outdir=self.outdir, tref=self.tref,
77
                nsegs=self.nsegs, sftfilepattern=self.sftfilepattern,
78
79
80
                BSGL=self.BSGL, minStartTime=self.minStartTime,
                maxStartTime=self.maxStartTime, minCoverFreq=self.minCoverFreq,
                maxCoverFreq=self.maxCoverFreq, detectors=self.detectors,
Gregory Ashton's avatar
Gregory Ashton committed
81
                injectSources=self.injectSources)
82
83

            def cut_out_tstart_tend(*vals):
84
                return self.search.get_semicoherent_twoF(*vals[2:])
85
            self.search.get_det_stat = cut_out_tstart_tend
Gregory Ashton's avatar
Gregory Ashton committed
86
87
88
89

    def get_array_from_tuple(self, x):
        if len(x) == 1:
            return np.array(x)
90
        elif len(x) == 3 and self.input_arrays is False:
Gregory Ashton's avatar
Gregory Ashton committed
91
            return np.arange(x[0], x[1], x[2])
Gregory Ashton's avatar
Gregory Ashton committed
92
        else:
Gregory Ashton's avatar
Gregory Ashton committed
93
94
            logging.info('Using tuple as is')
            return np.array(x)
Gregory Ashton's avatar
Gregory Ashton committed
95
96

    def get_input_data_array(self):
Gregory Ashton's avatar
Gregory Ashton committed
97
        logging.info("Generating input data array")
98
        coord_arrays = []
Gregory Ashton's avatar
Gregory Ashton committed
99
100
        for tup in ([self.minStartTime], [self.maxStartTime], self.F0s,
                    self.F1s, self.F2s, self.Alphas, self.Deltas):
101
            coord_arrays.append(self.get_array_from_tuple(tup))
Gregory Ashton's avatar
Gregory Ashton committed
102

103
104
105
        self.input_data_generator_len = np.prod([len(k) for k in coord_arrays])
        self.input_data_generator = itertools.product(*coord_arrays)
        self.coord_arrays = coord_arrays
Gregory Ashton's avatar
Gregory Ashton committed
106
107
108
109
110
111
112

    def check_old_data_is_okay_to_use(self):
        if args.clean:
            return False
        if os.path.isfile(self.out_file) is False:
            logging.info('No old data found, continuing with grid search')
            return False
113
        if self.sftfilepattern is not None:
114
115
116
117
118
119
            oldest_sft = min([os.path.getmtime(f) for f in
                              self._get_list_of_matching_sfts()])
            if os.path.getmtime(self.out_file) < oldest_sft:
                logging.info('Search output data outdates sft files,'
                             + ' continuing with grid search')
                return False
120
121
122

        logging.info('No data caching available')
        return False
Gregory Ashton's avatar
Gregory Ashton committed
123
124
125
126
127
128
129
130

    def run(self, return_data=False):
        self.get_input_data_array()
        old_data = self.check_old_data_is_okay_to_use()
        if old_data is not False:
            self.data = old_data
            return

Gregory Ashton's avatar
Gregory Ashton committed
131
132
        if hasattr(self, 'search') is False:
            self.inititate_search_object()
Gregory Ashton's avatar
Gregory Ashton committed
133
134

        data = []
Gregory Ashton's avatar
Gregory Ashton committed
135
136
        for vals in tqdm(self.input_data_generator,
                         total=self.input_data_generator_len):
137
            FS = self.search.get_det_stat(*vals)
Gregory Ashton's avatar
Gregory Ashton committed
138
139
            data.append(list(vals) + [FS])

140
        data = np.array(data, dtype=np.float)
Gregory Ashton's avatar
Gregory Ashton committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        if return_data:
            return data
        else:
            logging.info('Saving data to {}'.format(self.out_file))
            np.savetxt(self.out_file, data, delimiter=' ')
            self.data = data

    def convert_F0_to_mismatch(self, F0, F0hat, Tseg):
        DeltaF0 = F0[1] - F0[0]
        m_spacing = (np.pi*Tseg*DeltaF0)**2 / 12.
        N = len(F0)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def convert_F1_to_mismatch(self, F1, F1hat, Tseg):
        DeltaF1 = F1[1] - F1[0]
        m_spacing = (np.pi*Tseg**2*DeltaF1)**2 / 720.
        N = len(F1)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def add_mismatch_to_ax(self, ax, x, y, xkey, ykey, xhat, yhat, Tseg):
        axX = ax.twiny()
        axX.zorder = -10
        axY = ax.twinx()
        axY.zorder = -10

        if xkey == 'F0':
            m = self.convert_F0_to_mismatch(x, xhat, Tseg)
            axX.set_xlim(m[0], m[-1])

        if ykey == 'F1':
            m = self.convert_F1_to_mismatch(y, yhat, Tseg)
            axY.set_ylim(m[0], m[-1])

Gregory Ashton's avatar
Gregory Ashton committed
174
175
176
    def plot_1D(self, xkey, ax=None, x0=None, savefig=True):
        if ax is None:
            fig, ax = plt.subplots()
Gregory Ashton's avatar
Gregory Ashton committed
177
178
179
        xidx = self.keys.index(xkey)
        x = np.unique(self.data[:, xidx])
        z = self.data[:, -1]
Gregory Ashton's avatar
Gregory Ashton committed
180
181
182
183
184
185
186
187
188
        ax.plot(x, z)
        if x0:
            ax.set_xlabel(self.tex_labels[xkey]+self.tex_labels0[xkey])
        else:
            ax.set_xlabel(self.tex_labels[xkey])
        if savefig:
            fig.savefig('{}/{}_1D.png'.format(self.outdir, self.label))
        else:
            return ax
Gregory Ashton's avatar
Gregory Ashton committed
189
190
191

    def plot_2D(self, xkey, ykey, ax=None, save=True, vmin=None, vmax=None,
                add_mismatch=None, xN=None, yN=None, flat_keys=[],
Gregory Ashton's avatar
Gregory Ashton committed
192
                rel_flat_idxs=[], flatten_method=np.max, title=None,
Gregory Ashton's avatar
Gregory Ashton committed
193
194
                predicted_twoF=None, cm=None, cbarkwargs={}, x0=None, y0=None,
                colorbar=False):
Gregory Ashton's avatar
Gregory Ashton committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
        """ Plots a 2D grid of 2F values

        Parameters
        ----------
        add_mismatch: tuple (xhat, yhat, Tseg)
            If not None, add a secondary axis with the metric mismatch from the
            point xhat, yhat with duration Tseg
        flatten_method: np.max
            Function to use in flattening the flat_keys
        """
        if ax is None:
            fig, ax = plt.subplots()
        xidx = self.keys.index(xkey)
        yidx = self.keys.index(ykey)
        flat_idxs = [self.keys.index(k) for k in flat_keys]

        x = np.unique(self.data[:, xidx])
212
213
        if x0:
            x = x-x0
Gregory Ashton's avatar
Gregory Ashton committed
214
        y = np.unique(self.data[:, yidx])
215
216
        if y0:
            y = y-y0
Gregory Ashton's avatar
Gregory Ashton committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        flat_vals = [np.unique(self.data[:, j]) for j in flat_idxs]
        z = self.data[:, -1]

        Y, X = np.meshgrid(y, x)
        shape = [len(x), len(y)] + [len(v) for v in flat_vals]
        Z = z.reshape(shape)

        if len(rel_flat_idxs) > 0:
            Z = flatten_method(Z, axis=tuple(rel_flat_idxs))

        if predicted_twoF:
            Z = (predicted_twoF - Z) / (predicted_twoF + 4)
            if cm is None:
                cm = plt.cm.viridis_r
        else:
            if cm is None:
                cm = plt.cm.viridis

        pax = ax.pcolormesh(X, Y, Z, cmap=cm, vmin=vmin, vmax=vmax)
Gregory Ashton's avatar
Gregory Ashton committed
236
237
238
        if colorbar:
            cb = plt.colorbar(pax, ax=ax, **cbarkwargs)
            cb.set_label('$2\mathcal{F}$')
Gregory Ashton's avatar
Gregory Ashton committed
239
240
241
242
243
244

        if add_mismatch:
            self.add_mismatch_to_ax(ax, x, y, xkey, ykey, *add_mismatch)

        ax.set_xlim(x[0], x[-1])
        ax.set_ylim(y[0], y[-1])
245
        if x0:
Gregory Ashton's avatar
Gregory Ashton committed
246
            ax.set_xlabel(self.tex_labels[xkey]+self.tex_labels0[xkey])
247
        else:
Gregory Ashton's avatar
Gregory Ashton committed
248
            ax.set_xlabel(self.tex_labels[xkey])
249
        if y0:
Gregory Ashton's avatar
Gregory Ashton committed
250
            ax.set_ylabel(self.tex_labels[ykey]+self.tex_labels0[ykey])
251
        else:
Gregory Ashton's avatar
Gregory Ashton committed
252
            ax.set_ylabel(self.tex_labels[ykey])
Gregory Ashton's avatar
Gregory Ashton committed
253

Gregory Ashton's avatar
Gregory Ashton committed
254
255
256
        if title:
            ax.set_title(title)

Gregory Ashton's avatar
Gregory Ashton committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
        if xN:
            ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(xN))
        if yN:
            ax.yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(yN))

        if save:
            fig.tight_layout()
            fig.savefig('{}/{}_2D.png'.format(self.outdir, self.label))
        else:
            return ax

    def get_max_twoF(self):
        twoF = self.data[:, -1]
        idx = np.argmax(twoF)
        v = self.data[idx, :]
        d = OrderedDict(minStartTime=v[0], maxStartTime=v[1], F0=v[2], F1=v[3],
                        F2=v[4], Alpha=v[5], Delta=v[6], twoF=v[7])
        return d

    def print_max_twoF(self):
        d = self.get_max_twoF()
        print('Max twoF values for {}:'.format(self.label))
        for k, v in d.iteritems():
            print('  {}={}'.format(k, v))

282
    def set_out_file(self, extra_label=None):
283
284
285
286
        if self.detectors:
            dets = self.detectors.replace(',', '')
        else:
            dets = 'NA'
287
288
289
290
291
292
293
294
        if extra_label:
            self.out_file = '{}/{}_{}_{}_{}.txt'.format(
                self.outdir, self.label, dets, type(self).__name__,
                extra_label)
        else:
            self.out_file = '{}/{}_{}_{}.txt'.format(
                self.outdir, self.label, dets, type(self).__name__)

Gregory Ashton's avatar
Gregory Ashton committed
295

Gregory Ashton's avatar
Gregory Ashton committed
296
297
298
class SliceGridSearch(GridSearch):
    """ Slice gridded search using ComputeFstat """
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
299
300
301
302
303
    def __init__(self, label, outdir, sftfilepattern, F0s, F1s, F2s, Alphas,
                 Deltas, tref=None, minStartTime=None, maxStartTime=None,
                 nsegs=1, BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, SSBprec=None, injectSources=None,
                 input_arrays=False, assumeSqrtSX=None, Lambda0=None):
Gregory Ashton's avatar
Gregory Ashton committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
        input_arrays: bool
            if true, use the F0s, F1s, etc as is

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.set_out_file()
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
328
329
330
        self.ndim = 0
        self.thetas = [F0s, F1s, Alphas, Deltas]
        self.ndim = 4
Gregory Ashton's avatar
Gregory Ashton committed
331

Gregory Ashton's avatar
Gregory Ashton committed
332
        self.search_keys = ['F0', 'F1', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
333
        self.Lambda0 = np.array(Lambda0)
Gregory Ashton's avatar
Gregory Ashton committed
334
        if len(self.Lambda0) != len(self.search_keys):
Gregory Ashton's avatar
Gregory Ashton committed
335
            raise ValueError(
Gregory Ashton's avatar
Gregory Ashton committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
                'Lambda0 must be of length {}'.format(len(self.search_keys)))

    def run(self, factor=2):
        lbdim = 0.5 * factor   # size of left/bottom margin
        trdim = 0.2 * factor   # size of top/right margin
        whspace = 0.05         # w/hspace size
        plotdim = factor * self.ndim + factor * (self.ndim - 1.) * whspace
        dim = lbdim + plotdim + trdim

        fig, axes = plt.subplots(self.ndim, self.ndim, figsize=(dim, dim))

        # Format the figure.
        lb = lbdim / dim
        tr = (lbdim + plotdim) / dim
        fig.subplots_adjust(left=lb, bottom=lb, right=tr, top=tr,
                            wspace=whspace, hspace=whspace)

        search = GridSearch(
            self.label, self.outdir, self.sftfilepattern,
            F0s=self.Lambda0[0], F1s=self.Lambda0[1], F2s=self.F2s[0],
            Alphas=self.Lambda0[2], Deltas=self.Lambda0[3], tref=self.tref)

        for i, ikey in enumerate(self.search_keys):
            setattr(search, ikey+'s', self.thetas[i])
            search.run()
            axes[i, i] = search.plot_1D(ikey, ax=axes[i, i], savefig=False)
            setattr(search, ikey+'s', [self.Lambda0[i]])

            for j, jkey in enumerate(self.search_keys):
                ax = axes[i, j]

                if j > i:
                    ax.set_frame_on(False)
                    ax.set_xticks([])
                    ax.set_yticks([])
                    continue

                ax.get_shared_x_axes().join(axes[self.ndim-1, j], ax)
                if i < self.ndim - 1:
                    ax.set_xticklabels([])
                if j < i:
                    ax.get_shared_y_axes().join(axes[i, i-1], ax)
                    if j > 0:
                        ax.set_yticklabels([])
                if j == i:
                    continue

                max_n_ticks = 3
                ax.xaxis.set_major_locator(
                    matplotlib.ticker.MaxNLocator(max_n_ticks, prune="upper"))
                ax.yaxis.set_major_locator(
                    matplotlib.ticker.MaxNLocator(max_n_ticks, prune="upper"))

                setattr(search, ikey+'s', self.thetas[i])
                setattr(search, jkey+'s', self.thetas[j])
                search.run()
                ax = search.plot_2D(jkey, ikey, ax=ax, save=False)
                setattr(search, ikey+'s', [self.Lambda0[i]])
                setattr(search, jkey+'s', [self.Lambda0[j]])

        fig.savefig(
            '{}/{}_slice_projection.png'.format(self.outdir, self.label))
Gregory Ashton's avatar
Gregory Ashton committed
398
399


Gregory Ashton's avatar
Gregory Ashton committed
400
class GridUniformPriorSearch():
401
    @helper_functions.initializer
402
    def __init__(self, theta_prior, NF0, NF1, label, outdir, sftfilepattern,
403
                 tref, minStartTime, maxStartTime, minCoverFreq=None,
404
                 maxCoverFreq=None, BSGL=False, detectors=None, nsegs=1,
405
                 SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
406
407
408
409
        dF0 = (theta_prior['F0']['upper'] - theta_prior['F0']['lower'])/NF0
        dF1 = (theta_prior['F1']['upper'] - theta_prior['F1']['lower'])/NF1
        F0s = [theta_prior['F0']['lower'], theta_prior['F0']['upper'], dF0]
        F1s = [theta_prior['F1']['lower'], theta_prior['F1']['upper'], dF1]
410
        self.search = GridSearch(
411
            label, outdir, sftfilepattern, F0s=F0s, F1s=F1s, tref=tref,
Gregory Ashton's avatar
Gregory Ashton committed
412
413
            Alphas=[theta_prior['Alpha']], Deltas=[theta_prior['Delta']],
            minStartTime=minStartTime, maxStartTime=maxStartTime, BSGL=BSGL,
414
            detectors=detectors, minCoverFreq=minCoverFreq,
415
416
            injectSources=injectSources, maxCoverFreq=maxCoverFreq,
            nsegs=nsegs, SSBprec=SSBprec)
417

418
    def run(self):
419
        self.search.run()
420
421

    def get_2D_plot(self, **kwargs):
422
        return self.search.plot_2D('F0', 'F1', **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
423
424


Gregory Ashton's avatar
Gregory Ashton committed
425
426
427
class GridGlitchSearch(GridSearch):
    """ Grid search using the SemiCoherentGlitchSearch """
    @helper_functions.initializer
428
    def __init__(self, label, outdir, sftfilepattern=None, F0s=[0],
Gregory Ashton's avatar
Gregory Ashton committed
429
430
431
                 F1s=[0], F2s=[0], delta_F0s=[0], delta_F1s=[0], tglitchs=None,
                 Alphas=[0], Deltas=[0], tref=None, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
432
                 write_after=1000):
Gregory Ashton's avatar
Gregory Ashton committed
433
434
435
436
437
438

        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
439
440
441
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
442
443
444
445
446
447
448
449
450
451
452
453
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0].
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see pyfstat.ComputeFStat.
        """
        if tglitchs is None:
            self.tglitchs = [self.maxStartTime]

        self.search = SemiCoherentGlitchSearch(
454
            label=label, outdir=outdir, sftfilepattern=self.sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
455
456
457
458
459
460
            tref=tref, minStartTime=minStartTime, maxStartTime=maxStartTime,
            minCoverFreq=minCoverFreq, maxCoverFreq=maxCoverFreq,
            BSGL=self.BSGL)

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
461
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
        self.keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta', 'delta_F0',
                     'delta_F1', 'tglitch']

    def get_input_data_array(self):
        arrays = []
        for tup in (self.F0s, self.F1s, self.F2s, self.Alphas, self.Deltas,
                    self.delta_F0s, self.delta_F1s, self.tglitchs):
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        self.arrays = arrays
        self.input_data = np.array(input_data)


Gregory Ashton's avatar
Gregory Ashton committed
479
480
481
class FrequencySlidingWindow(GridSearch):
    """ A sliding-window search over the Frequency """
    @helper_functions.initializer
482
    def __init__(self, label, outdir, sftfilepattern, F0s, F1, F2,
Gregory Ashton's avatar
Gregory Ashton committed
483
484
485
                 Alpha, Delta, tref, minStartTime=None,
                 maxStartTime=None, window_size=10*86400, window_delta=86400,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
486
                 detectors=None, SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
487
488
489
490
491
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
492
493
494
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
495
496
497
498
499
500
501
502
503
504
505
506
        F0s: array
            Frequency range
        F1, F2, Alpha, Delta: float
            Fixed values to compute twoF(F) over
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
507
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
508
509
510
511
512
        self.nsegs = 1
        self.F1s = [F1]
        self.F2s = [F2]
        self.Alphas = [Alpha]
        self.Deltas = [Delta]
Gregory Ashton's avatar
Gregory Ashton committed
513

Gregory Ashton's avatar
Gregory Ashton committed
514
515
516
    def inititate_search_object(self):
        logging.info('Setting up search object')
        self.search = ComputeFstat(
517
            tref=self.tref, sftfilepattern=self.sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
518
519
520
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            detectors=self.detectors, transient=True,
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
Gregory Ashton's avatar
Gregory Ashton committed
521
522
            BSGL=self.BSGL, SSBprec=self.SSBprec,
            injectSources=self.injectSources)
Gregory Ashton's avatar
Gregory Ashton committed
523
        self.search.get_det_stat = (
524
            self.search.get_fullycoherent_twoF)
Gregory Ashton's avatar
Gregory Ashton committed
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

    def get_input_data_array(self):
        arrays = []
        tstarts = [self.minStartTime]
        while tstarts[-1] + self.window_size < self.maxStartTime:
            tstarts.append(tstarts[-1]+self.window_delta)
        arrays = [tstarts]
        for tup in (self.F0s, self.F1s, self.F2s,
                    self.Alphas, self.Deltas):
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        input_data = np.array(input_data)
        input_data = np.insert(
            input_data, 1, input_data[:, 0] + self.window_size, axis=1)

        self.arrays = arrays
        self.input_data = np.array(input_data)

    def plot_sliding_window(self, F0=None, ax=None, savefig=True,
548
                            colorbar=True, timestamps=False):
Gregory Ashton's avatar
Gregory Ashton committed
549
550
551
552
553
554
555
556
557
558
559
        data = self.data
        if ax is None:
            ax = plt.subplot()
        tstarts = np.unique(data[:, 0])
        tends = np.unique(data[:, 1])
        frequencies = np.unique(data[:, 2])
        twoF = data[:, -1]
        tmids = (tstarts + tends) / 2.0
        dts = (tmids - self.minStartTime) / 86400.
        if F0:
            frequencies = frequencies - F0
560
            ax.set_ylabel('Frequency - $f_0$ [Hz] \n $f_0={:0.2f}$'.format(F0))
Gregory Ashton's avatar
Gregory Ashton committed
561
562
563
564
565
566
567
568
569
        else:
            ax.set_ylabel('Frequency [Hz]')
        twoF = twoF.reshape((len(tmids), len(frequencies)))
        Y, X = np.meshgrid(frequencies, dts)
        pax = ax.pcolormesh(X, Y, twoF)
        if colorbar:
            cb = plt.colorbar(pax, ax=ax)
            cb.set_label('$2\mathcal{F}$')
        ax.set_xlabel(
570
571
            r'Mid-point (days after $t_\mathrm{{start}}$={})'.format(
                self.minStartTime))
Gregory Ashton's avatar
Gregory Ashton committed
572
573
        ax.set_title(
            'Sliding window length = {} days in increments of {} days'
574
575
576
577
578
579
580
            .format(self.window_size/86400, self.window_delta/86400),
            )
        if timestamps:
            axT = ax.twiny()
            axT.set_xlim(tmids[0]*1e-9, tmids[-1]*1e-9)
            axT.set_xlabel('Mid-point timestamp [GPS $10^{9}$ s]')
            ax.set_title(ax.get_title(), y=1.18)
Gregory Ashton's avatar
Gregory Ashton committed
581
582
583
584
585
586
        if savefig:
            plt.tight_layout()
            plt.savefig(
                '{}/{}_sliding_window.png'.format(self.outdir, self.label))
        else:
            return ax
587
588
589
590
591


class DMoff_NO_SPIN(GridSearch):
    """ DMoff test using SSBPREC_NO_SPIN """
    @helper_functions.initializer
592
    def __init__(self, par, label, outdir, sftfilepattern, minStartTime=None,
593
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
594
                 detectors=None, injectSources=None, assumeSqrtSX=None):
595
596
597
        """
        Parameters
        ----------
598
599
600
        par: dict, str
            Either a par dictionary (containing 'F0', 'F1', 'Alpha', 'Delta'
            and 'tref') or a path to a .par file to read in the F0, F1 etc
601
602
        label, outdir: str
            A label and directory to read/write data from/to
603
604
605
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
606
607
608
609
610
611
612
613
614
        minStartTime, maxStartTime: int
            GPS seconds of the start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)

615
616
617
618
        if type(par) == dict:
            self.par = par
        elif type(par) == str and os.path.isfile(par):
            self.par = read_par(filename=par)
619
620
621
622
623
624
625
626
627
628
629
630
631
        else:
            raise ValueError('The .par file does not exist')

        self.nsegs = 1
        self.BSGL = False

        self.tref = self.par['tref']
        self.F1s = [self.par.get('F1', 0)]
        self.F2s = [self.par.get('F2', 0)]
        self.Alphas = [self.par['Alpha']]
        self.Deltas = [self.par['Delta']]
        self.Re = 6.371e6
        self.c = 2.998e8
632
        a0 = self.Re/self.c  # *np.cos(self.par['Delta'])
633
        self.m0 = np.max([4, int(np.ceil(2*np.pi*self.par['F0']*a0))])
634
635
        logging.info(
            'Setting up DMoff_NO_SPIN search with m0 = {}'.format(self.m0))
636
637
638
639
640
641
642
643
644

    def get_results(self):
        """ Compute the three summed detection statistics

        Returns
        -------
            m0, twoF_SUM, twoFstar_SUM_SIDEREAL, twoFstar_SUM_TERRESTRIAL

        """
Gregory Ashton's avatar
Gregory Ashton committed
645
646
647
        self.SSBprec = lalpulsar.SSBPREC_RELATIVISTIC
        self.set_out_file('SSBPREC_RELATIVISTIC')
        self.F0s = [self.par['F0']+j/lal.DAYSID_SI for j in range(-4, 5)]
648
649
650
        self.run()
        twoF_SUM = np.sum(self.data[:, -1])

Gregory Ashton's avatar
Gregory Ashton committed
651
652
653
        self.SSBprec = lalpulsar.SSBPREC_NO_SPIN
        self.set_out_file('SSBPREC_NO_SPIN')
        self.F0s = [self.par['F0']+j/lal.DAYSID_SI
654
655
656
657
                    for j in range(-self.m0, self.m0+1)]
        self.run()
        twoFstar_SUM = np.sum(self.data[:, -1])

Gregory Ashton's avatar
Gregory Ashton committed
658
659
        self.set_out_file('SSBPREC_NO_SPIN_TERRESTRIAL')
        self.F0s = [self.par['F0']+j/lal.DAYJUL_SI
660
661
662
663
664
                    for j in range(-self.m0, self.m0+1)]
        self.run()
        twoFstar_SUM_terrestrial = np.sum(self.data[:, -1])

        return self.m0, twoF_SUM, twoFstar_SUM, twoFstar_SUM_terrestrial