mcmc_based_searches.py 90.1 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" Searches using MCMC-based methods """
2
from __future__ import division, absolute_import, print_function
Gregory Ashton's avatar
Gregory Ashton committed
3

4
import sys
Gregory Ashton's avatar
Gregory Ashton committed
5
import os
6
import copy
Gregory Ashton's avatar
Gregory Ashton committed
7
import logging
8
from collections import OrderedDict
9
import subprocess
10
11
12
13
14
15
16
17

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import emcee
import corner
import dill as pickle

18
import pyfstat.core as core
19
20
from pyfstat.core import tqdm, args, read_par
import pyfstat.optimal_setup_functions as optimal_setup_functions
21
import pyfstat.helper_functions as helper_functions
22
23


24
class MCMCSearch(core.BaseSearchClass):
Gregory Ashton's avatar
Gregory Ashton committed
25
    """MCMC search using ComputeFstat
26
27
28
29
30
31
32
33
34
35
36
37

    Parameters
    ----------
    label, outdir: str
        A label and directory to read/write data from/to
    theta_prior: dict
        Dictionary of priors and fixed values for the search parameters.
        For each parameters (key of the dict), if it is to be held fixed
        the value should be the constant float, if it is be searched, the
        value should be a dictionary of the prior.
    tref, minStartTime, maxStartTime: int
        GPS seconds of the reference time, start time and end time
Gregory Ashton's avatar
Gregory Ashton committed
38
39
40
41
42
43
    sftfilepattern: str
        Pattern to match SFTs using wildcards (*?) and ranges [0-9];
        mutiple patterns can be given separated by colons.
    detectors: str
        Two character reference to the detectors to use, specify None for no
        contraint and comma separate for multiple references.
44
45
46
47
48
49
50
51
52
53
    nsteps: list (m,)
        List specifying the number of steps to take, the last two entries
        give the nburn and nprod of the 'production' run, all entries
        before are for iterative initialisation steps (usually just one)
        e.g. [1000, 1000, 500].
    nwalkers, ntemps: int,
        The number of walkers and temperates to use in the parallel
        tempered PTSampler.
    log10temperature_min float < 0
        The  log_10(tmin) value, the set of betas passed to PTSampler are
Gregory Ashton's avatar
Gregory Ashton committed
54
55
        generated from `np.logspace(0, log10temperature_min, ntemps)`.
    theta_initial: dict, array, (None)
56
57
        A dictionary of distribution about which to distribute the
        initial walkers about
Gregory Ashton's avatar
Gregory Ashton committed
58
    rhohatmax: float,
59
60
61
        Upper bound for the SNR scale parameter (required to normalise the
        Bayes factor) - this needs to be carefully set when using the
        evidence.
Gregory Ashton's avatar
Gregory Ashton committed
62
    binary: bool
63
        If true, search over binary parameters
Gregory Ashton's avatar
Gregory Ashton committed
64
65
66
67
    BSGL: bool
        If true, use the BSGL statistic
    SSBPrec: int
        SSBPrec (SSB precision) to use when calling ComputeFstat
68
69
70
    minCoverFreq, maxCoverFreq: float
        Minimum and maximum instantaneous frequency which will be covered
        over the SFT time span as passed to CreateFstatInput
Gregory Ashton's avatar
Gregory Ashton committed
71
72
73
74
75
    injectSources: dict
        If given, inject these properties into the SFT files before running
        the search
    assumeSqrtSX: float
        Don't estimate noise-floors, but assume (stationary) per-IFO sqrt{SX}
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

    Attributes
    ----------
    symbol_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), to Latex math
        symbols for plots
    unit_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), and the
        units (i.e. `Hz`)
    transform_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), where the key is
        itself a dictionary which can item `multiplier`, `subtractor`, or
        `unit` by which to transform by and update the units.

    """
91
92

    symbol_dictionary = dict(
93
        F0='$f$', F1='$\dot{f}$', F2='$\ddot{f}$', Alpha=r'$\alpha$',
94
95
        Delta='$\delta$', asini='asini', period='P', ecc='ecc', tp='tp',
        argp='argp')
96
    unit_dictionary = dict(
97
98
        F0='Hz', F1='Hz/s', F2='Hz/s$^2$', Alpha=r'rad', Delta='rad',
        asini='', period='s', ecc='', tp='', argp='')
99
    transform_dictionary = {}
100

Gregory Ashton's avatar
Gregory Ashton committed
101
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
102
    def __init__(self, label, outdir, theta_prior, tref, minStartTime,
Gregory Ashton's avatar
Gregory Ashton committed
103
104
105
106
107
                 maxStartTime, sftfilepattern=None, detectors=None,
                 nsteps=[100, 100], nwalkers=100, ntemps=1,
                 log10temperature_min=-5, theta_initial=None,
                 scatter_val=1e-10, rhohatmax=1000, binary=False, BSGL=False,
                 SSBprec=None, minCoverFreq=None, maxCoverFreq=None,
108
                 injectSources=None, assumeSqrtSX=None):
109

Gregory Ashton's avatar
Gregory Ashton committed
110
111
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
112
        self._add_log_file()
113
        logging.info('Set-up MCMC search for model {}'.format(self.label))
114
115
        if sftfilepattern:
            logging.info('Using data {}'.format(self.sftfilepattern))
116
        else:
117
            logging.info('No sftfilepattern given')
118
119
        if injectSources:
            logging.info('Inject sources: {}'.format(injectSources))
120
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
121
        self._unpack_input_theta()
122
        self.ndim = len(self.theta_keys)
123
124
125
126
        if self.log10temperature_min:
            self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
        else:
            self.betas = None
127

128
129
130
        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

131
        self._set_likelihoodcoef()
132
        self._log_input()
133
134
135

    def _set_likelihoodcoef(self):
        self.likelihoodcoef = np.log(70./self.rhohatmax**4)
136

137
    def _log_input(self):
138
        logging.info('theta_prior = {}'.format(self.theta_prior))
139
        logging.info('nwalkers={}'.format(self.nwalkers))
140
141
142
143
        logging.info('scatter_val = {}'.format(self.scatter_val))
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
        logging.info('log10temperature_min = {}'.format(
144
            self.log10temperature_min))
145

146
    def _initiate_search_object(self):
147
        logging.info('Setting up search object')
148
        self.search = core.ComputeFstat(
149
            tref=self.tref, sftfilepattern=self.sftfilepattern,
150
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
151
            detectors=self.detectors, BSGL=self.BSGL, transient=False,
152
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
153
            binary=self.binary, injectSources=self.injectSources,
154
            assumeSqrtSX=self.assumeSqrtSX, SSBprec=self.SSBprec)
155
156

    def logp(self, theta_vals, theta_prior, theta_keys, search):
157
        H = [self._generic_lnprior(**theta_prior[key])(p) for p, key in
158
159
160
161
162
163
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
164
165
        FS = search.compute_fullycoherent_det_stat_single_point(
            *self.fixed_theta)
166
        return FS + self.likelihoodcoef
167

168
    def _unpack_input_theta(self):
169
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']
170
171
172
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
173
174
        full_theta_keys_copy = copy.copy(full_theta_keys)

175
176
        full_theta_symbols = ['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                              r'$\delta$']
177
178
        if self.binary:
            full_theta_symbols += [
179
                'asini', 'period', 'ecc', 'tp', 'argp']
180

181
182
        self.theta_keys = []
        fixed_theta_dict = {}
183
        for key, val in self.theta_prior.iteritems():
184
185
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
186
                self.theta_keys.append(key)
187
188
189
190
191
192
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
193
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

209
    def _check_initial_points(self, p0):
210
211
212
213
214
215
216
217
218
219
220
221
222
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

223
                p0 = self._generate_new_p0_to_fix_initial_points(
224
225
                    p0, nt, initial_priors)

226
    def _generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
246

247
248
    def setup_burnin_convergence_testing(
            self, n=10, test_type='autocorr', windowed=False, **kwargs):
249
        """ Set up convergence testing during the MCMC simulation
250
251
252

        Parameters
        ----------
253
254
255
256
257
258
259
260
261
        n: int
            Number of steps after which to test convergence
        test_type: str ['autocorr', 'GR']
            If 'autocorr' use the exponential autocorrelation time (kwargs
            passed to `get_autocorr_convergence`). If 'GR' use the Gelman-Rubin
            statistic (kwargs passed to `get_GR_convergence`)
        windowed: bool
            If True, only calculate the convergence test in a window of length
            `n`
262
263
264
265
        **kwargs:
            Passed to either `_test_autocorr_convergence()` or
            `_test_GR_convergence()` depending on `test_type`.

266
        """
267
        logging.info('Setting up convergence testing')
268
269
270
271
        self.convergence_n = n
        self.convergence_windowed = windowed
        self.convergence_test_type = test_type
        self.convergence_kwargs = kwargs
272
273
        self.convergence_diagnostic = []
        self.convergence_diagnosticx = []
274
        if test_type in ['autocorr']:
275
            self._get_convergence_test = self._test_autocorr_convergence
276
        elif test_type in ['GR']:
277
            self._get_convergence_test = self._test_GR_convergence
278
279
280
        else:
            raise ValueError('test_type {} not understood'.format(test_type))

281
    def _test_autocorr_convergence(self, i, sampler, test=True, n_cut=5):
282
283
284
285
286
287
288
289
290
291
292
        try:
            acors = np.zeros((self.ntemps, self.ndim))
            for temp in range(self.ntemps):
                if self.convergence_windowed:
                    j = i-self.convergence_n
                else:
                    j = 0
                x = np.mean(sampler.chain[temp, :, j:i, :], axis=0)
                acors[temp, :] = emcee.autocorr.exponential_time(x)
            c = np.max(acors, axis=0)
        except emcee.autocorr.AutocorrError:
Gregory Ashton's avatar
Gregory Ashton committed
293
294
295
296
            logging.info('Failed to calculate exponential autocorrelation')
            c = np.zeros(self.ndim) + np.nan
        except AttributeError:
            logging.info('Unable to calculate exponential autocorrelation')
297
298
299
300
301
302
303
304
            c = np.zeros(self.ndim) + np.nan

        self.convergence_diagnosticx.append(i - self.convergence_n/2.)
        self.convergence_diagnostic.append(list(c))

        if test:
            return i > n_cut * np.max(c)

305
    def _test_GR_convergence(self, i, sampler, test=True, R=1.1):
306
307
308
309
310
        if self.convergence_windowed:
            s = sampler.chain[0, :, i-self.convergence_n+1:i+1, :]
        else:
            s = sampler.chain[0, :, :i+1, :]
        N = float(self.convergence_n)
311
312
        M = float(self.nwalkers)
        W = np.mean(np.var(s, axis=1), axis=0)
313
314
        per_walker_mean = np.mean(s, axis=1)
        mean = np.mean(per_walker_mean, axis=0)
315
316
        B = N / (M-1.) * np.sum((per_walker_mean-mean)**2, axis=0)
        Vhat = (N-1)/N * W + (M+1)/(M*N) * B
317
        c = np.sqrt(Vhat/W)
318
        self.convergence_diagnostic.append(c)
319
        self.convergence_diagnosticx.append(i - self.convergence_n/2.)
320

321
322
323
        if test and np.max(c) < R:
            return True
        else:
324
            return False
325
326
327
328

    def _test_convergence(self, i, sampler, **kwargs):
        if np.mod(i+1, self.convergence_n) == 0:
            return self._get_convergence_test(i, sampler, **kwargs)
329
        else:
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
            return False

    def _run_sampler_with_conv_test(self, sampler, p0, nprod=0, nburn=0):
        logging.info('Running {} burn-in steps with convergence testing'
                     .format(nburn))
        iterator = tqdm(sampler.sample(p0, iterations=nburn), total=nburn)
        for i, output in enumerate(iterator):
            if self._test_convergence(i, sampler, test=True,
                                      **self.convergence_kwargs):
                logging.info(
                    'Converged at {} before max number {} of steps reached'
                    .format(i, nburn))
                self.convergence_idx = i
                break
        iterator.close()
        logging.info('Running {} production steps'.format(nprod))
        j = nburn
        iterator = tqdm(sampler.sample(output[0], iterations=nprod),
                        total=nprod)
        for result in iterator:
            self._test_convergence(j, sampler, test=False,
                                   **self.convergence_kwargs)
            j += 1
        return sampler
354

355
    def _run_sampler(self, sampler, p0, nprod=0, nburn=0):
356
357
        if hasattr(self, 'convergence_n'):
            self._run_sampler_with_conv_test(sampler, p0, nprod, nburn)
358
359
360
361
        else:
            for result in tqdm(sampler.sample(p0, iterations=nburn+nprod),
                               total=nburn+nprod):
                pass
362

363
364
        self.mean_acceptance_fraction = np.mean(
            sampler.acceptance_fraction, axis=1)
365
        logging.info("Mean acceptance fraction: {}"
366
                     .format(self.mean_acceptance_fraction))
367
        if self.ntemps > 1:
368
            self.tswap_acceptance_fraction = sampler.tswap_acceptance_fraction
369
370
371
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
        try:
372
            self.autocorr_time = sampler.get_autocorr_time(c=4)
373
            logging.info("Autocorrelation length: {}".format(
374
                self.autocorr_time))
375
        except emcee.autocorr.AutocorrError as e:
376
            self.autocorr_time = np.nan
377
378
379
380
381
            logging.warning(
                'Autocorrelation calculation failed with message {}'.format(e))

        return sampler

382
    def _estimate_run_time(self):
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
        """ Print the estimated run time

        Uses timing coefficients based on a Lenovo T460p Intel(R)
        Core(TM) i5-6300HQ CPU @ 2.30GHz.

        """
        # Todo: add option to time on a machine, and move coefficients to
        # ~/.pyfstat.conf
        if (type(self.theta_prior['Alpha']) == dict or
                type(self.theta_prior['Delta']) == dict):
            tau0S = 7.3e-5
            tau0LD = 4.2e-7
        else:
            tau0S = 5.0e-5
            tau0LD = 6.2e-8
398
        Nsfts = (self.maxStartTime - self.minStartTime) / 1800.
399
400
401
        numb_evals = np.sum(self.nsteps)*self.nwalkers*self.ntemps
        a = tau0S * numb_evals
        b = tau0LD * Nsfts * numb_evals
402
403
404
        logging.info('Estimated run-time = {} s = {:1.0f}:{:1.0f} m'.format(
            a+b, *divmod(a+b, 60)))

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
    def run(self, proposal_scale_factor=2, create_plots=True, c=5, **kwargs):
        """ Run the MCMC simulatation

        Parameters
        ----------
        proposal_scale_factor: float
            The proposal scale factor used by the sampler, see Goodman & Weare
            (2010). If the acceptance fraction is too low, you can raise it by
            decreasing the a parameter; and if it is too high, you can reduce
            it by increasing the a parameter [Foreman-Mackay (2013)].
        create_plots: bool
            If true, save trace plots of the walkers
        c: int
            The minimum number of autocorrelation times needed to trust the
            result when estimating the autocorrelation time (see
            emcee.autocorr.integrated_time for further details. Default is 5
        **kwargs:
            Passed to _plot_walkers to control the figures

424
425
426
427
428
        Returns
        -------
        sampler: emcee.ptsampler.PTSampler
            The emcee ptsampler object

429
        """
430

431
        self.old_data_is_okay_to_use = self._check_old_data_is_okay_to_use()
432
433
434
        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
435
            d = self.get_saved_data_dictionary()
436
437
438
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
439
            self.all_lnlikelihood = d['all_lnlikelihood']
440
441
            return

442
        self._initiate_search_object()
443
        self._estimate_run_time()
444
445
446
447

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
448
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
449

450
451
452
        p0 = self._generate_initial_p0()
        p0 = self._apply_corrections_to_p0(p0)
        self._check_initial_points(p0)
453
454
455
456

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
Gregory Ashton's avatar
Gregory Ashton committed
457
                j, ninit_steps, n))
458
            sampler = self._run_sampler(sampler, p0, nburn=n)
459
            if create_plots:
460
                fig, axes = self._plot_walkers(sampler,
461
462
                                               symbols=self.theta_symbols,
                                               **kwargs)
463
464
                fig.tight_layout()
                fig.savefig('{}/{}_init_{}_walkers.png'.format(
Gregory Ashton's avatar
Gregory Ashton committed
465
                    self.outdir, self.label, j))
466

467
468
469
            p0 = self._get_new_p0(sampler)
            p0 = self._apply_corrections_to_p0(p0)
            self._check_initial_points(p0)
470
471
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
472
473
474
475
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
476
477
478
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
479
        sampler = self._run_sampler(sampler, p0, nburn=nburn, nprod=nprod)
480
        if create_plots:
481
            fig, axes = self._plot_walkers(sampler, symbols=self.theta_symbols,
482
                                           nprod=nprod, **kwargs)
483
484
            fig.tight_layout()
            fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label),
Gregory Ashton's avatar
Gregory Ashton committed
485
                        )
486
487
488
489

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
490
        all_lnlikelihood = sampler.lnlikelihood[:, :, nburn:]
491
492
493
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
494
495
        self.all_lnlikelihood = all_lnlikelihood
        self._save_data(sampler, samples, lnprobs, lnlikes, all_lnlikelihood)
Gregory Ashton's avatar
Gregory Ashton committed
496
        return sampler
497

498
    def _get_rescale_multiplier_for_key(self, key):
499
        """ Get the rescale multiplier from the transform_dictionary
500
501
502
503
504

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
505
        if key not in self.transform_dictionary:
506
507
            return 1

508
509
        if 'multiplier' in self.transform_dictionary[key]:
            val = self.transform_dictionary[key]['multiplier']
510
511
512
            if type(val) == str:
                if hasattr(self, val):
                    multiplier = getattr(
513
                        self, self.transform_dictionary[key]['multiplier'])
514
515
516
517
518
519
520
521
522
                else:
                    raise ValueError(
                        "multiplier {} not a class attribute".format(val))
            else:
                multiplier = val
        else:
            multiplier = 1
        return multiplier

523
    def _get_rescale_subtractor_for_key(self, key):
524
        """ Get the rescale subtractor from the transform_dictionary
525
526
527
528
529

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
530
        if key not in self.transform_dictionary:
531
532
            return 0

533
534
        if 'subtractor' in self.transform_dictionary[key]:
            val = self.transform_dictionary[key]['subtractor']
535
536
537
            if type(val) == str:
                if hasattr(self, val):
                    subtractor = getattr(
538
                        self, self.transform_dictionary[key]['subtractor'])
539
540
541
542
543
544
545
546
547
                else:
                    raise ValueError(
                        "subtractor {} not a class attribute".format(val))
            else:
                subtractor = val
        else:
            subtractor = 0
        return subtractor

548
    def _scale_samples(self, samples, theta_keys):
549
        """ Scale the samples using the transform_dictionary """
550
        for key in theta_keys:
551
            if key in self.transform_dictionary:
552
553
                idx = theta_keys.index(key)
                s = samples[:, idx]
554
                subtractor = self._get_rescale_subtractor_for_key(key)
555
                s = s - subtractor
556
                multiplier = self._get_rescale_multiplier_for_key(key)
557
                s *= multiplier
558
559
                samples[:, idx] = s

560
561
        return samples

562
    def _get_labels(self):
563
        """ Combine the units, symbols and rescaling to give labels """
564

565
566
567
568
569
570
        labels = []
        for key in self.theta_keys:
            label = None
            s = self.symbol_dictionary[key]
            s.replace('_{glitch}', r'_\textrm{glitch}')
            u = self.unit_dictionary[key]
571
572
573
574
575
576
577
            if key in self.transform_dictionary:
                if 'symbol' in self.transform_dictionary[key]:
                    s = self.transform_dictionary[key]['symbol']
                if 'label' in self.transform_dictionary[key]:
                    label = self.transform_dictionary[key]['label']
                if 'unit' in self.transform_dictionary[key]:
                    u = self.transform_dictionary[key]['unit']
578
579
580
581
            if label is None:
                label = '{} \n [{}]'.format(s, u)
            labels.append(label)
        return labels
582

583
584
    def plot_corner(self, figsize=(7, 7), add_prior=False, nstds=None,
                    label_offset=0.4, dpi=300, rc_context={},
585
                    tglitch_ratio=False, fig_and_axes=None, save_fig=True,
586
                    **kwargs):
587
588
589
590
591
592
593
594
595
        """ Generate a corner plot of the posterior

        Using the `corner` package (https://pypi.python.org/pypi/corner/),
        generate estimates of the posterior from the production samples.

        Parameters
        ----------
        figsize: tuple (7, 7)
            Figure size in inches (passed to plt.subplots)
596
597
598
        add_prior: bool, str
            If true, plot the prior as a red line. If 'full' then for uniform
            priors plot the full extent of the prior.
599
600
601
602
603
604
605
606
607
608
609
610
611
612
        nstds: float
            The number of standard deviations to plot centered on the mean
        label_offset: float
            Offset the labels from the plot: useful to precent overlapping the
            tick labels with the axis labels
        dpi: int
            Passed to plt.savefig
        rc_context: dict
            Dictionary of rc values to set while generating the figure (see
            matplotlib rc for more details)
        tglitch_ratio: bool
            If true, and tglitch is a parameter, plot posteriors as the
            fractional time at which the glitch occurs instead of the actual
            time
613
614
615
616
617
        fig_and_axes: tuple
            fig and axes to plot on, the axes must be of the right shape,
            namely (ndim, ndim)
        save_fig: bool
            If true, save the figure, else return the fig, axes
618
619
        **kwargs:
            Passed to corner.corner
620

621
622
623
624
        Returns
        -------
        fig, axes:
            The matplotlib figure and axes, only returned if save_fig = False
625
626

        """
627

628
629
630
631
        if 'truths' in kwargs and len(kwargs['truths']) != self.ndim:
            logging.warning('len(Truths) != ndim, Truths will be ignored')
            kwargs['truths'] = None

Gregory Ashton's avatar
Gregory Ashton committed
632
633
        if self.ndim < 2:
            with plt.rc_context(rc_context):
634
635
636
637
                if fig_and_axes is None:
                    fig, ax = plt.subplots(figsize=figsize)
                else:
                    fig, ax = fig_and_axes
Gregory Ashton's avatar
Gregory Ashton committed
638
639
640
641
642
643
644
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

645
        with plt.rc_context(rc_context):
646
647
648
649
650
            if fig_and_axes is None:
                fig, axes = plt.subplots(self.ndim, self.ndim,
                                         figsize=figsize)
            else:
                fig, axes = fig_and_axes
651
652

            samples_plt = copy.copy(self.samples)
653
            labels = self._get_labels()
654

655
            samples_plt = self._scale_samples(samples_plt, self.theta_keys)
656
657
658
659
660

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
661
662
663
                        samples_plt[:, j] = (
                            s - self.minStartTime)/(
                                self.maxStartTime - self.minStartTime)
664
                        labels[j] = r'$R_{\textrm{glitch}}$'
665
666
667
668
669
670
671

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
672
673
            elif 'range' in kwargs:
                _range = kwargs.pop('range')
674
675
676
            else:
                _range = None

677
678
679
680
            hist_kwargs = kwargs.pop('hist_kwargs', dict())
            if 'normed' not in hist_kwargs:
                hist_kwargs['normed'] = True

681
            fig_triangle = corner.corner(samples_plt,
682
                                         labels=labels,
683
684
685
686
687
688
689
690
691
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
692
                                         hist_kwargs=hist_kwargs,
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
709
                self._add_prior_to_corner(axes, self.samples, add_prior)
710

711
712
713
714
715
            if save_fig:
                fig_triangle.savefig('{}/{}_corner.png'.format(
                    self.outdir, self.label), dpi=dpi)
            else:
                return fig, axes
716

717
    def _add_prior_to_corner(self, axes, samples, add_prior):
718
719
720
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            s = samples[:, i]
721
722
723
724
725
726
727
728
729
730
            lnprior = self._generic_lnprior(**self.theta_prior[key])
            if add_prior == 'full' and self.theta_prior[key]['type'] == 'unif':
                lower = self.theta_prior[key]['lower']
                upper = self.theta_prior[key]['upper']
                r = upper-lower
                xlim = [lower-0.05*r, upper+0.05*r]
                x = np.linspace(xlim[0], xlim[1], 1000)
            else:
                xlim = ax.get_xlim()
                x = np.linspace(s.min(), s.max(), 1000)
731
732
            multiplier = self._get_rescale_multiplier_for_key(key)
            subtractor = self._get_rescale_subtractor_for_key(key)
733
734
735
736
737
738
739
740
            ax.plot((x-subtractor)*multiplier,
                    [np.exp(lnprior(xi)) for xi in x], '-C3',
                    label='prior')

            for j in range(i, self.ndim):
                axes[j][i].set_xlim(xlim[0], xlim[1])
            for k in range(0, i):
                axes[i][k].set_ylim(xlim[0], xlim[1])
741

742
743
744
745
746
747
748
749
    def plot_prior_posterior(self, normal_stds=2):
        """ Plot the posterior in the context of the prior """
        fig, axes = plt.subplots(nrows=self.ndim, figsize=(8, 4*self.ndim))
        N = 1000
        from scipy.stats import gaussian_kde

        for i, (ax, key) in enumerate(zip(axes, self.theta_keys)):
            prior_dict = self.theta_prior[key]
750
            prior_func = self._generic_lnprior(**prior_dict)
751
752
753
754
755
            if prior_dict['type'] == 'unif':
                x = np.linspace(prior_dict['lower'], prior_dict['upper'], N)
                prior = prior_func(x)
                prior[0] = 0
                prior[-1] = 0
Gregory Ashton's avatar
Gregory Ashton committed
756
757
758
759
760
            elif prior_dict['type'] == 'log10unif':
                upper = prior_dict['log10upper']
                lower = prior_dict['log10lower']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
761
762
763
764
765
            elif prior_dict['type'] == 'norm':
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = prior_func(x)
766
767
768
769
770
            elif prior_dict['type'] == 'halfnorm':
                lower = prior_dict['loc']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
Gregory Ashton's avatar
Gregory Ashton committed
771
772
773
774
775
            elif prior_dict['type'] == 'neghalfnorm':
                upper = prior_dict['loc']
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
776
777
778
            else:
                raise ValueError('Not implemented for prior type {}'.format(
                    prior_dict['type']))
779
            priorln = ax.plot(x, prior, 'C3', label='prior')
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
            ax.set_xlabel(self.theta_symbols[i])

            s = self.samples[:, i]
            while len(s) > 10**4:
                # random downsample to avoid slow calculation of kde
                s = np.random.choice(s, size=int(len(s)/2.))
            kde = gaussian_kde(s)
            ax2 = ax.twinx()
            postln = ax2.plot(x, kde.pdf(x), 'k', label='posterior')
            ax2.set_yticklabels([])
            ax.set_yticklabels([])

        lns = priorln + postln
        labs = [l.get_label() for l in lns]
        axes[0].legend(lns, labs, loc=1, framealpha=0.8)

        fig.savefig('{}/{}_prior_posterior.png'.format(
            self.outdir, self.label))

799
    def plot_cumulative_max(self, **kwargs):
800
801
802
803
        """ Plot the cumulative twoF for the maximum posterior estimate

        See the pyfstat.core.plot_twoF_cumulative function for further details
        """
Gregory Ashton's avatar
Gregory Ashton committed
804
805
806
807
        d, maxtwoF = self.get_max_twoF()
        for key, val in self.theta_prior.iteritems():
            if key not in d:
                d[key] = val
808
809

        if hasattr(self, 'search') is False:
810
            self._initiate_search_object()
811
812
813
        if self.binary is False:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
814
                Alpha=d['Alpha'], Delta=d['Delta'],
815
                tstart=self.minStartTime, tend=self.maxStartTime,
816
                **kwargs)
817
818
819
820
821
        else:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
                Alpha=d['Alpha'], Delta=d['Delta'], asini=d['asini'],
                period=d['period'], ecc=d['ecc'], argp=d['argp'], tp=d['argp'],
822
                tstart=self.minStartTime, tend=self.maxStartTime, **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
823

824
    def _generic_lnprior(self, **kwargs):
825
826
827
828
        """ Return a lambda function of the pdf

        Parameters
        ----------
829
        **kwargs:
830
831
832
833
            A dictionary containing 'type' of pdf and shape parameters

        """

Gregory Ashton's avatar
Gregory Ashton committed
834
        def log_of_unif(x, a, b):
835
836
837
838
839
840
841
842
843
844
845
846
847
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

Gregory Ashton's avatar
Gregory Ashton committed
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
        def log_of_log10unif(x, log10lower, log10upper):
            log10x = np.log10(x)
            above = log10x < log10upper
            below = log10x > log10lower
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(x*np.log(10)*(log10upper-log10lower))
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(x*np.log(10)*(log10upper-log10lower))
                return p

        def log_of_halfnorm(x, loc, scale):
864
            if x < loc:
865
866
867
868
869
870
871
872
873
874
875
876
877
878
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
Gregory Ashton's avatar
Gregory Ashton committed
879
880
881
882
            return lambda x: log_of_unif(x, kwargs['lower'], kwargs['upper'])
        if kwargs['type'] == 'log10unif':
            return lambda x: log_of_log10unif(
                x, kwargs['log10lower'], kwargs['log10upper'])
883
        elif kwargs['type'] == 'halfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
884
            return lambda x: log_of_halfnorm(x, kwargs['loc'], kwargs['scale'])
885
        elif kwargs['type'] == 'neghalfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
886
887
            return lambda x: log_of_halfnorm(
                -x, kwargs['loc'], kwargs['scale'])
888
889
890
891
892
893
894
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

895
    def _generate_rv(self, **kwargs):
896
897
898
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
Gregory Ashton's avatar
Gregory Ashton committed
899
900
901
        if dist_type == "log10unif":
            return 10**(np.random.uniform(low=kwargs['log10lower'],
                                          high=kwargs['log10upper']))
902
903
904
905
906
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
907
908
909
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
910
911
912
913
914
915
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

916
    def _plot_walkers(self, sampler, symbols=None, alpha=0.8, color="k",
917
918
                      temp=0, lw=0.1, nprod=0, add_det_stat_burnin=False,
                      fig=None, axes=None, xoffset=0, plot_det_stat=False,
919
                      context='ggplot', subtractions=None, labelpad=0.05):
920
921
        """ Plot all the chains from a sampler """

922
923
924
925
926
        if context not in plt.style.available:
            raise ValueError((
                'The requested context {} is not available; please select a'
                ' context from `plt.style.available`').format(context))

927
928
929
        if np.ndim(axes) > 1:
            axes = axes.flatten()

930
931
932
933
934
935
936
937
938
939
940
941
942
        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
            chain = sampler.chain[:, :, :]
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
            chain = sampler.chain[temp, :, :, :]

943
944
        if subtractions is None:
            subtractions = [0 for i in range(ndim)]
945
946
947
        else:
            if len(subtractions) != self.ndim:
                raise ValueError('subtractions must be of length ndim')
948

949
950
951
952
        if plot_det_stat:
            extra_subplots = 1
        else:
            extra_subplots = 0
953
        with plt.style.context((context)):
Gregory Ashton's avatar
Gregory Ashton committed
954
            plt.rcParams['text.usetex'] = True
Gregory Ashton's avatar
Gregory Ashton committed
955
            if fig is None and axes is None:
956
                fig = plt.figure(figsize=(4, 3.0*ndim))
957
958
                ax = fig.add_subplot(ndim+extra_subplots, 1, 1)
                axes = [ax] + [fig.add_subplot(ndim+extra_subplots, 1, i)
Gregory Ashton's avatar
Gregory Ashton committed
959
                               for i in range(2, ndim+1)]
960

Gregory Ashton's avatar
Gregory Ashton committed
961
            idxs = np.arange(chain.shape[1])
962
963
964
965
966
            burnin_idx = chain.shape[1] - nprod
            if hasattr(self, 'convergence_idx'):
                convergence_idx = self.convergence_idx
            else:
                convergence_idx = burnin_idx
967
968
            if ndim > 1:
                for i in range(ndim):
969
                    axes[i].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
970
                    cs = chain[:, :, i].T
971
                    if burnin_idx > 0:
972
973
                        axes[i].plot(xoffset+idxs[:convergence_idx+1],
                                     cs[:convergence_idx+1]-subtractions[i],
974
                                     color="C3", alpha=alpha,
Gregory Ashton's avatar
Gregory Ashton committed
975
                                     lw=lw)
976
                        axes[i].axvline(xoffset+convergence_idx,
977
                                        color='k', ls='--', lw=0.25)
978
979
                    axes[i].plot(xoffset+idxs[burnin_idx:],
                                 cs[burnin_idx:]-subtractions[i],
Gregory Ashton's avatar
Gregory Ashton committed
980
                                 color="k", alpha=alpha, lw=lw)
Gregory Ashton's avatar
Gregory Ashton committed
981
982

                    axes[i].set_xlim(0, xoffset+idxs[-1])
983
                    if symbols:
984
                        if subtractions[i] == 0:
985
                            axes[i].set_ylabel(symbols[i], labelpad=labelpad)
986
987
                        else:
                            axes[i].set_ylabel(
988
989
                                symbols[i]+'$-$'+symbols[i]+'$_0$',
                                labelpad=labelpad)
990

991
992
                    if hasattr(self, 'convergence_diagnostic'):
                        ax = axes[i].twinx()
993
994
                        axes[i].set_zorder(ax.get_zorder()+1)
                        axes[i].patch.set_visible(False)
995
996
                        c_x = np.array(self.convergence_diagnosticx)
                        c_y = np.array(self.convergence_diagnostic)
997
                        break_idx = np.argmin(np.abs(c_x - burnin_idx))
998
999
1000
1001
                        ax.plot(c_x[:break_idx], c_y[:break_idx, i], '-C0',
                                zorder=-10)
                        ax.plot(c_x[break_idx:], c_y[break_idx:, i], '-C0',
                                zorder=-10)
1002
1003
1004
1005
                        if self.convergence_test_type == 'autocorr':
                            ax.set_ylabel(r'$\tau_\mathrm{exp}$')
                        elif self.convergence_test_type == 'GR':
                            ax.set_ylabel('PSRF')
1006
                        ax.ticklabel_format(useOffset=False)
1007
            else:
Gregory Ashton's avatar
Gregory Ashton committed
1008
                axes[0].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
1009
                cs = chain[:, :, temp].T
Gregory Ashton's avatar
Gregory Ashton committed
1010
1011
                if burnin_idx:
                    axes[0].plot(idxs[:burnin_idx], cs[:burnin_idx],
1012
                                 color="C3", alpha=alpha, lw=lw)
Gregory Ashton's avatar
Gregory Ashton committed
1013
1014
1015
                axes[0].plot(idxs[burnin_idx:], cs[burnin_idx:], color="k",
                             alpha=alpha, lw=lw)
                if symbols:
1016
                    axes[0].set_ylabel(symbols[0], labelpad=labelpad)
1017

Gregory Ashton's avatar
Gregory Ashton committed
1018
1019
            axes[-1].set_xlabel(r'$\textrm{Number of steps}$', labelpad=0.2)

1020
            if plot_det_stat:
1021
1022
1023
                if len(axes) == ndim:
                    axes.append(fig.add_subplot(ndim+1, 1, ndim+1))

1024
1025
1026
                lnl = sampler.lnlikelihood[temp, :, :]
                if burnin_idx and add_det_stat_burnin:
                    burn_in_vals = lnl[:, :burnin_idx].flatten()
1027
                    try:
1028
1029
1030
1031
                        twoF_burnin = (burn_in_vals[~np.isnan(burn_in_vals)]
                                       - self.likelihoodcoef)
                        axes[-1].hist(twoF_burnin, bins=50, histtype='step',
                                      color='C3')
1032
1033
1034
1035
                    except ValueError:
                        logging.info('Det. Stat. hist failed, most likely all '
                                     'values where the same')
                        pass
1036
                else:
1037
                    twoF_burnin = []
1038
                prod_vals = lnl[:, burnin_idx:].flatten()
1039
                try:
1040
1041
                    twoF = prod_vals[~np.isnan(prod_vals)]-self.likelihoodcoef
                    axes[-1].hist(twoF, bins=50, histtype='step', color='k')
</