core.py 48.6 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" The core tools used in pyfstat """
2 3
from __future__ import division, absolute_import, print_function

Gregory Ashton's avatar
Gregory Ashton committed
4 5 6 7
import os
import logging
import copy

8
import glob
Gregory Ashton's avatar
Gregory Ashton committed
9
import numpy as np
10 11 12 13 14
import scipy.special
import scipy.optimize

import lal
import lalpulsar
15
import pyfstat.helper_functions as helper_functions
16
import pyfstat.tcw_fstat_map_funcs as tcw
17 18

# workaround for matplotlib on X-less remote logins
19
if 'DISPLAY' in os.environ:
20 21
    import matplotlib.pyplot as plt
else:
22 23
    logging.info('No $DISPLAY environment variable found, so importing \
                  matplotlib.pyplot with non-interactive "Agg" backend.')
24 25 26 27
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt

Gregory Ashton's avatar
Gregory Ashton committed
28
helper_functions.set_up_matplotlib_defaults()
29
args, tqdm = helper_functions.set_up_command_line_arguments()
30
detector_colors = {'h1': 'C0', 'l1': 'C1'}
Gregory Ashton's avatar
Gregory Ashton committed
31 32


Gregory Ashton's avatar
Gregory Ashton committed
33
class Bunch(object):
34 35
    """ Turns dictionary into object with attribute-style access

36 37
    Parameters
    ----------
38 39 40 41 42 43 44 45 46 47 48 49 50 51
    dict
        Input dictionary

    Examples
    --------
    >>> data = Bunch(dict(x=1, y=[1, 2, 3], z=True))
    >>> print(data.x)
    1
    >>> print(data.y)
    [1, 2, 3]
    >>> print(data.z)
    True

    """
Gregory Ashton's avatar
Gregory Ashton committed
52 53 54 55 56
    def __init__(self, dictionary):
        self.__dict__.update(dictionary)


def read_par(filename=None, label=None, outdir=None, suffix='par',
57 58
             return_type='dict', comments=['%', '#'], raise_error=False):
    """ Read in a .par or .loudest file, returns a dict or Bunch of the data
59

Gregory Ashton's avatar
Gregory Ashton committed
60 61
    Parameters
    ----------
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    filename : str
        Filename (path) containing rows of `key=val` data to read in.
    label, outdir, suffix : str, optional
        If filename is None, form the file to read as `outdir/label.suffix`.
    return_type : {'dict', 'bunch'}, optional
        If `dict`, return a dictionary, if 'bunch' return a Bunch
    comments : str or list of strings, optional
        Characters denoting that a row is a comment.
    raise_error : bool, optional
        If True, raise an error for lines which are not comments, but cannot
        be read.

    Notes
    -----
    This can also be used to read in .loudest files, or any file which has
    rows of `key=val` data (in which the val can be understood using eval(val)
Gregory Ashton's avatar
Gregory Ashton committed
78 79 80 81 82

    Returns
    -------
    d: Bunch or dict
        The par values as either a `Bunch` or dict type
83

84 85 86 87
    """
    if filename is None:
        filename = '{}/{}.{}'.format(outdir, label, suffix)
    if os.path.isfile(filename) is False:
88
        raise ValueError("No file {} found".format(filename))
Gregory Ashton's avatar
Gregory Ashton committed
89 90
    d = {}
    with open(filename, 'r') as f:
91
        d = _get_dictionary_from_lines(f, comments, raise_error)
Gregory Ashton's avatar
Gregory Ashton committed
92 93 94 95 96 97
    if return_type in ['bunch', 'Bunch']:
        return Bunch(d)
    elif return_type in ['dict', 'dictionary']:
        return d
    else:
        raise ValueError('return_type {} not understood'.format(return_type))
Gregory Ashton's avatar
Gregory Ashton committed
98 99


100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
def _get_dictionary_from_lines(lines, comments, raise_error):
    """ Return dictionary of key=val pairs for each line in lines

    Parameters
    ----------
    comments : str or list of strings
        Characters denoting that a row is a comment.
    raise_error : bool
        If True, raise an error for lines which are not comments, but cannot
        be read.

    Returns
    -------
    d: Bunch or dict
        The par values as either a `Bunch` or dict type

    """
117 118
    d = {}
    for line in lines:
119
        if line[0] not in comments and len(line.split('=')) == 2:
120 121 122
            try:
                key, val = line.rstrip('\n').split('=')
                key = key.strip()
123 124 125 126 127 128 129 130
                val = val.strip()
                if (val[0] in ["'", '"']) and (val[-1] in ["'", '"']):
                    d[key] = val.lstrip('"').lstrip("'").rstrip('"').rstrip("'")
                else:
                    try:
                        d[key] = np.float64(eval(val.rstrip('; ')))
                    except NameError:
                        d[key] = val.rstrip('; ')
131
            except SyntaxError:
132 133
                if raise_error:
                    raise IOError('Line {} not understood'.format(line))
134 135 136 137 138
                pass
    return d


def predict_fstat(h0, cosi, psi, Alpha, Delta, Freq, sftfilepattern,
139
                  minStartTime, maxStartTime, IFOs=None, assumeSqrtSX=None,
140
                  tempory_filename='fs.tmp', **kwargs):
141 142 143 144 145 146 147 148 149
    """ Wrapper to lalapps_PredictFstat

    Parameters
    ----------
    h0, cosi, psi, Alpha, Delta, Freq : float
        Signal properties, see `lalapps_PredictFstat --help` for more info.
    sftfilepattern : str
        Pattern matching the sftfiles to use.
    minStartTime, maxStartTime : int
150
    IFOs : str
151 152 153 154 155 156 157 158 159 160
        See `lalapps_PredictFstat --help`
    assumeSqrtSX : float or None
        See `lalapps_PredictFstat --help`, if None this option is not used

    Returns
    -------
    twoF_expected, twoF_sigma : float
        The expectation and standard deviation of 2F

    """
161

162 163 164 165 166 167 168 169 170 171
    cl_pfs = []
    cl_pfs.append("lalapps_PredictFstat")
    cl_pfs.append("--h0={}".format(h0))
    cl_pfs.append("--cosi={}".format(cosi))
    cl_pfs.append("--psi={}".format(psi))
    cl_pfs.append("--Alpha={}".format(Alpha))
    cl_pfs.append("--Delta={}".format(Delta))
    cl_pfs.append("--Freq={}".format(Freq))

    cl_pfs.append("--DataFiles='{}'".format(sftfilepattern))
172
    if assumeSqrtSX:
173
        cl_pfs.append("--assumeSqrtSX={}".format(assumeSqrtSX))
174 175
    #if IFOs:
    #    cl_pfs.append("--IFOs={}".format(IFOs))
176

177 178
    cl_pfs.append("--minStartTime={}".format(int(minStartTime)))
    cl_pfs.append("--maxStartTime={}".format(int(maxStartTime)))
179
    cl_pfs.append("--outputFstat={}".format(tempory_filename))
180

181 182
    cl_pfs = " ".join(cl_pfs)
    helper_functions.run_commandline(cl_pfs)
183 184
    d = read_par(filename=tempory_filename)
    os.remove(tempory_filename)
185 186 187
    return float(d['twoF_expected']), float(d['twoF_sigma'])


Gregory Ashton's avatar
Gregory Ashton committed
188
class BaseSearchClass(object):
189
    """ The base search class providing parent methods to other searches """
Gregory Ashton's avatar
Gregory Ashton committed
190

191
    def _add_log_file(self):
Gregory Ashton's avatar
Gregory Ashton committed
192 193 194 195 196 197 198 199 200
        """ Log output to a file, requires class to have outdir and label """
        logfilename = '{}/{}.log'.format(self.outdir, self.label)
        fh = logging.FileHandler(logfilename)
        fh.setLevel(logging.INFO)
        fh.setFormatter(logging.Formatter(
            '%(asctime)s %(levelname)-8s: %(message)s',
            datefmt='%y-%m-%d %H:%M'))
        logging.getLogger().addHandler(fh)

201
    def _shift_matrix(self, n, dT):
Gregory Ashton's avatar
Gregory Ashton committed
202 203 204 205
        """ Generate the shift matrix

        Parameters
        ----------
206
        n : int
Gregory Ashton's avatar
Gregory Ashton committed
207
            The dimension of the shift-matrix to generate
208
        dT : float
Gregory Ashton's avatar
Gregory Ashton committed
209 210 211 212
            The time delta of the shift matrix

        Returns
        -------
213 214
        m : ndarray, shape (n,)
            The shift matrix.
Gregory Ashton's avatar
Gregory Ashton committed
215

216
        """
Gregory Ashton's avatar
Gregory Ashton committed
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        m = np.zeros((n, n))
        factorial = np.math.factorial
        for i in range(n):
            for j in range(n):
                if i == j:
                    m[i, j] = 1.0
                elif i > j:
                    m[i, j] = 0.0
                else:
                    if i == 0:
                        m[i, j] = 2*np.pi*float(dT)**(j-i) / factorial(j-i)
                    else:
                        m[i, j] = float(dT)**(j-i) / factorial(j-i)
        return m

232
    def _shift_coefficients(self, theta, dT):
Gregory Ashton's avatar
Gregory Ashton committed
233 234 235 236
        """ Shift a set of coefficients by dT

        Parameters
        ----------
237 238
        theta : array-like, shape (n,)
            Vector of the expansion coefficients to transform starting from the
Gregory Ashton's avatar
Gregory Ashton committed
239
            lowest degree e.g [phi, F0, F1,...].
240 241
        dT : float
            Difference between the two reference times as tref_new - tref_old.
Gregory Ashton's avatar
Gregory Ashton committed
242 243 244

        Returns
        -------
245 246
        theta_new : ndarray, shape (n,)
            Vector of the coefficients as evaluated as the new reference time.
Gregory Ashton's avatar
Gregory Ashton committed
247 248
        """
        n = len(theta)
249
        m = self._shift_matrix(n, dT)
Gregory Ashton's avatar
Gregory Ashton committed
250 251
        return np.dot(m, theta)

252
    def _calculate_thetas(self, theta, delta_thetas, tbounds, theta0_idx=0):
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
        """ Calculates the set of thetas given delta_thetas, the jumps

        This is used when generating data containing glitches or timing noise.
        Specifically, the source parameters of the signal are not constant in
        time, but jump by `delta_theta` at `tbounds`.

        Parameters
        ----------
        theta : array_like
            The source parameters of size (n,).
        delta_thetas : array_like
            The jumps in the source parameters of size (m, n) where m is the
            number of jumps.
        tbounds : array_like
            Time boundaries of the jumps of size (m+2,).
        theta0_idx : int
            Index of the segment for which the theta are defined.

        Returns
        -------
        ndarray
            The set of thetas, shape (m+1, n).

        """
Gregory Ashton's avatar
Gregory Ashton committed
277 278 279
        thetas = [theta]
        for i, dt in enumerate(delta_thetas):
            if i < theta0_idx:
280
                pre_theta_at_ith_glitch = self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
281 282
                    thetas[0], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch - dt
283
                thetas.insert(0, self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
284 285 286
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))

            elif i >= theta0_idx:
287
                pre_theta_at_ith_glitch = self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
288 289
                    thetas[i], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch + dt
290
                thetas.append(self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
291
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))
292
        self.thetas_at_tref = thetas
Gregory Ashton's avatar
Gregory Ashton committed
293 294
        return thetas

295
    def _get_list_of_matching_sfts(self):
296
        """ Returns a list of sfts matching the attribute sftfilepattern """
297 298
        sftfilepatternlist = np.atleast_1d(self.sftfilepattern.split(';'))
        matches = [glob.glob(p) for p in sftfilepatternlist]
299
        matches = [item for sublist in matches for item in sublist]
300 301 302 303
        if len(matches) > 0:
            return matches
        else:
            raise IOError('No sfts found matching {}'.format(
304
                self.sftfilepattern))
305

306 307
    def set_ephemeris_files(self, earth_ephem=None, sun_ephem=None):
        """ Set the ephemeris files to use for the Earth and Sun
Gregory Ashton's avatar
Gregory Ashton committed
308

309 310 311 312 313
        Parameters
        ----------
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
Gregory Ashton's avatar
Gregory Ashton committed
314

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
        Note: If not manually set, default values in ~/.pyfstat are used

        """

        earth_ephem_default, sun_ephem_default = (
                helper_functions.get_ephemeris_files())

        if earth_ephem is None:
            self.earth_ephem = earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = sun_ephem_default


class ComputeFstat(BaseSearchClass):
    """ Base class providing interface to `lalpulsar.ComputeFstat` """
Gregory Ashton's avatar
Gregory Ashton committed
330 331

    @helper_functions.initializer
332
    def __init__(self, tref, sftfilepattern=None, minStartTime=None,
David Keitel's avatar
David Keitel committed
333 334
                 maxStartTime=None, binary=False, BSGL=False,
                 transientWindowType=None, t0Band=None, tauBand=None,
335
                 tauMin=None,
336
                 dt0=None, dtau=None,
337
                 detectors=None, minCoverFreq=None, maxCoverFreq=None,
338
                 injectSources=None, injectSqrtSX=None, assumeSqrtSX=None,
339
                 SSBprec=None,
340
                 tCWFstatMapVersion='lal', cudaDeviceName=None):
Gregory Ashton's avatar
Gregory Ashton committed
341 342 343
        """
        Parameters
        ----------
344
        tref : int
Gregory Ashton's avatar
Gregory Ashton committed
345
            GPS seconds of the reference time.
346
        sftfilepattern : str
347 348
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
349
        minStartTime, maxStartTime : float GPStime
Gregory Ashton's avatar
Gregory Ashton committed
350 351
            Only use SFTs with timestemps starting from (including, excluding)
            this epoch
352
        binary : bool
Gregory Ashton's avatar
Gregory Ashton committed
353
            If true, search of binary parameters.
354
        BSGL : bool
Gregory Ashton's avatar
Gregory Ashton committed
355
            If true, compute the BSGL rather than the twoF value.
David Keitel's avatar
David Keitel committed
356 357 358
        transientWindowType: str
            If 'rect' or 'exp',
            allow for the Fstat to be computed over a transient range.
Gregory Ashton's avatar
Gregory Ashton committed
359 360
            ('none' instead of None explicitly calls the transient-window
            function, but with the full range, for debugging)
361 362
        t0Band, tauBand: int
            if >0, search t0 in (minStartTime,minStartTime+t0Band)
363
                   and tau in (tauMin,2*Tsft+tauBand).
364 365
            if =0, only compute CW Fstat with t0=minStartTime,
                   tau=maxStartTime-minStartTime.
366 367
        tauMin: int
            defaults to 2*Tsft
368 369 370
        dt0, dtau: int
            grid resolutions in transient start-time and duration,
            both default to Tsft
371
        detectors : str
Gregory Ashton's avatar
Gregory Ashton committed
372
            Two character reference to the data to use, specify None for no
373
            contraint. If multiple-separate by comma.
374
        minCoverFreq, maxCoverFreq : float
Gregory Ashton's avatar
Gregory Ashton committed
375 376 377
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
378
        injectSources : dict or str
379 380
            Either a dictionary of the values to inject, or a string pointing
            to the .cff file to inject
381
        injectSqrtSX :
382
            Not yet implemented
383
        assumeSqrtSX : float
384 385 386
            Don't estimate noise-floors but assume (stationary) per-IFO
            sqrt{SX} (if single value: use for all IFOs). If signal only,
            set sqrtSX=1
387
        SSBprec : int
388 389
            Flag to set the SSB calculation: 0=Newtonian, 1=relativistic,
            2=relativisitic optimised, 3=DMoff, 4=NO_SPIN
390 391 392
        tCWFstatMapVersion: str
            Choose between standard 'lal' implementation,
            'pycuda' for gpu, and some others for devel/debug.
393 394
        cudaDeviceName: str
            GPU name to be matched against drv.Device output.
Gregory Ashton's avatar
Gregory Ashton committed
395 396 397

        """

398
        self.set_ephemeris_files()
Gregory Ashton's avatar
Gregory Ashton committed
399 400
        self.init_computefstatistic_single_point()

401 402 403 404 405 406 407 408 409 410 411
    def _get_SFTCatalog(self):
        """ Load the SFTCatalog

        If sftfilepattern is specified, load the data. If not, attempt to
        create data on the fly.

        Returns
        -------
        SFTCatalog: lalpulsar.SFTCatalog

        """
Gregory Ashton's avatar
Gregory Ashton committed
412 413
        if hasattr(self, 'SFTCatalog'):
            return
414
        if self.sftfilepattern is None:
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
            for k in ['minStartTime', 'maxStartTime', 'detectors']:
                if getattr(self, k) is None:
                    raise ValueError('You must provide "{}" to injectSources'
                                     .format(k))
            C1 = getattr(self, 'injectSources', None) is None
            C2 = getattr(self, 'injectSqrtSX', None) is None
            if C1 and C2:
                raise ValueError('You must specify either one of injectSources'
                                 ' or injectSqrtSX')
            SFTCatalog = lalpulsar.SFTCatalog()
            Tsft = 1800
            Toverlap = 0
            Tspan = self.maxStartTime - self.minStartTime
            detNames = lal.CreateStringVector(
                *[d for d in self.detectors.split(',')])
            multiTimestamps = lalpulsar.MakeMultiTimestamps(
                self.minStartTime, Tspan, Tsft, Toverlap, detNames.length)
            SFTCatalog = lalpulsar.MultiAddToFakeSFTCatalog(
                SFTCatalog, detNames, multiTimestamps)
            return SFTCatalog

Gregory Ashton's avatar
Gregory Ashton committed
436 437
        logging.info('Initialising SFTCatalog')
        constraints = lalpulsar.SFTConstraints()
438
        if self.detectors:
439
            if ',' in self.detectors:
440 441
                logging.warning('Multiple detector selection not available,'
                                ' using all available data')
442 443
            else:
                constraints.detector = self.detectors
Gregory Ashton's avatar
Gregory Ashton committed
444 445 446 447 448
        if self.minStartTime:
            constraints.minStartTime = lal.LIGOTimeGPS(self.minStartTime)
        if self.maxStartTime:
            constraints.maxStartTime = lal.LIGOTimeGPS(self.maxStartTime)
        logging.info('Loading data matching pattern {}'.format(
449 450
                     self.sftfilepattern))
        SFTCatalog = lalpulsar.SFTdataFind(self.sftfilepattern, constraints)
451

Gregory Ashton's avatar
Gregory Ashton committed
452
        SFT_timestamps = [d.header.epoch for d in SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
453
        self.SFT_timestamps = [float(s) for s in SFT_timestamps]
454 455
        if len(SFT_timestamps) == 0:
            raise ValueError('Failed to load any data')
Gregory Ashton's avatar
Gregory Ashton committed
456 457 458 459 460
        if args.quite is False and args.no_interactive is False:
            try:
                from bashplotlib.histogram import plot_hist
                print('Data timestamps histogram:')
                plot_hist(SFT_timestamps, height=5, bincount=50)
Gregory Ashton's avatar
Gregory Ashton committed
461
            except ImportError:
Gregory Ashton's avatar
Gregory Ashton committed
462
                pass
463

464
        cl_tconv1 = 'lalapps_tconvert {}'.format(int(SFT_timestamps[0]))
465 466
        output = helper_functions.run_commandline(cl_tconv1,
                                                  log_level=logging.DEBUG)
467 468
        tconvert1 = output.rstrip('\n')
        cl_tconv2 = 'lalapps_tconvert {}'.format(int(SFT_timestamps[-1]))
469 470
        output = helper_functions.run_commandline(cl_tconv2,
                                                  log_level=logging.DEBUG)
471
        tconvert2 = output.rstrip('\n')
Gregory Ashton's avatar
Gregory Ashton committed
472 473
        logging.info('Data spans from {} ({}) to {} ({})'.format(
            int(SFT_timestamps[0]),
474
            tconvert1,
Gregory Ashton's avatar
Gregory Ashton committed
475
            int(SFT_timestamps[-1]),
476
            tconvert2))
477 478 479 480 481 482 483 484 485 486 487 488 489

        if self.minStartTime is None:
            self.minStartTime = int(SFT_timestamps[0])
        if self.maxStartTime is None:
            self.maxStartTime = int(SFT_timestamps[-1])

        detector_names = list(set([d.header.name for d in SFTCatalog.data]))
        self.detector_names = detector_names
        if len(detector_names) == 0:
            raise ValueError('No data loaded.')
        logging.info('Loaded {} data files from detectors {}'.format(
            len(SFT_timestamps), detector_names))

490
        return SFTCatalog
Gregory Ashton's avatar
Gregory Ashton committed
491 492 493 494

    def init_computefstatistic_single_point(self):
        """ Initilisation step of run_computefstatistic for a single point """

495
        SFTCatalog = self._get_SFTCatalog()
Gregory Ashton's avatar
Gregory Ashton committed
496 497 498 499 500 501

        logging.info('Initialising ephems')
        ephems = lalpulsar.InitBarycenter(self.earth_ephem, self.sun_ephem)

        logging.info('Initialising FstatInput')
        dFreq = 0
David Keitel's avatar
David Keitel committed
502
        if self.transientWindowType:
Gregory Ashton's avatar
Gregory Ashton committed
503 504 505 506 507 508
            self.whatToCompute = lalpulsar.FSTATQ_ATOMS_PER_DET
        else:
            self.whatToCompute = lalpulsar.FSTATQ_2F

        FstatOAs = lalpulsar.FstatOptionalArgs()
        FstatOAs.randSeed = lalpulsar.FstatOptionalArgsDefaults.randSeed
509 510 511 512 513
        if self.SSBprec:
            logging.info('Using SSBprec={}'.format(self.SSBprec))
            FstatOAs.SSBprec = self.SSBprec
        else:
            FstatOAs.SSBprec = lalpulsar.FstatOptionalArgsDefaults.SSBprec
Gregory Ashton's avatar
Gregory Ashton committed
514 515 516
        FstatOAs.Dterms = lalpulsar.FstatOptionalArgsDefaults.Dterms
        FstatOAs.runningMedianWindow = lalpulsar.FstatOptionalArgsDefaults.runningMedianWindow
        FstatOAs.FstatMethod = lalpulsar.FstatOptionalArgsDefaults.FstatMethod
517 518 519 520 521 522 523 524
        if self.assumeSqrtSX is None:
            FstatOAs.assumeSqrtSX = lalpulsar.FstatOptionalArgsDefaults.assumeSqrtSX
        else:
            mnf = lalpulsar.MultiNoiseFloor()
            assumeSqrtSX = np.atleast_1d(self.assumeSqrtSX)
            mnf.sqrtSn[:len(assumeSqrtSX)] = assumeSqrtSX
            mnf.length = len(assumeSqrtSX)
            FstatOAs.assumeSqrtSX = mnf
Gregory Ashton's avatar
Gregory Ashton committed
525 526 527
        FstatOAs.prevInput = lalpulsar.FstatOptionalArgsDefaults.prevInput
        FstatOAs.collectTiming = lalpulsar.FstatOptionalArgsDefaults.collectTiming

Gregory Ashton's avatar
Gregory Ashton committed
528
        if hasattr(self, 'injectSources') and type(self.injectSources) == dict:
Gregory Ashton's avatar
Gregory Ashton committed
529 530 531 532 533 534 535 536 537 538
            logging.info('Injecting source with params: {}'.format(
                self.injectSources))
            PPV = lalpulsar.CreatePulsarParamsVector(1)
            PP = PPV.data[0]
            PP.Amp.h0 = self.injectSources['h0']
            PP.Amp.cosi = self.injectSources['cosi']
            PP.Amp.phi0 = self.injectSources['phi0']
            PP.Amp.psi = self.injectSources['psi']
            PP.Doppler.Alpha = self.injectSources['Alpha']
            PP.Doppler.Delta = self.injectSources['Delta']
Gregory Ashton's avatar
Gregory Ashton committed
539 540 541 542 543 544
            if 'fkdot' in self.injectSources:
                PP.Doppler.fkdot = np.array(self.injectSources['fkdot'])
            else:
                PP.Doppler.fkdot = np.zeros(lalpulsar.PULSAR_MAX_SPINS)
                for i, key in enumerate(['F0', 'F1', 'F2']):
                    PP.Doppler.fkdot[i] = self.injectSources[key]
Gregory Ashton's avatar
Gregory Ashton committed
545 546 547 548
            PP.Doppler.refTime = self.tref
            if 't0' not in self.injectSources:
                PP.Transient.type = lalpulsar.TRANSIENT_NONE
            FstatOAs.injectSources = PPV
Gregory Ashton's avatar
Gregory Ashton committed
549
        elif hasattr(self, 'injectSources') and type(self.injectSources) == str:
550 551 552 553
            logging.info('Injecting source from param file: {}'.format(
                self.injectSources))
            PPV = lalpulsar.PulsarParamsFromFile(self.injectSources, self.tref)
            FstatOAs.injectSources = PPV
Gregory Ashton's avatar
Gregory Ashton committed
554 555
        else:
            FstatOAs.injectSources = lalpulsar.FstatOptionalArgsDefaults.injectSources
556 557 558 559
        if hasattr(self, 'injectSqrtSX') and self.injectSqrtSX is not None:
            raise ValueError('injectSqrtSX not implemented')
        else:
            FstatOAs.InjectSqrtSX = lalpulsar.FstatOptionalArgsDefaults.injectSqrtSX
Gregory Ashton's avatar
Gregory Ashton committed
560
        if self.minCoverFreq is None or self.maxCoverFreq is None:
561
            fAs = [d.header.f0 for d in SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
562
            fBs = [d.header.f0 + (d.numBins-1)*d.header.deltaF
563
                   for d in SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
564 565 566 567 568 569
            self.minCoverFreq = np.min(fAs) + 0.5
            self.maxCoverFreq = np.max(fBs) - 0.5
            logging.info('Min/max cover freqs not provided, using '
                         '{} and {}, est. from SFTs'.format(
                             self.minCoverFreq, self.maxCoverFreq))

570
        self.FstatInput = lalpulsar.CreateFstatInput(SFTCatalog,
Gregory Ashton's avatar
Gregory Ashton committed
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
                                                     self.minCoverFreq,
                                                     self.maxCoverFreq,
                                                     dFreq,
                                                     ephems,
                                                     FstatOAs
                                                     )

        logging.info('Initialising PulsarDoplerParams')
        PulsarDopplerParams = lalpulsar.PulsarDopplerParams()
        PulsarDopplerParams.refTime = self.tref
        PulsarDopplerParams.Alpha = 1
        PulsarDopplerParams.Delta = 1
        PulsarDopplerParams.fkdot = np.array([0, 0, 0, 0, 0, 0, 0])
        self.PulsarDopplerParams = PulsarDopplerParams

        logging.info('Initialising FstatResults')
        self.FstatResults = lalpulsar.FstatResults()

        if self.BSGL:
            if len(self.detector_names) < 2:
591
                raise ValueError("Can't use BSGL with single detectors data")
Gregory Ashton's avatar
Gregory Ashton committed
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
            else:
                logging.info('Initialising BSGL')

            # Tuning parameters - to be reviewed
            numDetectors = 2
            if hasattr(self, 'nsegs'):
                p_val_threshold = 1e-6
                Fstar0s = np.linspace(0, 1000, 10000)
                p_vals = scipy.special.gammaincc(2*self.nsegs, Fstar0s)
                Fstar0 = Fstar0s[np.argmin(np.abs(p_vals - p_val_threshold))]
                if Fstar0 == Fstar0s[-1]:
                    raise ValueError('Max Fstar0 exceeded')
            else:
                Fstar0 = 15.
            logging.info('Using Fstar0 of {:1.2f}'.format(Fstar0))
            oLGX = np.zeros(10)
            oLGX[:numDetectors] = 1./numDetectors
            self.BSGLSetup = lalpulsar.CreateBSGLSetup(numDetectors,
                                                       Fstar0,
                                                       oLGX,
                                                       True,
                                                       1)
            self.twoFX = np.zeros(10)
            self.whatToCompute = (self.whatToCompute +
                                  lalpulsar.FSTATQ_2F_PER_DET)

David Keitel's avatar
David Keitel committed
618
        if self.transientWindowType:
Gregory Ashton's avatar
Gregory Ashton committed
619 620
            logging.info('Initialising transient parameters')
            self.windowRange = lalpulsar.transientWindowRange_t()
David Keitel's avatar
David Keitel committed
621 622 623 624 625 626
            transientWindowTypes = {'none': lalpulsar.TRANSIENT_NONE,
                                    'rect': lalpulsar.TRANSIENT_RECTANGULAR,
                                    'exp':  lalpulsar.TRANSIENT_EXPONENTIAL}
            if self.transientWindowType in transientWindowTypes:
                self.windowRange.type = transientWindowTypes[self.transientWindowType]
            else:
Gregory Ashton's avatar
Gregory Ashton committed
627 628 629 630
                raise ValueError(
                    'Unknown window-type ({}) passed as input, [{}] allows.'
                    .format(self.transientWindowType,
                            ', '.join(transientWindowTypes)))
David Keitel's avatar
David Keitel committed
631

632
            # default spacing
David Keitel's avatar
David Keitel committed
633
            self.Tsft = int(1.0/SFTCatalog.data[0].header.deltaF)
634 635 636
            self.windowRange.dt0 = self.Tsft
            self.windowRange.dtau = self.Tsft

David Keitel's avatar
David Keitel committed
637 638
            # special treatment of window_type = none
            # ==> replace by rectangular window spanning all the data
639 640
            if self.windowRange.type == lalpulsar.TRANSIENT_NONE:
                self.windowRange.t0 = int(self.minStartTime)
Gregory Ashton's avatar
Gregory Ashton committed
641
                self.windowRange.t0Band = 0
642
                self.windowRange.tau = int(self.maxStartTime-self.minStartTime)
David Keitel's avatar
David Keitel committed
643
                self.windowRange.tauBand = 0
Gregory Ashton's avatar
Gregory Ashton committed
644
            else:  # user-set bands and spacings
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
                if self.t0Band is None:
                    self.windowRange.t0Band = 0
                else:
                    if not isinstance(self.t0Band, int):
                        logging.warn('Casting non-integer t0Band={} to int...'
                                     .format(self.t0Band))
                        self.t0Band = int(self.t0Band)
                    self.windowRange.t0Band = self.t0Band
                    if self.dt0:
                        self.windowRange.dt0 = self.dt0
                if self.tauBand is None:
                    self.windowRange.tauBand = 0
                else:
                    if not isinstance(self.tauBand, int):
                        logging.warn('Casting non-integer tauBand={} to int...'
                                     .format(self.tauBand))
                        self.tauBand = int(self.tauBand)
                    self.windowRange.tauBand = self.tauBand
                    if self.dtau:
                        self.windowRange.dtau = self.dtau
665 666 667 668 669 670 671 672
                    if self.tauMin is None:
                        self.windowRange.tau = int(2*self.Tsft)
                    else:
                        if not isinstance(self.tauMin, int):
                            logging.warn('Casting non-integer tauMin={} to int...'
                                         .format(self.tauMin))
                            self.tauMin = int(self.tauMin)
                        self.windowRange.tau = self.tauMin
Gregory Ashton's avatar
Gregory Ashton committed
673

David Keitel's avatar
David Keitel committed
674
            logging.info('Initialising transient FstatMap features...')
Gregory Ashton's avatar
Gregory Ashton committed
675 676 677
            self.tCWFstatMapFeatures, self.gpu_context = (
                tcw.init_transient_fstat_map_features(
                    self.tCWFstatMapVersion == 'pycuda', self.cudaDeviceName))
678

679 680 681
    def get_fullycoherent_twoF(self, tstart, tend, F0, F1, F2, Alpha, Delta,
                               asini=None, period=None, ecc=None, tp=None,
                               argp=None):
Gregory Ashton's avatar
Gregory Ashton committed
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
        """ Returns twoF or ln(BSGL) fully-coherently at a single point """
        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
                               1,
                               self.whatToCompute
                               )

David Keitel's avatar
David Keitel committed
700
        if not self.transientWindowType:
Gregory Ashton's avatar
Gregory Ashton committed
701 702 703 704 705 706 707 708 709 710 711
            if self.BSGL is False:
                return self.FstatResults.twoF[0]

            twoF = np.float(self.FstatResults.twoF[0])
            self.twoFX[0] = self.FstatResults.twoFPerDet(0)
            self.twoFX[1] = self.FstatResults.twoFPerDet(1)
            log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
                                               self.BSGLSetup)
            return log10_BSGL/np.log10(np.exp(1))

        self.windowRange.t0 = int(tstart)  # TYPE UINT4
David Keitel's avatar
David Keitel committed
712 713 714 715
        if self.windowRange.tauBand == 0:
            # true single-template search also in transient params:
            # actual (t0,tau) window was set with tstart, tend before
            self.windowRange.tau = int(tend - tstart)  # TYPE UINT4
Gregory Ashton's avatar
Gregory Ashton committed
716

717
        self.FstatMap, self.timingFstatMap = tcw.call_compute_transient_fstat_map(
Gregory Ashton's avatar
Gregory Ashton committed
718 719
            self.tCWFstatMapVersion, self.tCWFstatMapFeatures,
            self.FstatResults.multiFatoms[0], self.windowRange)
720 721 722 723
        if self.tCWFstatMapVersion == 'lal':
            F_mn = self.FstatMap.F_mn.data
        else:
            F_mn = self.FstatMap.F_mn
Gregory Ashton's avatar
Gregory Ashton committed
724

725
        twoF = 2*np.max(F_mn)
Gregory Ashton's avatar
Gregory Ashton committed
726
        if self.BSGL is False:
727 728 729 730
            if np.isnan(twoF):
                return 0
            else:
                return twoF
Gregory Ashton's avatar
Gregory Ashton committed
731 732 733 734 735 736 737 738 739 740

        FstatResults_single = copy.copy(self.FstatResults)
        FstatResults_single.lenth = 1
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
        FS0 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
        FS1 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)

741 742 743 744 745
        # for now, use the Doppler parameter with
        # multi-detector F maximised over t0,tau
        # to return BSGL
        # FIXME: should we instead compute BSGL over the whole F_mn
        # and return the maximum of that?
746
        idx_maxTwoF = np.argmax(F_mn)
747 748 749

        self.twoFX[0] = 2*FS0.F_mn.data[idx_maxTwoF]
        self.twoFX[1] = 2*FS1.F_mn.data[idx_maxTwoF]
Gregory Ashton's avatar
Gregory Ashton committed
750
        log10_BSGL = lalpulsar.ComputeBSGL(
751
                twoF, self.twoFX, self.BSGLSetup)
Gregory Ashton's avatar
Gregory Ashton committed
752 753 754 755 756 757

        return log10_BSGL/np.log10(np.exp(1))

    def calculate_twoF_cumulative(self, F0, F1, F2, Alpha, Delta, asini=None,
                                  period=None, ecc=None, tp=None, argp=None,
                                  tstart=None, tend=None, npoints=1000,
758 759
                                  ):
        """ Calculate the cumulative twoF along the obseration span
760 761 762

        Parameters
        ----------
763 764
        F0, F1, F2, Alpha, Delta: float
            Parameters at which to compute the cumulative twoF
765 766
        asini, period, ecc, tp, argp: float, optional
            Binary parameters at which to compute the cumulative 2F
767 768 769 770 771 772
        tstart, tend: int
            GPS times to restrict the range of data used - automatically
            truncated to the span of data available
        npoints: int
            Number of points to compute twoF along the span

773 774 775
        Notes
        -----
        The minimum cumulatibe twoF is hard-coded to be computed over
776 777 778 779 780 781
        the first 6 hours from either the first timestampe in the data (if
        tstart is smaller than it) or tstart.

        """
        SFTminStartTime = self.SFT_timestamps[0]
        SFTmaxStartTime = self.SFT_timestamps[-1]
Gregory Ashton's avatar
Gregory Ashton committed
782
        tstart = np.max([SFTminStartTime, tstart])
783 784 785
        min_tau = np.max([SFTminStartTime - tstart, 0]) + 3600*6
        max_tau = SFTmaxStartTime - tstart
        taus = np.linspace(min_tau, max_tau, npoints)
Gregory Ashton's avatar
Gregory Ashton committed
786
        twoFs = []
David Keitel's avatar
David Keitel committed
787 788 789
        if not self.transientWindowType:
            # still call the transient-Fstat-map function, but using the full range
            self.transientWindowType = 'none'
Gregory Ashton's avatar
Gregory Ashton committed
790 791
            self.init_computefstatistic_single_point()
        for tau in taus:
792
            detstat = self.get_fullycoherent_twoF(
Gregory Ashton's avatar
Gregory Ashton committed
793 794
                tstart=tstart, tend=tstart+tau, F0=F0, F1=F1, F2=F2,
                Alpha=Alpha, Delta=Delta, asini=asini, period=period, ecc=ecc,
795 796
                tp=tp, argp=argp)
            twoFs.append(detstat)
Gregory Ashton's avatar
Gregory Ashton committed
797 798 799

        return taus, np.array(twoFs)

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
    def _calculate_predict_fstat_cumulative(self, N, label=None, outdir=None,
                                            IFO=None, pfs_input=None):
        """ Calculates the predicted 2F and standard deviation cumulatively

        Parameters
        ----------
        N : int
            Number of timesteps to use between minStartTime and maxStartTime.
        label, outdir : str, optional
            The label and directory to read in the .loudest file from
        IFO : str
        pfs_input : dict, optional
            Input kwargs to predict_fstat (alternative to giving label and
            outdir).

        Returns
        -------
        times, pfs, pfs_sigma : ndarray, size (N,)

        """
Gregory Ashton's avatar
Gregory Ashton committed
820 821 822 823 824

        if pfs_input is None:
            if os.path.isfile('{}/{}.loudest'.format(outdir, label)) is False:
                raise ValueError(
                    'Need a loudest file to add the predicted Fstat')
825
            loudest = read_par(label=label, outdir=outdir, suffix='loudest')
Gregory Ashton's avatar
Gregory Ashton committed
826 827
            pfs_input = {key: loudest[key] for key in
                         ['h0', 'cosi', 'psi', 'Alpha', 'Delta', 'Freq']}
828 829 830
        times = np.linspace(self.minStartTime, self.maxStartTime, N+1)[1:]
        times = np.insert(times, 0, self.minStartTime + 86400/2.)
        out = [predict_fstat(minStartTime=self.minStartTime, maxStartTime=t,
831
                             sftfilepattern=self.sftfilepattern, IFO=IFO,
832 833 834 835
                             **pfs_input) for t in times]
        pfs, pfs_sigma = np.array(out).T
        return times, pfs, pfs_sigma

836 837
    def plot_twoF_cumulative(self, label, outdir, add_pfs=False, N=15,
                             injectSources=None, ax=None, c='k', savefig=True,
838
                             title=None, plt_label=None, **kwargs):
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
        """ Plot the twoF value cumulatively

        Parameters
        ----------
        label, outdir : str
        add_pfs : bool
            If true, plot the predicted 2F and standard deviation
        N : int
            Number of points to use
        injectSources : dict
            See `ComputeFstat`
        ax : matplotlib.axes._subplots_AxesSubplot, optional
            Axis to add the plot to.
        c : str
            Colour
        savefig : bool
            If true, save the figure in outdir
856 857
        title, plt_label: str
            Figure title and label
858 859 860 861 862 863 864 865 866

        Returns
        -------
        tauS, tauF : ndarray shape (N,)
            If savefig, the times and twoF (cumulative) values
        ax : matplotlib.axes._subplots_AxesSubplot, optional
            If savefig is False

        """
Gregory Ashton's avatar
Gregory Ashton committed
867 868
        if ax is None:
            fig, ax = plt.subplots()
Gregory Ashton's avatar
Gregory Ashton committed
869 870 871 872 873 874 875
        if injectSources:
            pfs_input = dict(
                h0=injectSources['h0'], cosi=injectSources['cosi'],
                psi=injectSources['psi'], Alpha=injectSources['Alpha'],
                Delta=injectSources['Delta'], Freq=injectSources['fkdot'][0])
        else:
            pfs_input = None
876 877

        taus, twoFs = self.calculate_twoF_cumulative(**kwargs)
878
        ax.plot(taus/86400., twoFs, label=plt_label, color=c)
879
        if len(self.detector_names) > 1:
880 881
            detector_names = self.detector_names
            detectors = self.detectors
882 883 884 885
            for d in self.detector_names:
                self.detectors = d
                self.init_computefstatistic_single_point()
                taus, twoFs = self.calculate_twoF_cumulative(**kwargs)
886 887 888 889 890 891
                ax.plot(taus/86400., twoFs, label='{}'.format(d),
                        color=detector_colors[d.lower()])
            self.detectors = detectors
            self.detector_names = detector_names

        if add_pfs:
892 893
            times, pfs, pfs_sigma = self._calculate_predict_fstat_cumulative(
                N=N, label=label, outdir=outdir, pfs_input=pfs_input)
894 895
            ax.fill_between(
                (times-self.minStartTime)/86400., pfs-pfs_sigma, pfs+pfs_sigma,
Gregory Ashton's avatar
Gregory Ashton committed
896
                color=c,
897 898
                label=(r'Predicted $\langle 2\mathcal{F} '
                       r'\rangle\pm $ 1-$\sigma$ band'),
899 900 901
                zorder=-10, alpha=0.2)
            if len(self.detector_names) > 1:
                for d in self.detector_names:
902 903 904 905
                    out = self._calculate_predict_fstat_cumulative(
                        N=N, label=label, outdir=outdir, IFO=d.upper(),
                        pfs_input=pfs_input)
                    times, pfs, pfs_sigma = out
906 907 908 909 910 911 912 913
                    ax.fill_between(
                        (times-self.minStartTime)/86400., pfs-pfs_sigma,
                        pfs+pfs_sigma, color=detector_colors[d.lower()],
                        alpha=0.5,
                        label=(
                            'Predicted $2\mathcal{{F}}$ 1-$\sigma$ band ({})'
                            .format(d.upper())),
                        zorder=-10)
914

Gregory Ashton's avatar
Gregory Ashton committed
915 916 917 918 919 920 921
        ax.set_xlabel(r'Days from $t_{{\rm start}}={:.0f}$'.format(
            kwargs['tstart']))
        if self.BSGL:
            ax.set_ylabel(r'$\log_{10}(\mathrm{BSGL})_{\rm cumulative}$')
        else:
            ax.set_ylabel(r'$\widetilde{2\mathcal{F}}_{\rm cumulative}$')
        ax.set_xlim(0, taus[-1]/86400)
922 923
        if plt_label:
            ax.legend(frameon=False, loc=2, fontsize=6)
Gregory Ashton's avatar
Gregory Ashton committed
924 925 926 927 928 929 930 931 932
        if title:
            ax.set_title(title)
        if savefig:
            plt.tight_layout()
            plt.savefig('{}/{}_twoFcumulative.png'.format(outdir, label))
            return taus, twoFs
        else:
            return ax

933 934 935 936 937 938 939 940 941 942 943 944
    def get_full_CFSv2_output(self, tstart, tend, F0, F1, F2, Alpha, Delta,
                              tref):
        """ Basic wrapper around CFSv2 to get the full (h0..) output """
        cl_CFSv2 = "lalapps_ComputeFstatistic_v2 --minStartTime={} --maxStartTime={} --Freq={} --f1dot={} --f2dot={} --Alpha={} --Delta={} --refTime={} --DataFiles='{}' --outputLoudest='{}' --ephemEarth={} --ephemSun={}"
        LoudestFile = "loudest.temp"
        helper_functions.run_commandline(cl_CFSv2.format(
            tstart, tend, F0, F1, F2, Alpha, Delta, tref, self.sftfilepattern,
            LoudestFile, self.earth_ephem, self.sun_ephem))
        loudest = read_par(LoudestFile, return_type='dict')
        os.remove(LoudestFile)
        return loudest

945 946 947 948 949 950 951 952 953 954 955 956
    def write_atoms_to_file(self, fnamebase=''):
        multiFatoms = getattr(self.FstatResults, 'multiFatoms', None)
        if multiFatoms and multiFatoms[0]:
            dopplerName = lalpulsar.PulsarDopplerParams2String ( self.PulsarDopplerParams )
            #fnameAtoms = os.path.join(self.outdir,'Fstatatoms_%s.dat' % dopplerName)
            fnameAtoms = fnamebase + '_Fstatatoms_%s.dat' % dopplerName
            fo = lal.FileOpen(fnameAtoms, 'w')
            lalpulsar.write_MultiFstatAtoms_to_fp ( fo, multiFatoms[0] )
            del fo # instead of lal.FileClose() which is not SWIG-exported
        else:
            raise RuntimeError('Cannot print atoms vector to file: no FstatResults.multiFatoms, or it is None!')

Gregory Ashton's avatar
Gregory Ashton committed
957

958 959 960 961 962 963 964 965 966
    def __del__(self):
        """
        In pyCuda case without autoinit,
        we need to make sure the context is removed at the end
        """
        if hasattr(self,'gpu_context') and self.gpu_context:
            self.gpu_context.detach()


967
class SemiCoherentSearch(ComputeFstat):
Gregory Ashton's avatar
Gregory Ashton committed
968 969 970
    """ A semi-coherent search """

    @helper_functions.initializer
971
    def __init__(self, label, outdir, tref, nsegs=None, sftfilepattern=None,
Gregory Ashton's avatar
Gregory Ashton committed
972 973
                 binary=False, BSGL=False, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
974 975
                 detectors=None, injectSources=None, assumeSqrtSX=None,
                 SSBprec=None):
Gregory Ashton's avatar
Gregory Ashton committed
976 977 978 979 980 981 982 983 984
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, and start and end of the data.
        nsegs: int
            The (fixed) number of segments
985 986 987
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
988 989 990 991 992

        For all other parameters, see pyfstat.ComputeFStat.
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
993
        self.set_ephemeris_files()
David Keitel's avatar
David Keitel committed
994 995 996
        self.transientWindowType = 'rect'
        self.t0Band  = None
        self.tauBand = None
997
        self.tCWFstatMapVersion = 'lal'
998
        self.cudaDeviceName = None
Gregory Ashton's avatar
Gregory Ashton committed
999 1000 1001 1002 1003 1004 1005
        self.init_computefstatistic_single_point()
        self.init_semicoherent_parameters()

    def init_semicoherent_parameters(self):
        logging.info(('Initialising semicoherent parameters from {} to {} in'
                      ' {} segments').format(
            self.minStartTime, self.maxStartTime, self.nsegs))
David Keitel's avatar
David Keitel committed
1006
        self.transientWindowType = 'rect'
Gregory Ashton's avatar
Gregory Ashton committed
1007 1008 1009
        self.whatToCompute = lalpulsar.FSTATQ_2F+lalpulsar.FSTATQ_ATOMS_PER_DET
        self.tboundaries = np.linspace(self.minStartTime, self.maxStartTime,
                                       self.nsegs+1)
1010
        self.Tcoh = self.tboundaries[1] - self.tboundaries[0]
Gregory Ashton's avatar
Gregory Ashton committed
1011

1012 1013 1014 1015 1016 1017 1018 1019 1020
        if hasattr(self, 'SFT_timestamps'):
            if self.tboundaries[0] < self.SFT_timestamps[0]:
                logging.debug(
                    'Semi-coherent start time {} before first SFT timestamp {}'
                    .format(self.tboundaries[0], self.SFT_timestamps[0]))
            if self.tboundaries[-1] > self.SFT_timestamps[-1]:
                logging.debug(
                    'Semi-coherent end time {} after last SFT timestamp {}'
                    .format(self.tboundaries[-1], self.SFT_timestamps[-1]))
Gregory Ashton's avatar
Gregory Ashton committed
1021

1022
    def get_semicoherent_twoF(
1023 1024 1025 1026 1027
            self, F0, F1, F2, Alpha, Delta, asini=None,
            period=None, ecc=None, tp=None, argp=None,
            record_segments=False):
        """ Returns twoF or ln(BSGL) semi-coherently at a single point """

Gregory Ashton's avatar
Gregory Ashton committed
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp