grid_based_searches.py 36 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" Searches using grid-based methods """
2
from __future__ import division, absolute_import, print_function
Gregory Ashton's avatar
Gregory Ashton committed
3
4
5
6
7
8
9
10
11

import os
import logging
import itertools
from collections import OrderedDict

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
12
from scipy.misc import logsumexp
Gregory Ashton's avatar
Gregory Ashton committed
13

14
15
16
import pyfstat.helper_functions as helper_functions
from pyfstat.core import (BaseSearchClass, ComputeFstat,
                          SemiCoherentGlitchSearch, SemiCoherentSearch, tqdm,
17
                          args, read_par)
Gregory Ashton's avatar
Gregory Ashton committed
18
19
import lalpulsar
import lal
Gregory Ashton's avatar
Gregory Ashton committed
20
21
22
23


class GridSearch(BaseSearchClass):
    """ Gridded search using ComputeFstat """
Gregory Ashton's avatar
Gregory Ashton committed
24
25
26
    tex_labels = {'F0': '$f$', 'F1': '$\dot{f}$', 'F2': '$\ddot{f}$',
                  'Alpha': r'$\alpha$', 'Delta': r'$\delta$'}
    tex_labels0 = {'F0': '$-f_0$', 'F1': '$-\dot{f}_0$', 'F2': '$-\ddot{f}_0$',
27
                   'Alpha': r'$-\alpha_0$', 'Delta': r'$-\delta_0$'}
Gregory Ashton's avatar
Gregory Ashton committed
28

Gregory Ashton's avatar
Gregory Ashton committed
29
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
30
31
32
33
    def __init__(self, label, outdir, sftfilepattern, F0s, F1s, F2s, Alphas,
                 Deltas, tref=None, minStartTime=None, maxStartTime=None,
                 nsegs=1, BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, SSBprec=None, injectSources=None,
David Keitel's avatar
David Keitel committed
34
                 input_arrays=False, assumeSqrtSX=None,
35
36
                 transientWindowType=None, t0Band=None, tauBand=None,
                 outputTransientFstatMap=False):
Gregory Ashton's avatar
Gregory Ashton committed
37
38
39
40
41
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
42
43
44
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
45
46
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
47
48
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
Gregory Ashton's avatar
Gregory Ashton committed
49
50
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
51
52
        input_arrays: bool
            if true, use the F0s, F1s, etc as is
David Keitel's avatar
David Keitel committed
53
        transientWindowType: str
Gregory Ashton's avatar
Gregory Ashton committed
54
55
56
57
            If 'rect' or 'exp', compute atoms so that a transient (t0,tau) map
            can later be computed.  ('none' instead of None explicitly calls
            the transient-window function, but with the full range, for
            debugging). Currently only supported for nsegs=1.
David Keitel's avatar
David Keitel committed
58
59
60
61
62
        t0Band, tauBand: int
            if >0, search t0 in (minStartTime,minStartTime+t0Band)
                   and tau in (2*Tsft,2*Tsft+tauBand).
            if =0, only compute CW Fstat with t0=minStartTime,
                   tau=maxStartTime-minStartTime.
63
64
65
        outputTransientFstatMap: bool
            if true, write output files for (t0,tau) Fstat maps
            (one file for each doppler grid point!)
Gregory Ashton's avatar
Gregory Ashton committed
66
67
68
69
70
71

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
72
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
73
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
74
75
76
        self.search_keys = [x+'s' for x in self.keys[2:]]
        for k in self.search_keys:
            setattr(self, k, np.atleast_1d(getattr(self, k)))
Gregory Ashton's avatar
Gregory Ashton committed
77
78
79

    def inititate_search_object(self):
        logging.info('Setting up search object')
80
81
        if self.nsegs == 1:
            self.search = ComputeFstat(
82
                tref=self.tref, sftfilepattern=self.sftfilepattern,
83
                minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
David Keitel's avatar
David Keitel committed
84
85
86
                detectors=self.detectors,
                transientWindowType=self.transientWindowType,
                t0Band=self.t0Band, tauBand=self.tauBand,
87
                minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
88
                BSGL=self.BSGL, SSBprec=self.SSBprec,
89
90
                injectSources=self.injectSources,
                assumeSqrtSX=self.assumeSqrtSX)
91
            self.search.get_det_stat = self.search.get_fullycoherent_twoF
92
93
94
        else:
            self.search = SemiCoherentSearch(
                label=self.label, outdir=self.outdir, tref=self.tref,
95
                nsegs=self.nsegs, sftfilepattern=self.sftfilepattern,
96
97
98
                BSGL=self.BSGL, minStartTime=self.minStartTime,
                maxStartTime=self.maxStartTime, minCoverFreq=self.minCoverFreq,
                maxCoverFreq=self.maxCoverFreq, detectors=self.detectors,
Gregory Ashton's avatar
Gregory Ashton committed
99
                injectSources=self.injectSources)
100
101

            def cut_out_tstart_tend(*vals):
102
                return self.search.get_semicoherent_twoF(*vals[2:])
103
            self.search.get_det_stat = cut_out_tstart_tend
Gregory Ashton's avatar
Gregory Ashton committed
104
105
106
107

    def get_array_from_tuple(self, x):
        if len(x) == 1:
            return np.array(x)
108
        elif len(x) == 3 and self.input_arrays is False:
Gregory Ashton's avatar
Gregory Ashton committed
109
            return np.arange(x[0], x[1], x[2])
Gregory Ashton's avatar
Gregory Ashton committed
110
        else:
Gregory Ashton's avatar
Gregory Ashton committed
111
112
            logging.info('Using tuple as is')
            return np.array(x)
Gregory Ashton's avatar
Gregory Ashton committed
113
114

    def get_input_data_array(self):
Gregory Ashton's avatar
Gregory Ashton committed
115
        logging.info("Generating input data array")
116
        coord_arrays = []
Gregory Ashton's avatar
Gregory Ashton committed
117
118
        for tup in ([self.minStartTime], [self.maxStartTime], self.F0s,
                    self.F1s, self.F2s, self.Alphas, self.Deltas):
119
            coord_arrays.append(self.get_array_from_tuple(tup))
Gregory Ashton's avatar
Gregory Ashton committed
120

121
122
123
124
        input_data = []
        for vals in itertools.product(*coord_arrays):
                input_data.append(vals)
        self.input_data = np.array(input_data)
125
        self.coord_arrays = coord_arrays
Gregory Ashton's avatar
Gregory Ashton committed
126
127
128
129
130
131
132

    def check_old_data_is_okay_to_use(self):
        if args.clean:
            return False
        if os.path.isfile(self.out_file) is False:
            logging.info('No old data found, continuing with grid search')
            return False
133
        if self.sftfilepattern is not None:
134
135
136
137
138
139
            oldest_sft = min([os.path.getmtime(f) for f in
                              self._get_list_of_matching_sfts()])
            if os.path.getmtime(self.out_file) < oldest_sft:
                logging.info('Search output data outdates sft files,'
                             + ' continuing with grid search')
                return False
140

141
142
143
144
145
146
147
148
149
        data = np.atleast_2d(np.genfromtxt(self.out_file, delimiter=' '))
        if np.all(data[:, 0:-1] == self.input_data):
            logging.info(
                'Old data found with matching input, no search performed')
            return data
        else:
            logging.info(
                'Old data found, input differs, continuing with grid search')
            return False
150
        return False
Gregory Ashton's avatar
Gregory Ashton committed
151
152
153
154
155
156
157
158

    def run(self, return_data=False):
        self.get_input_data_array()
        old_data = self.check_old_data_is_okay_to_use()
        if old_data is not False:
            self.data = old_data
            return

Gregory Ashton's avatar
Gregory Ashton committed
159
160
        if hasattr(self, 'search') is False:
            self.inititate_search_object()
Gregory Ashton's avatar
Gregory Ashton committed
161
162

        data = []
163
        for vals in tqdm(self.input_data):
164
165
166
167
168
169
170
171
172
            detstat = self.search.get_det_stat(*vals)
            windowRange = getattr(self.search, 'windowRange', None)
            FstatMap = getattr(self.search, 'FstatMap', None)
            data.append(list(vals) + [detstat])
            if self.outputTransientFstatMap and self.transientWindowType:
                tCWfile = os.path.splitext(self.out_file)[0]+'_tCW_%.16f_%.16f_%.16f_%.16g_%.16g.dat' % (vals[2],vals[5],vals[6],vals[3],vals[4]) # freq alpha delta f1dot f2dot
                fo = lal.FileOpen(tCWfile, 'w')
                lalpulsar.write_transientFstatMap_to_fp ( fo, FstatMap, windowRange, None )
                del fo # instead of lal.FileClose() which is not SWIG-exported
Gregory Ashton's avatar
Gregory Ashton committed
173

174
        data = np.array(data, dtype=np.float)
Gregory Ashton's avatar
Gregory Ashton committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        if return_data:
            return data
        else:
            logging.info('Saving data to {}'.format(self.out_file))
            np.savetxt(self.out_file, data, delimiter=' ')
            self.data = data

    def convert_F0_to_mismatch(self, F0, F0hat, Tseg):
        DeltaF0 = F0[1] - F0[0]
        m_spacing = (np.pi*Tseg*DeltaF0)**2 / 12.
        N = len(F0)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def convert_F1_to_mismatch(self, F1, F1hat, Tseg):
        DeltaF1 = F1[1] - F1[0]
        m_spacing = (np.pi*Tseg**2*DeltaF1)**2 / 720.
        N = len(F1)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def add_mismatch_to_ax(self, ax, x, y, xkey, ykey, xhat, yhat, Tseg):
        axX = ax.twiny()
        axX.zorder = -10
        axY = ax.twinx()
        axY.zorder = -10

        if xkey == 'F0':
            m = self.convert_F0_to_mismatch(x, xhat, Tseg)
            axX.set_xlim(m[0], m[-1])

        if ykey == 'F1':
            m = self.convert_F1_to_mismatch(y, yhat, Tseg)
            axY.set_ylim(m[0], m[-1])

Gregory Ashton's avatar
Gregory Ashton committed
208
209
    def plot_1D(self, xkey, ax=None, x0=None, xrescale=1, savefig=True,
                xlabel=None, ylabel='$\widetilde{2\mathcal{F}}$'):
Gregory Ashton's avatar
Gregory Ashton committed
210
211
        if ax is None:
            fig, ax = plt.subplots()
Gregory Ashton's avatar
Gregory Ashton committed
212
213
        xidx = self.keys.index(xkey)
        x = np.unique(self.data[:, xidx])
214
215
        if x0:
            x = x - x0
Gregory Ashton's avatar
Gregory Ashton committed
216
        x = x * xrescale
Gregory Ashton's avatar
Gregory Ashton committed
217
        z = self.data[:, -1]
Gregory Ashton's avatar
Gregory Ashton committed
218
219
220
221
222
        ax.plot(x, z)
        if x0:
            ax.set_xlabel(self.tex_labels[xkey]+self.tex_labels0[xkey])
        else:
            ax.set_xlabel(self.tex_labels[xkey])
Gregory Ashton's avatar
Gregory Ashton committed
223
224
225
226
227

        if xlabel:
            ax.set_xlabel(xlabel)

        ax.set_ylabel(ylabel)
Gregory Ashton's avatar
Gregory Ashton committed
228
        if savefig:
Gregory Ashton's avatar
Gregory Ashton committed
229
            fig.tight_layout()
Gregory Ashton's avatar
Gregory Ashton committed
230
231
            fig.savefig('{}/{}_1D.png'.format(self.outdir, self.label))
        else:
Gregory Ashton's avatar
Gregory Ashton committed
232
            return fig, ax
Gregory Ashton's avatar
Gregory Ashton committed
233
234
235

    def plot_2D(self, xkey, ykey, ax=None, save=True, vmin=None, vmax=None,
                add_mismatch=None, xN=None, yN=None, flat_keys=[],
Gregory Ashton's avatar
Gregory Ashton committed
236
                rel_flat_idxs=[], flatten_method=np.max, title=None,
Gregory Ashton's avatar
Gregory Ashton committed
237
238
                predicted_twoF=None, cm=None, cbarkwargs={}, x0=None, y0=None,
                colorbar=False):
Gregory Ashton's avatar
Gregory Ashton committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
        """ Plots a 2D grid of 2F values

        Parameters
        ----------
        add_mismatch: tuple (xhat, yhat, Tseg)
            If not None, add a secondary axis with the metric mismatch from the
            point xhat, yhat with duration Tseg
        flatten_method: np.max
            Function to use in flattening the flat_keys
        """
        if ax is None:
            fig, ax = plt.subplots()
        xidx = self.keys.index(xkey)
        yidx = self.keys.index(ykey)
        flat_idxs = [self.keys.index(k) for k in flat_keys]

        x = np.unique(self.data[:, xidx])
256
257
        if x0:
            x = x-x0
Gregory Ashton's avatar
Gregory Ashton committed
258
        y = np.unique(self.data[:, yidx])
259
260
        if y0:
            y = y-y0
Gregory Ashton's avatar
Gregory Ashton committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
        flat_vals = [np.unique(self.data[:, j]) for j in flat_idxs]
        z = self.data[:, -1]

        Y, X = np.meshgrid(y, x)
        shape = [len(x), len(y)] + [len(v) for v in flat_vals]
        Z = z.reshape(shape)

        if len(rel_flat_idxs) > 0:
            Z = flatten_method(Z, axis=tuple(rel_flat_idxs))

        if predicted_twoF:
            Z = (predicted_twoF - Z) / (predicted_twoF + 4)
            if cm is None:
                cm = plt.cm.viridis_r
        else:
            if cm is None:
                cm = plt.cm.viridis

        pax = ax.pcolormesh(X, Y, Z, cmap=cm, vmin=vmin, vmax=vmax)
Gregory Ashton's avatar
Gregory Ashton committed
280
281
282
        if colorbar:
            cb = plt.colorbar(pax, ax=ax, **cbarkwargs)
            cb.set_label('$2\mathcal{F}$')
Gregory Ashton's avatar
Gregory Ashton committed
283
284
285
286
287
288

        if add_mismatch:
            self.add_mismatch_to_ax(ax, x, y, xkey, ykey, *add_mismatch)

        ax.set_xlim(x[0], x[-1])
        ax.set_ylim(y[0], y[-1])
289
        if x0:
Gregory Ashton's avatar
Gregory Ashton committed
290
            ax.set_xlabel(self.tex_labels[xkey]+self.tex_labels0[xkey])
291
        else:
Gregory Ashton's avatar
Gregory Ashton committed
292
            ax.set_xlabel(self.tex_labels[xkey])
293
        if y0:
Gregory Ashton's avatar
Gregory Ashton committed
294
            ax.set_ylabel(self.tex_labels[ykey]+self.tex_labels0[ykey])
295
        else:
Gregory Ashton's avatar
Gregory Ashton committed
296
            ax.set_ylabel(self.tex_labels[ykey])
Gregory Ashton's avatar
Gregory Ashton committed
297

Gregory Ashton's avatar
Gregory Ashton committed
298
299
300
        if title:
            ax.set_title(title)

Gregory Ashton's avatar
Gregory Ashton committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
        if xN:
            ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(xN))
        if yN:
            ax.yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(yN))

        if save:
            fig.tight_layout()
            fig.savefig('{}/{}_2D.png'.format(self.outdir, self.label))
        else:
            return ax

    def get_max_twoF(self):
        twoF = self.data[:, -1]
        idx = np.argmax(twoF)
        v = self.data[idx, :]
        d = OrderedDict(minStartTime=v[0], maxStartTime=v[1], F0=v[2], F1=v[3],
                        F2=v[4], Alpha=v[5], Delta=v[6], twoF=v[7])
        return d

    def print_max_twoF(self):
        d = self.get_max_twoF()
        print('Max twoF values for {}:'.format(self.label))
        for k, v in d.iteritems():
            print('  {}={}'.format(k, v))

326
    def set_out_file(self, extra_label=None):
327
328
329
330
        if self.detectors:
            dets = self.detectors.replace(',', '')
        else:
            dets = 'NA'
331
332
333
334
335
336
337
338
        if extra_label:
            self.out_file = '{}/{}_{}_{}_{}.txt'.format(
                self.outdir, self.label, dets, type(self).__name__,
                extra_label)
        else:
            self.out_file = '{}/{}_{}_{}.txt'.format(
                self.outdir, self.label, dets, type(self).__name__)

Gregory Ashton's avatar
Gregory Ashton committed
339

Gregory Ashton's avatar
Gregory Ashton committed
340
341
342
class SliceGridSearch(GridSearch):
    """ Slice gridded search using ComputeFstat """
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
343
344
345
346
347
    def __init__(self, label, outdir, sftfilepattern, F0s, F1s, F2s, Alphas,
                 Deltas, tref=None, minStartTime=None, maxStartTime=None,
                 nsegs=1, BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, SSBprec=None, injectSources=None,
                 input_arrays=False, assumeSqrtSX=None, Lambda0=None):
Gregory Ashton's avatar
Gregory Ashton committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
        input_arrays: bool
            if true, use the F0s, F1s, etc as is

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.set_out_file()
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
372
373
374
        self.ndim = 0
        self.thetas = [F0s, F1s, Alphas, Deltas]
        self.ndim = 4
Gregory Ashton's avatar
Gregory Ashton committed
375

Gregory Ashton's avatar
Gregory Ashton committed
376
        self.search_keys = ['F0', 'F1', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
377
        self.Lambda0 = np.array(Lambda0)
Gregory Ashton's avatar
Gregory Ashton committed
378
        if len(self.Lambda0) != len(self.search_keys):
Gregory Ashton's avatar
Gregory Ashton committed
379
            raise ValueError(
Gregory Ashton's avatar
Gregory Ashton committed
380
381
                'Lambda0 must be of length {}'.format(len(self.search_keys)))

382
383
    def run(self, factor=2, max_n_ticks=4, whspace=0.07, save=True,
            **kwargs):
Gregory Ashton's avatar
Gregory Ashton committed
384
        lbdim = 0.5 * factor   # size of left/bottom margin
385
        trdim = 0.4 * factor   # size of top/right margin
Gregory Ashton's avatar
Gregory Ashton committed
386
387
388
389
390
391
392
393
394
395
396
397
398
399
        plotdim = factor * self.ndim + factor * (self.ndim - 1.) * whspace
        dim = lbdim + plotdim + trdim

        fig, axes = plt.subplots(self.ndim, self.ndim, figsize=(dim, dim))

        # Format the figure.
        lb = lbdim / dim
        tr = (lbdim + plotdim) / dim
        fig.subplots_adjust(left=lb, bottom=lb, right=tr, top=tr,
                            wspace=whspace, hspace=whspace)

        search = GridSearch(
            self.label, self.outdir, self.sftfilepattern,
            F0s=self.Lambda0[0], F1s=self.Lambda0[1], F2s=self.F2s[0],
400
401
            Alphas=self.Lambda0[2], Deltas=self.Lambda0[3], tref=self.tref,
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime)
Gregory Ashton's avatar
Gregory Ashton committed
402
403
404

        for i, ikey in enumerate(self.search_keys):
            setattr(search, ikey+'s', self.thetas[i])
405
406
            search.label = '{}_{}'.format(self.label, ikey)
            search.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
407
            search.run()
408
409
410
            axes[i, i] = search.plot_1D(ikey, ax=axes[i, i], savefig=False,
                                        x0=self.Lambda0[i]
                                        )
Gregory Ashton's avatar
Gregory Ashton committed
411
            setattr(search, ikey+'s', [self.Lambda0[i]])
412
413
414
            axes[i, i].yaxis.tick_right()
            axes[i, i].yaxis.set_label_position("right")
            axes[i, i].set_xlabel('')
Gregory Ashton's avatar
Gregory Ashton committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

            for j, jkey in enumerate(self.search_keys):
                ax = axes[i, j]

                if j > i:
                    ax.set_frame_on(False)
                    ax.set_xticks([])
                    ax.set_yticks([])
                    continue

                ax.get_shared_x_axes().join(axes[self.ndim-1, j], ax)
                if i < self.ndim - 1:
                    ax.set_xticklabels([])
                if j < i:
                    ax.get_shared_y_axes().join(axes[i, i-1], ax)
                    if j > 0:
                        ax.set_yticklabels([])
                if j == i:
                    continue

                ax.xaxis.set_major_locator(
                    matplotlib.ticker.MaxNLocator(max_n_ticks, prune="upper"))
                ax.yaxis.set_major_locator(
                    matplotlib.ticker.MaxNLocator(max_n_ticks, prune="upper"))

                setattr(search, ikey+'s', self.thetas[i])
                setattr(search, jkey+'s', self.thetas[j])
442
443
                search.label = '{}_{}'.format(self.label, ikey+jkey)
                search.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
444
                search.run()
445
                ax = search.plot_2D(jkey, ikey, ax=ax, save=False,
446
447
                                    y0=self.Lambda0[i], x0=self.Lambda0[j],
                                    **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
448
449
450
                setattr(search, ikey+'s', [self.Lambda0[i]])
                setattr(search, jkey+'s', [self.Lambda0[j]])

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
                ax.grid(lw=0.2, ls='--', zorder=10)
                ax.set_xlabel('')
                ax.set_ylabel('')

        for i, ikey in enumerate(self.search_keys):
            axes[-1, i].set_xlabel(
                self.tex_labels[ikey]+self.tex_labels0[ikey])
            if i > 0:
                axes[i, 0].set_ylabel(
                    self.tex_labels[ikey]+self.tex_labels0[ikey])
            axes[i, i].set_ylabel("$2\mathcal{F}$")

        if save:
            fig.savefig(
                '{}/{}_slice_projection.png'.format(self.outdir, self.label))
        else:
            return fig, axes
Gregory Ashton's avatar
Gregory Ashton committed
468
469


Gregory Ashton's avatar
Gregory Ashton committed
470
class GridUniformPriorSearch():
471
    @helper_functions.initializer
472
    def __init__(self, theta_prior, NF0, NF1, label, outdir, sftfilepattern,
473
                 tref, minStartTime, maxStartTime, minCoverFreq=None,
474
                 maxCoverFreq=None, BSGL=False, detectors=None, nsegs=1,
475
                 SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
476
477
478
479
        dF0 = (theta_prior['F0']['upper'] - theta_prior['F0']['lower'])/NF0
        dF1 = (theta_prior['F1']['upper'] - theta_prior['F1']['lower'])/NF1
        F0s = [theta_prior['F0']['lower'], theta_prior['F0']['upper'], dF0]
        F1s = [theta_prior['F1']['lower'], theta_prior['F1']['upper'], dF1]
480
        self.search = GridSearch(
481
            label, outdir, sftfilepattern, F0s=F0s, F1s=F1s, tref=tref,
Gregory Ashton's avatar
Gregory Ashton committed
482
483
            Alphas=[theta_prior['Alpha']], Deltas=[theta_prior['Delta']],
            minStartTime=minStartTime, maxStartTime=maxStartTime, BSGL=BSGL,
484
            detectors=detectors, minCoverFreq=minCoverFreq,
485
486
            injectSources=injectSources, maxCoverFreq=maxCoverFreq,
            nsegs=nsegs, SSBprec=SSBprec)
487

488
    def run(self):
489
        self.search.run()
490
491

    def get_2D_plot(self, **kwargs):
492
        return self.search.plot_2D('F0', 'F1', **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
493
494


Gregory Ashton's avatar
Gregory Ashton committed
495
496
497
class GridGlitchSearch(GridSearch):
    """ Grid search using the SemiCoherentGlitchSearch """
    @helper_functions.initializer
498
    def __init__(self, label, outdir, sftfilepattern=None, F0s=[0],
Gregory Ashton's avatar
Gregory Ashton committed
499
500
501
                 F1s=[0], F2s=[0], delta_F0s=[0], delta_F1s=[0], tglitchs=None,
                 Alphas=[0], Deltas=[0], tref=None, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
502
                 write_after=1000):
Gregory Ashton's avatar
Gregory Ashton committed
503
504
505
506
507
508

        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
509
510
511
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
512
513
514
515
516
517
518
519
520
521
522
523
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0].
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see pyfstat.ComputeFStat.
        """
        if tglitchs is None:
            self.tglitchs = [self.maxStartTime]

        self.search = SemiCoherentGlitchSearch(
524
            label=label, outdir=outdir, sftfilepattern=self.sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
525
526
527
528
529
530
            tref=tref, minStartTime=minStartTime, maxStartTime=maxStartTime,
            minCoverFreq=minCoverFreq, maxCoverFreq=maxCoverFreq,
            BSGL=self.BSGL)

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
531
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
        self.keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta', 'delta_F0',
                     'delta_F1', 'tglitch']

    def get_input_data_array(self):
        arrays = []
        for tup in (self.F0s, self.F1s, self.F2s, self.Alphas, self.Deltas,
                    self.delta_F0s, self.delta_F1s, self.tglitchs):
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        self.arrays = arrays
        self.input_data = np.array(input_data)


Gregory Ashton's avatar
Gregory Ashton committed
549
550
551
class FrequencySlidingWindow(GridSearch):
    """ A sliding-window search over the Frequency """
    @helper_functions.initializer
552
    def __init__(self, label, outdir, sftfilepattern, F0s, F1, F2,
Gregory Ashton's avatar
Gregory Ashton committed
553
554
555
                 Alpha, Delta, tref, minStartTime=None,
                 maxStartTime=None, window_size=10*86400, window_delta=86400,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
556
                 detectors=None, SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
557
558
559
560
561
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
562
563
564
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
565
566
567
568
569
570
571
572
573
574
575
576
        F0s: array
            Frequency range
        F1, F2, Alpha, Delta: float
            Fixed values to compute twoF(F) over
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
577
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
578
579
580
581
582
        self.nsegs = 1
        self.F1s = [F1]
        self.F2s = [F2]
        self.Alphas = [Alpha]
        self.Deltas = [Delta]
583
        self.input_arrays = False
Gregory Ashton's avatar
Gregory Ashton committed
584

Gregory Ashton's avatar
Gregory Ashton committed
585
586
587
    def inititate_search_object(self):
        logging.info('Setting up search object')
        self.search = ComputeFstat(
588
            tref=self.tref, sftfilepattern=self.sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
589
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
David Keitel's avatar
David Keitel committed
590
            detectors=self.detectors, transientWindowType=self.transientWindowType,
Gregory Ashton's avatar
Gregory Ashton committed
591
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
Gregory Ashton's avatar
Gregory Ashton committed
592
593
            BSGL=self.BSGL, SSBprec=self.SSBprec,
            injectSources=self.injectSources)
Gregory Ashton's avatar
Gregory Ashton committed
594
        self.search.get_det_stat = (
595
            self.search.get_fullycoherent_twoF)
Gregory Ashton's avatar
Gregory Ashton committed
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618

    def get_input_data_array(self):
        arrays = []
        tstarts = [self.minStartTime]
        while tstarts[-1] + self.window_size < self.maxStartTime:
            tstarts.append(tstarts[-1]+self.window_delta)
        arrays = [tstarts]
        for tup in (self.F0s, self.F1s, self.F2s,
                    self.Alphas, self.Deltas):
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        input_data = np.array(input_data)
        input_data = np.insert(
            input_data, 1, input_data[:, 0] + self.window_size, axis=1)

        self.arrays = arrays
        self.input_data = np.array(input_data)

    def plot_sliding_window(self, F0=None, ax=None, savefig=True,
619
                            colorbar=True, timestamps=False):
Gregory Ashton's avatar
Gregory Ashton committed
620
621
622
623
624
625
626
627
628
629
630
        data = self.data
        if ax is None:
            ax = plt.subplot()
        tstarts = np.unique(data[:, 0])
        tends = np.unique(data[:, 1])
        frequencies = np.unique(data[:, 2])
        twoF = data[:, -1]
        tmids = (tstarts + tends) / 2.0
        dts = (tmids - self.minStartTime) / 86400.
        if F0:
            frequencies = frequencies - F0
631
            ax.set_ylabel('Frequency - $f_0$ [Hz] \n $f_0={:0.2f}$'.format(F0))
Gregory Ashton's avatar
Gregory Ashton committed
632
633
634
635
636
637
638
639
640
        else:
            ax.set_ylabel('Frequency [Hz]')
        twoF = twoF.reshape((len(tmids), len(frequencies)))
        Y, X = np.meshgrid(frequencies, dts)
        pax = ax.pcolormesh(X, Y, twoF)
        if colorbar:
            cb = plt.colorbar(pax, ax=ax)
            cb.set_label('$2\mathcal{F}$')
        ax.set_xlabel(
641
642
            r'Mid-point (days after $t_\mathrm{{start}}$={})'.format(
                self.minStartTime))
Gregory Ashton's avatar
Gregory Ashton committed
643
644
        ax.set_title(
            'Sliding window length = {} days in increments of {} days'
645
646
647
648
649
650
651
            .format(self.window_size/86400, self.window_delta/86400),
            )
        if timestamps:
            axT = ax.twiny()
            axT.set_xlim(tmids[0]*1e-9, tmids[-1]*1e-9)
            axT.set_xlabel('Mid-point timestamp [GPS $10^{9}$ s]')
            ax.set_title(ax.get_title(), y=1.18)
Gregory Ashton's avatar
Gregory Ashton committed
652
653
654
655
656
657
        if savefig:
            plt.tight_layout()
            plt.savefig(
                '{}/{}_sliding_window.png'.format(self.outdir, self.label))
        else:
            return ax
658
659


Gregory Ashton's avatar
Gregory Ashton committed
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
class EarthTest(GridSearch):
    """ """
    tex_labels = {'deltaRadius': '$\Delta R$ [m]',
                  'phaseOffset': 'phase-offset [rad]',
                  'deltaPspin': '$\Delta P_\mathrm{spin}$ [s]'}

    @helper_functions.initializer
    def __init__(self, label, outdir, sftfilepattern, deltaRadius,
                 phaseOffset, deltaPspin, F0, F1, F2, Alpha,
                 Delta, tref=None, minStartTime=None, maxStartTime=None,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, injectSources=None,
                 assumeSqrtSX=None):
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
        F0, F1, F2, Alpha, Delta: float
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """
687
688
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
Gregory Ashton's avatar
Gregory Ashton committed
689
690
691
692
693
694
        self.nsegs = 1
        self.F0s = [F0]
        self.F1s = [F1]
        self.F2s = [F2]
        self.Alphas = [Alpha]
        self.Deltas = [Delta]
695
        self.duration = maxStartTime - minStartTime
Gregory Ashton's avatar
Gregory Ashton committed
696
697
        self.deltaRadius = np.atleast_1d(deltaRadius)
        self.phaseOffset = np.atleast_1d(phaseOffset)
698
        self.phaseOffset = self.phaseOffset + 1e-12  # Hack to stop cached data being used
Gregory Ashton's avatar
Gregory Ashton committed
699
700
701
702
703
        self.deltaPspin = np.atleast_1d(deltaPspin)
        self.set_out_file()
        self.SSBprec = lalpulsar.SSBPREC_RELATIVISTIC
        self.keys = ['deltaRadius', 'phaseOffset', 'deltaPspin']

704
705
706
707
708
709
710
711
        self.prior_widths = [
            np.max(self.deltaRadius)-np.min(self.deltaRadius),
            np.max(self.phaseOffset)-np.min(self.phaseOffset),
            np.max(self.deltaPspin)-np.min(self.deltaPspin)]

        if hasattr(self, 'search') is False:
            self.inititate_search_object()

Gregory Ashton's avatar
Gregory Ashton committed
712
713
714
715
716
717
718
719
720
    def get_input_data_array(self):
        logging.info("Generating input data array")
        coord_arrays = [self.deltaRadius, self.phaseOffset, self.deltaPspin]
        input_data = []
        for vals in itertools.product(*coord_arrays):
                input_data.append(vals)
        self.input_data = np.array(input_data)
        self.coord_arrays = coord_arrays

721
722
723
724
725
726
727
728
729
730
731
732
    def run_special(self):
        vals = [self.minStartTime, self.maxStartTime, self.F0, self.F1,
                self.F2, self.Alpha, self.Delta]
        self.special_data = {'zero': [0, 0, 0]}
        for key, (dR, dphi, dP) in self.special_data.iteritems():
            rescaleRadius = (1 + dR / lal.REARTH_SI)
            rescalePeriod = (1 + dP / lal.DAYSID_SI)
            lalpulsar.BarycenterModifyEarthRotation(
                rescaleRadius, dphi, rescalePeriod, self.tref)
            FS = self.search.get_det_stat(*vals)
            self.special_data[key] = list([dR, dphi, dP]) + [FS]

Gregory Ashton's avatar
Gregory Ashton committed
733
    def run(self):
734
        self.run_special()
Gregory Ashton's avatar
Gregory Ashton committed
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
        self.get_input_data_array()
        old_data = self.check_old_data_is_okay_to_use()
        if old_data is not False:
            self.data = old_data
            return

        data = []
        vals = [self.minStartTime, self.maxStartTime, self.F0, self.F1,
                self.F2, self.Alpha, self.Delta]
        for (dR, dphi, dP) in tqdm(self.input_data):
            rescaleRadius = (1 + dR / lal.REARTH_SI)
            rescalePeriod = (1 + dP / lal.DAYSID_SI)
            lalpulsar.BarycenterModifyEarthRotation(
                rescaleRadius, dphi, rescalePeriod, self.tref)
            FS = self.search.get_det_stat(*vals)
            data.append(list([dR, dphi, dP]) + [FS])

        data = np.array(data, dtype=np.float)
        logging.info('Saving data to {}'.format(self.out_file))
        np.savetxt(self.out_file, data, delimiter=' ')
        self.data = data

757
758
759
760
    def marginalised_bayes_factor(self, prior_widths=None):
        if prior_widths is None:
            prior_widths = self.prior_widths

761
        ndims = self.data.shape[1] - 1
762
        params = np.array([np.unique(self.data[:, j]) for j in range(ndims)])
763
764
765
766
767
        twoF = self.data[:, -1].reshape(tuple([len(p) for p in params]))
        F = twoF / 2.0
        for i, x in enumerate(params[::-1]):
            if len(x) > 1:
                dx = x[1] - x[0]
768
                F = logsumexp(F, axis=-1)+np.log(dx)-np.log(prior_widths[-1-i])
769
770
            else:
                F = np.squeeze(F, axis=-1)
771
772
773
774
775
776
777
778
779
780
781
        marginalised_F = np.atleast_1d(F)[0]
        F_at_zero = self.special_data['zero'][-1]/2.0

        max_idx = np.argmax(self.data[:, -1])
        max_F = self.data[max_idx, -1]/2.0
        max_F_params = self.data[max_idx, :-1]
        logging.info('F at zero = {:.1f}, marginalised_F = {:.1f},'
                     ' max_F = {:.1f} ({})'.format(
                         F_at_zero, marginalised_F, max_F, max_F_params))
        return F_at_zero - marginalised_F, (F_at_zero - max_F) / F_at_zero

782
783
    def plot_corner(self, prior_widths=None, fig=None, axes=None,
                    projection='log_mean'):
784
785
786
787
788
789
790
791
792
793
794
795
        Bsa, FmaxMismatch = self.marginalised_bayes_factor(prior_widths)

        data = self.data[:, -1].reshape(
            (len(self.deltaRadius), len(self.phaseOffset),
             len(self.deltaPspin)))
        xyz = [self.deltaRadius/lal.REARTH_SI, self.phaseOffset/(np.pi),
               self.deltaPspin/60.]
        labels = [r'$\frac{\Delta R}{R_\mathrm{Earth}}$',
                  r'$\frac{\Delta \phi}{\pi}$',
                  r'$\Delta P_\mathrm{spin}$ [min]',
                  r'$2\mathcal{F}$']

796
797
798
799
800
801
802
803
804
        try:
            from gridcorner import gridcorner
        except ImportError:
            raise ImportError(
                "Python module 'gridcorner' not found, please install from "
                "https://gitlab.aei.uni-hannover.de/GregAshton/gridcorner")

        fig, axes = gridcorner(data, xyz, projection=projection, factor=1.6,
                               labels=labels)
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
        axes[-1][-1].axvline((lal.DAYJUL_SI - lal.DAYSID_SI)/60.0, color='C3')
        plt.suptitle(
            'T={:.1f} days, $f$={:.2f} Hz, $\log\mathcal{{B}}_{{S/A}}$={:.1f},'
            r' $\frac{{\mathcal{{F}}_0-\mathcal{{F}}_\mathrm{{max}}}}'
            r'{{\mathcal{{F}}_0}}={:.1e}$'
            .format(self.duration/86400, self.F0, Bsa, FmaxMismatch), y=0.99,
            size=14)
        fig.savefig('{}/{}_projection_matrix.png'.format(
            self.outdir, self.label))

    def plot(self, key, prior_widths=None):
        Bsa, FmaxMismatch = self.marginalised_bayes_factor(prior_widths)

        rescales_defaults = {'deltaRadius': 1/lal.REARTH_SI,
                             'phaseOffset': 1/np.pi,
                             'deltaPspin': 1}
        labels = {'deltaRadius': r'$\frac{\Delta R}{R_\mathrm{Earth}}$',
                  'phaseOffset': r'$\frac{\Delta \phi}{\pi}$',
                  'deltaPspin': r'$\Delta P_\mathrm{spin}$ [s]'
                  }

        fig, ax = self.plot_1D(key, xrescale=rescales_defaults[key],
                               xlabel=labels[key], savefig=False)
        ax.set_title(
            'T={} days, $f$={} Hz, $\log\mathcal{{B}}_{{S/A}}$={:.1f}'
            .format(self.duration/86400, self.F0, Bsa))
        fig.tight_layout()
        fig.savefig('{}/{}_1D.png'.format(self.outdir, self.label))
833

Gregory Ashton's avatar
Gregory Ashton committed
834

835
836
837
class DMoff_NO_SPIN(GridSearch):
    """ DMoff test using SSBPREC_NO_SPIN """
    @helper_functions.initializer
838
    def __init__(self, par, label, outdir, sftfilepattern, minStartTime=None,
839
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
840
                 detectors=None, injectSources=None, assumeSqrtSX=None):
841
842
843
        """
        Parameters
        ----------
844
845
846
        par: dict, str
            Either a par dictionary (containing 'F0', 'F1', 'Alpha', 'Delta'
            and 'tref') or a path to a .par file to read in the F0, F1 etc
847
848
        label, outdir: str
            A label and directory to read/write data from/to
849
850
851
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
852
853
854
855
856
857
858
859
860
        minStartTime, maxStartTime: int
            GPS seconds of the start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)

861
862
863
864
        if type(par) == dict:
            self.par = par
        elif type(par) == str and os.path.isfile(par):
            self.par = read_par(filename=par)
865
866
867
868
869
870
871
872
873
874
875
876
877
        else:
            raise ValueError('The .par file does not exist')

        self.nsegs = 1
        self.BSGL = False

        self.tref = self.par['tref']
        self.F1s = [self.par.get('F1', 0)]
        self.F2s = [self.par.get('F2', 0)]
        self.Alphas = [self.par['Alpha']]
        self.Deltas = [self.par['Delta']]
        self.Re = 6.371e6
        self.c = 2.998e8
878
        a0 = self.Re/self.c  # *np.cos(self.par['Delta'])
879
        self.m0 = np.max([4, int(np.ceil(2*np.pi*self.par['F0']*a0))])
880
881
        logging.info(
            'Setting up DMoff_NO_SPIN search with m0 = {}'.format(self.m0))
882
883
884
885
886
887
888
889
890

    def get_results(self):
        """ Compute the three summed detection statistics

        Returns
        -------
            m0, twoF_SUM, twoFstar_SUM_SIDEREAL, twoFstar_SUM_TERRESTRIAL

        """
Gregory Ashton's avatar
Gregory Ashton committed
891
892
893
        self.SSBprec = lalpulsar.SSBPREC_RELATIVISTIC
        self.set_out_file('SSBPREC_RELATIVISTIC')
        self.F0s = [self.par['F0']+j/lal.DAYSID_SI for j in range(-4, 5)]
894
895
896
        self.run()
        twoF_SUM = np.sum(self.data[:, -1])

Gregory Ashton's avatar
Gregory Ashton committed
897
898
899
        self.SSBprec = lalpulsar.SSBPREC_NO_SPIN
        self.set_out_file('SSBPREC_NO_SPIN')
        self.F0s = [self.par['F0']+j/lal.DAYSID_SI
900
901
902
903
                    for j in range(-self.m0, self.m0+1)]
        self.run()
        twoFstar_SUM = np.sum(self.data[:, -1])

Gregory Ashton's avatar
Gregory Ashton committed
904
905
        self.set_out_file('SSBPREC_NO_SPIN_TERRESTRIAL')
        self.F0s = [self.par['F0']+j/lal.DAYJUL_SI
906
907
908
909
910
                    for j in range(-self.m0, self.m0+1)]
        self.run()
        twoFstar_SUM_terrestrial = np.sum(self.data[:, -1])

        return self.m0, twoF_SUM, twoFstar_SUM, twoFstar_SUM_terrestrial