pyfstat.py 123 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
""" Classes for various types of searches using ComputeFstatistic """
import os
import sys
import itertools
import logging
import argparse
import copy
import glob
import inspect
from functools import wraps
11
import subprocess
12
from collections import OrderedDict
13
14
15

import numpy as np
import matplotlib
16
matplotlib.use('Agg')
17
import matplotlib.pyplot as plt
18
import scipy.special
19
import scipy.optimize
20
21
22
import emcee
import corner
import dill as pickle
23
import lal
24
25
import lalpulsar

26
27
28
try:
    from tqdm import tqdm
except ImportError:
29
    def tqdm(x, *args, **kwargs):
30
31
        return x

32
plt.rcParams['text.usetex'] = True
33
plt.rcParams['axes.formatter.useoffset'] = False
34

35
36
37
38
39
40
41
config_file = os.path.expanduser('~')+'/.pyfstat.conf'
if os.path.isfile(config_file):
    d = {}
    with open(config_file, 'r') as f:
        for line in f:
            k, v = line.split('=')
            k = k.replace(' ', '')
42
            v = v.replace(' ', '').replace("'", "").replace('"', '').replace('\n', '')
43
44
45
46
47
48
            d[k] = v
    earth_ephem = d['earth_ephem']
    sun_ephem = d['sun_ephem']
else:
    logging.warning('No ~/.pyfstat.conf file found please provide the paths '
                    'when initialising searches')
49
50
51
    earth_ephem = None
    sun_ephem = None

52
53
54
55
56
parser = argparse.ArgumentParser()
parser.add_argument("-q", "--quite", help="Decrease output verbosity",
                    action="store_true")
parser.add_argument("-c", "--clean", help="Don't use cached data",
                    action="store_true")
57
parser.add_argument("-u", "--use-old-data", action="store_true")
58
parser.add_argument('-s', "--setup-only", action="store_true")
59
parser.add_argument('-n', "--no-template-counting", action="store_true")
60
61
62
63
parser.add_argument('unittest_args', nargs='*')
args, unknown = parser.parse_known_args()
sys.argv[1:] = args.unittest_args

64
65
66
67
if args.quite:
    def tqdm(x, *args, **kwargs):
        return x

Gregory Ashton's avatar
Gregory Ashton committed
68
69
70
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
stream_handler = logging.StreamHandler()
71
if args.quite:
Gregory Ashton's avatar
Gregory Ashton committed
72
    stream_handler.setLevel(logging.WARNING)
73
else:
Gregory Ashton's avatar
Gregory Ashton committed
74
75
76
77
    stream_handler.setLevel(logging.DEBUG)
stream_handler.setFormatter(logging.Formatter(
    '%(asctime)s %(levelname)-8s: %(message)s', datefmt='%H:%M'))
logger.addHandler(stream_handler)
78

79

80
81
82
83
84
85
86
87
88
def round_to_n(x, n):
    if not x:
        return 0
    power = -int(np.floor(np.log10(abs(x)))) + (n - 1)
    factor = (10 ** power)
    return round(x * factor) / factor


def texify_float(x, d=1):
89
90
    if type(x) == str:
        return x
91
92
93
94
95
96
97
98
99
100
101
    x = round_to_n(x, d)
    if 0.01 < abs(x) < 100:
        return str(x)
    else:
        power = int(np.floor(np.log10(abs(x))))
        stem = np.round(x / 10**power, d)
        if d == 1:
            stem = int(stem)
        return r'${}{{\times}}10^{{{}}}$'.format(stem, power)


102
def initializer(func):
103
    """ Decorator function to automatically assign the parameters to self """
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    names, varargs, keywords, defaults = inspect.getargspec(func)

    @wraps(func)
    def wrapper(self, *args, **kargs):
        for name, arg in list(zip(names[1:], args)) + list(kargs.items()):
            setattr(self, name, arg)

        for name, default in zip(reversed(names), reversed(defaults)):
            if not hasattr(self, name):
                setattr(self, name, default)

        func(self, *args, **kargs)

    return wrapper


def read_par(label, outdir):
121
    """ Read in a .par file, returns a dictionary of the values """
122
123
124
125
    filename = '{}/{}.par'.format(outdir, label)
    d = {}
    with open(filename, 'r') as f:
        for line in f:
126
127
128
            if len(line.split('=')) > 1:
                key, val = line.rstrip('\n').split(' = ')
                key = key.strip()
129
                d[key] = np.float64(eval(val.rstrip('; ')))
130
131
132
    return d


133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
def get_optimal_setup(
        R0, Vmin, tref, minStartTime, maxStartTime, DeltaOmega,
        DeltaFs, fiducial_freq, detector_names, earth_ephem, sun_ephem):
    logging.info('Calculating optimal setup for R0={}, Vmin={}'.format(
        R0, Vmin))

    log10R0 = np.log10(R0)
    log10Vmin = np.log10(Vmin)
    nsegs_i = 1
    V_i = get_V_estimate(
        nsegs_i, tref, minStartTime, maxStartTime, DeltaOmega, DeltaFs,
        fiducial_freq, detector_names, earth_ephem, sun_ephem)
    logging.info('Stage {}, nsegs={}, V={}'.format(0, nsegs_i, V_i))

    nsegs_vals = [1]
    V_vals = [V_i]

    i = 0
    while np.log10(V_i[0]) > log10Vmin:
        nsegs_i, V_i = get_nsegs_ip1(
            nsegs_i, log10R0, tref, minStartTime, maxStartTime, DeltaOmega,
            DeltaFs, fiducial_freq, detector_names, earth_ephem, sun_ephem)
        nsegs_vals.append(nsegs_i)
        V_vals.append(V_i)
        i += 1
        logging.info(
            'Stage {}, nsegs={}, V={}'.format(i, nsegs_i, V_i))

    nsegs_vals.reverse()
    V_vals.reverse()
    return nsegs_vals, V_vals


def get_nsegs_ip1(
        nsegs_i, log10R0, tref, minStartTime, maxStartTime, DeltaOmega,
        DeltaFs, fiducial_freq, detector_names, earth_ephem, sun_ephem):

    log10Vi = np.log10(get_V_estimate(
        nsegs_i, tref, minStartTime, maxStartTime, DeltaOmega, DeltaFs,
        fiducial_freq, detector_names, earth_ephem, sun_ephem))

    def f(nsegs_ip1):
        if nsegs_ip1[0] < 1:
            return 1e6
        Vip1 = get_V_estimate(
            nsegs_ip1[0], tref, minStartTime, maxStartTime, DeltaOmega, DeltaFs,
            fiducial_freq, detector_names, earth_ephem, sun_ephem)
        if Vip1[0] is None:
            return 1e6
        else:
            log10Vip1 = np.log10(Vip1)
            return np.abs(log10R0 + log10Vip1[0] - log10Vi[0])
    res = scipy.optimize.minimize(f, 2*nsegs_i, method='Powell', tol=0.1,
                                  options={'maxiter':10})
    if res.success:
        return int(res.x), get_V_estimate(
            int(res.x), tref, minStartTime, maxStartTime, DeltaOmega, DeltaFs,
            fiducial_freq, detector_names, earth_ephem, sun_ephem)
    else:
        raise ValueError('Optimisation unsuccesful')


195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
def get_V_estimate(
        nsegs, tref, minStartTime, maxStartTime, DeltaOmega, DeltaFs,
        fiducial_freq, detector_names, earth_ephem, sun_ephem):
    """ Returns V, Vsky, Vpe estimated from the super-sky metric

    Parameters
    ----------
    nsegs: int
        Number of semi-coherent segments
    tref: int
        Reference time in GPS seconds
    minStartTime, maxStartTime: int
        Minimum and maximum SFT timestamps
    DeltaOmega: float
        Solid angle of the sky-patch
    DeltaFs: array
        Array of [DeltaF0, DeltaF1, ...], length determines the number of
        spin-down terms.
    fiducial_freq: float
        Fidicual frequency
    detector_names: array
        Array of detectors to average over
    earth_ephem, sun_ephem: st
        Paths to the ephemeris files

    """
    spindowns = len(DeltaFs) - 1
    tboundaries = np.linspace(minStartTime, maxStartTime, nsegs+1)

    ref_time = lal.LIGOTimeGPS(tref)
    segments = lal.SegListCreate()
    for j in range(len(tboundaries)-1):
        seg = lal.SegCreate(lal.LIGOTimeGPS(tboundaries[j]),
                            lal.LIGOTimeGPS(tboundaries[j+1]),
                            j)
        lal.SegListAppend(segments, seg)
    detNames = lal.CreateStringVector(*detector_names)
    detectors = lalpulsar.MultiLALDetector()
    lalpulsar.ParseMultiLALDetector(detectors, detNames)
    detector_weights = None
    detector_motion = (lalpulsar.DETMOTION_SPIN
                       + lalpulsar.DETMOTION_ORBIT)
    ephemeris = lalpulsar.InitBarycenter(earth_ephem, sun_ephem)
    try:
        SSkyMetric = lalpulsar.ComputeSuperskyMetrics(
            spindowns, ref_time, segments, fiducial_freq, detectors,
            detector_weights, detector_motion, ephemeris)
    except RuntimeError as e:
        logging.debug('Encountered run-time error {}'.format(e))
        return None, None, None

    sqrtdetG_SKY = np.sqrt(np.linalg.det(
        SSkyMetric.semi_rssky_metric.data[:2, :2]))
    sqrtdetG_PE = np.sqrt(np.linalg.det(
        SSkyMetric.semi_rssky_metric.data[2:, 2:]))

    Vsky = .5*sqrtdetG_SKY*DeltaOmega
    Vpe = sqrtdetG_PE * np.prod(DeltaFs)
    if Vsky == 0:
        Vsky = 1
    if Vpe == 0:
        Vpe = 1
    return (Vsky * Vpe, Vsky, Vpe)


260
class BaseSearchClass(object):
261
    """ The base search class, provides general functions """
262
263
264
265

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

266
    def add_log_file(self):
267
        """ Log output to a file, requires class to have outdir and label """
268
269
        logfilename = '{}/{}.log'.format(self.outdir, self.label)
        fh = logging.FileHandler(logfilename)
Gregory Ashton's avatar
Gregory Ashton committed
270
        fh.setLevel(logging.INFO)
271
272
273
274
275
        fh.setFormatter(logging.Formatter(
            '%(asctime)s %(levelname)-8s: %(message)s',
            datefmt='%y-%m-%d %H:%M'))
        logging.getLogger().addHandler(fh)

276
    def shift_matrix(self, n, dT):
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        """ Generate the shift matrix

        Parameters
        ----------
        n: int
            The dimension of the shift-matrix to generate
        dT: float
            The time delta of the shift matrix

        Returns
        -------
        m: array (n, n)
            The shift matrix
        """

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
        m = np.zeros((n, n))
        factorial = np.math.factorial
        for i in range(n):
            for j in range(n):
                if i == j:
                    m[i, j] = 1.0
                elif i > j:
                    m[i, j] = 0.0
                else:
                    if i == 0:
                        m[i, j] = 2*np.pi*float(dT)**(j-i) / factorial(j-i)
                    else:
                        m[i, j] = float(dT)**(j-i) / factorial(j-i)
        return m

    def shift_coefficients(self, theta, dT):
        """ Shift a set of coefficients by dT

        Parameters
        ----------
        theta: array-like, shape (n,)
            vector of the expansion coefficients to transform starting from the
314
            lowest degree e.g [phi, F0, F1,...].
315
        dT: float
316
            difference between the two reference times as tref_new - tref_old.
317
318
319
320

        Returns
        -------
        theta_new: array-like shape (n,)
321
            vector of the coefficients as evaluate as the new reference time.
322
        """
323

324
325
326
327
        n = len(theta)
        m = self.shift_matrix(n, dT)
        return np.dot(m, theta)

328
    def calculate_thetas(self, theta, delta_thetas, tbounds, theta0_idx=0):
329
330
331
        """ Calculates the set of coefficients for the post-glitch signal """
        thetas = [theta]
        for i, dt in enumerate(delta_thetas):
332
333
334
335
336
337
338
339
340
341
342
343
344
            if i < theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[0], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch - dt
                thetas.insert(0, self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))

            elif i >= theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[i], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch + dt
                thetas.append(self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))
345
346
        return thetas

Gregory Ashton's avatar
Gregory Ashton committed
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    def generate_loudest(self):
        params = read_par(self.label, self.outdir)
        for key in ['Alpha', 'Delta', 'F0', 'F1']:
            if key not in params:
                params[key] = self.theta_prior[key]
        cmd = ('lalapps_ComputeFstatistic_v2 -a {} -d {} -f {} -s {} -D "{}"'
               ' --refTime={} --outputLoudest="{}/{}.loudest" '
               '--minStartTime={} --maxStartTime={}').format(
                    params['Alpha'], params['Delta'], params['F0'],
                    params['F1'], self.sftfilepath, params['tref'],
                    self.outdir, self.label, self.minStartTime,
                    self.maxStartTime)
        subprocess.call([cmd], shell=True)

361

Gregory Ashton's avatar
Gregory Ashton committed
362
class ComputeFstat(object):
363
    """ Base class providing interface to `lalpulsar.ComputeFstat` """
Gregory Ashton's avatar
Gregory Ashton committed
364
365
366
367
368

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

    @initializer
369
370
    def __init__(self, tref, sftfilepath=None, minStartTime=None,
                 maxStartTime=None, binary=False, transient=True, BSGL=False,
371
                 detector=None, minCoverFreq=None, maxCoverFreq=None,
372
                 earth_ephem=None, sun_ephem=None, injectSources=None
373
                 ):
374
375
376
377
378
        """
        Parameters
        ----------
        tref: int
            GPS seconds of the reference time.
379
380
        sftfilepath: str
            File patern to match SFTs
381
382
383
384
385
386
387
388
389
390
391
392
        minStartTime, maxStartTime: float GPStime
            Only use SFTs with timestemps starting from (including, excluding)
            this epoch
        binary: bool
            If true, search of binary parameters.
        transient: bool
            If true, allow for the Fstat to be computed over a transient range.
        BSGL: bool
            If true, compute the BSGL rather than the twoF value.
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
393
394
395
396
397
398
399
400
401
402
        minCoverFreq, maxCoverFreq: float
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput.
            If None defaults defined in BaseSearchClass will be used.

        """
Gregory Ashton's avatar
Gregory Ashton committed
403
404
405
406
407
408
409
410

        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        self.init_computefstatistic_single_point()

Gregory Ashton's avatar
Gregory Ashton committed
411
412
413
    def get_SFTCatalog(self):
        if hasattr(self, 'SFTCatalog'):
            return
Gregory Ashton's avatar
Gregory Ashton committed
414
415
416
417
        logging.info('Initialising SFTCatalog')
        constraints = lalpulsar.SFTConstraints()
        if self.detector:
            constraints.detector = self.detector
418
419
420
421
422
        if self.minStartTime:
            constraints.minStartTime = lal.LIGOTimeGPS(self.minStartTime)
        if self.maxStartTime:
            constraints.maxStartTime = lal.LIGOTimeGPS(self.maxStartTime)

423
        logging.info('Loading data matching pattern {}'.format(
424
425
                     self.sftfilepath))
        SFTCatalog = lalpulsar.SFTdataFind(self.sftfilepath, constraints)
426
427
        detector_names = list(set([d.header.name for d in SFTCatalog.data]))
        self.detector_names = detector_names
428
        SFT_timestamps = [d.header.epoch for d in SFTCatalog.data]
429
430
431
432
433
434
435
        if args.quite is False:
            try:
                from bashplotlib.histogram import plot_hist
                print('Data timestamps histogram:')
                plot_hist(SFT_timestamps, height=5, bincount=50)
            except IOError:
                pass
436
        if len(detector_names) == 0:
Gregory Ashton's avatar
Gregory Ashton committed
437
438
            raise ValueError('No data loaded.')
        logging.info('Loaded {} data files from detectors {}'.format(
439
            len(SFT_timestamps), detector_names))
Gregory Ashton's avatar
Gregory Ashton committed
440
441
442
443
444
445
        logging.info('Data spans from {} ({}) to {} ({})'.format(
            int(SFT_timestamps[0]),
            subprocess.check_output('lalapps_tconvert {}'.format(
                int(SFT_timestamps[0])), shell=True).rstrip('\n'),
            int(SFT_timestamps[-1]),
            subprocess.check_output('lalapps_tconvert {}'.format(
446
                int(SFT_timestamps[-1])), shell=True).rstrip('\n')))
Gregory Ashton's avatar
Gregory Ashton committed
447
448
449
450
451
452
        self.SFTCatalog = SFTCatalog

    def init_computefstatistic_single_point(self):
        """ Initilisation step of run_computefstatistic for a single point """

        self.get_SFTCatalog()
Gregory Ashton's avatar
Gregory Ashton committed
453
454
455
456
457
458

        logging.info('Initialising ephems')
        ephems = lalpulsar.InitBarycenter(self.earth_ephem, self.sun_ephem)

        logging.info('Initialising FstatInput')
        dFreq = 0
459
460
461
462
463
        if self.transient:
            self.whatToCompute = lalpulsar.FSTATQ_ATOMS_PER_DET
        else:
            self.whatToCompute = lalpulsar.FSTATQ_2F

464
465
466
467
468
469
470
471
472
473
474
        FstatOAs = lalpulsar.FstatOptionalArgs()
        FstatOAs.randSeed = lalpulsar.FstatOptionalArgsDefaults.randSeed
        FstatOAs.SSBprec = lalpulsar.FstatOptionalArgsDefaults.SSBprec
        FstatOAs.Dterms = lalpulsar.FstatOptionalArgsDefaults.Dterms
        FstatOAs.runningMedianWindow = lalpulsar.FstatOptionalArgsDefaults.runningMedianWindow
        FstatOAs.FstatMethod = lalpulsar.FstatOptionalArgsDefaults.FstatMethod
        FstatOAs.InjectSqrtSX = lalpulsar.FstatOptionalArgsDefaults.injectSqrtSX
        FstatOAs.assumeSqrtSX = lalpulsar.FstatOptionalArgsDefaults.assumeSqrtSX
        FstatOAs.prevInput = lalpulsar.FstatOptionalArgsDefaults.prevInput
        FstatOAs.collectTiming = lalpulsar.FstatOptionalArgsDefaults.collectTiming

475
        if hasattr(self, 'injectSource') and type(self.injectSources) == dict:
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
            logging.info('Injecting source with params: {}'.format(
                self.injectSources))
            PPV = lalpulsar.CreatePulsarParamsVector(1)
            PP = PPV.data[0]
            PP.Amp.h0 = self.injectSources['h0']
            PP.Amp.cosi = self.injectSources['cosi']
            PP.Amp.phi0 = self.injectSources['phi0']
            PP.Amp.psi = self.injectSources['psi']
            PP.Doppler.Alpha = self.injectSources['Alpha']
            PP.Doppler.Delta = self.injectSources['Delta']
            PP.Doppler.fkdot = np.array(self.injectSources['fkdot'])
            PP.Doppler.refTime = self.tref
            if 't0' not in self.injectSources:
                PP.Transient.type = lalpulsar.TRANSIENT_NONE
            FstatOAs.injectSources = PPV
        else:
            FstatOAs.injectSources = lalpulsar.FstatOptionalArgsDefaults.injectSources
Gregory Ashton's avatar
Gregory Ashton committed
493
494

        if self.minCoverFreq is None or self.maxCoverFreq is None:
Gregory Ashton's avatar
Gregory Ashton committed
495
            fAs = [d.header.f0 for d in self.SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
496
            fBs = [d.header.f0 + (d.numBins-1)*d.header.deltaF
Gregory Ashton's avatar
Gregory Ashton committed
497
                   for d in self.SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
498
499
            self.minCoverFreq = np.min(fAs) + 0.5
            self.maxCoverFreq = np.max(fBs) - 0.5
500
501
502
            logging.info('Min/max cover freqs not provided, using '
                         '{} and {}, est. from SFTs'.format(
                             self.minCoverFreq, self.maxCoverFreq))
Gregory Ashton's avatar
Gregory Ashton committed
503

Gregory Ashton's avatar
Gregory Ashton committed
504
        self.FstatInput = lalpulsar.CreateFstatInput(self.SFTCatalog,
Gregory Ashton's avatar
Gregory Ashton committed
505
506
507
508
                                                     self.minCoverFreq,
                                                     self.maxCoverFreq,
                                                     dFreq,
                                                     ephems,
509
                                                     FstatOAs
Gregory Ashton's avatar
Gregory Ashton committed
510
511
512
513
514
515
516
517
518
519
520
521
522
                                                     )

        logging.info('Initialising PulsarDoplerParams')
        PulsarDopplerParams = lalpulsar.PulsarDopplerParams()
        PulsarDopplerParams.refTime = self.tref
        PulsarDopplerParams.Alpha = 1
        PulsarDopplerParams.Delta = 1
        PulsarDopplerParams.fkdot = np.array([0, 0, 0, 0, 0, 0, 0])
        self.PulsarDopplerParams = PulsarDopplerParams

        logging.info('Initialising FstatResults')
        self.FstatResults = lalpulsar.FstatResults()

523
        if self.BSGL:
Gregory Ashton's avatar
Gregory Ashton committed
524
            if len(self.names) < 2:
Gregory Ashton's avatar
Gregory Ashton committed
525
                raise ValueError("Can't use BSGL with single detector data")
526
            else:
527
                logging.info('Initialising BSGL')
528

529
530
            # Tuning parameters - to be reviewed
            numDetectors = 2
531
532
533
534
535
536
537
538
539
540
            if hasattr(self, 'nsegs'):
                p_val_threshold = 1e-6
                Fstar0s = np.linspace(0, 1000, 10000)
                p_vals = scipy.special.gammaincc(2*self.nsegs, Fstar0s)
                Fstar0 = Fstar0s[np.argmin(np.abs(p_vals - p_val_threshold))]
                if Fstar0 == Fstar0s[-1]:
                    raise ValueError('Max Fstar0 exceeded')
            else:
                Fstar0 = 15.
            logging.info('Using Fstar0 of {:1.2f}'.format(Fstar0))
541
            oLGX = np.zeros(10)
Gregory Ashton's avatar
Gregory Ashton committed
542
            oLGX[:numDetectors] = 1./numDetectors
543
            self.BSGLSetup = lalpulsar.CreateBSGLSetup(numDetectors,
544
                                                       Fstar0,
545
                                                       oLGX,
546
                                                       True,
547
548
                                                       1)
            self.twoFX = np.zeros(10)
Gregory Ashton's avatar
Gregory Ashton committed
549
            self.whatToCompute = (self.whatToCompute +
550
551
                                  lalpulsar.FSTATQ_2F_PER_DET)

552
        if self.transient:
553
            logging.info('Initialising transient parameters')
554
555
556
557
558
559
            self.windowRange = lalpulsar.transientWindowRange_t()
            self.windowRange.type = lalpulsar.TRANSIENT_RECTANGULAR
            self.windowRange.t0Band = 0
            self.windowRange.dt0 = 1
            self.windowRange.tauBand = 0
            self.windowRange.dtau = 1
560

561
562
563
564
565
566
567
568
569
    def compute_fullycoherent_det_stat_single_point(
            self, F0, F1, F2, Alpha, Delta, asini=None, period=None, ecc=None,
            tp=None, argp=None):
        """ Compute the fully-coherent det. statistic at a single point """

        return self.run_computefstatistic_single_point(
            self.minStartTime, self.maxStartTime, F0, F1, F2, Alpha, Delta,
            asini, period, ecc, tp, argp)

Gregory Ashton's avatar
Gregory Ashton committed
570
    def run_computefstatistic_single_point(self, tstart, tend, F0, F1,
571
572
573
                                           F2, Alpha, Delta, asini=None,
                                           period=None, ecc=None, tp=None,
                                           argp=None):
574
        """ Returns twoF or ln(BSGL) fully-coherently at a single point """
Gregory Ashton's avatar
Gregory Ashton committed
575
576
577
578

        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
579
580
581
582
583
584
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp
Gregory Ashton's avatar
Gregory Ashton committed
585
586
587
588

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
589
                               1,
Gregory Ashton's avatar
Gregory Ashton committed
590
591
592
                               self.whatToCompute
                               )

593
        if self.transient is False:
594
595
596
597
598
599
            if self.BSGL is False:
                return self.FstatResults.twoF[0]

            twoF = np.float(self.FstatResults.twoF[0])
            self.twoFX[0] = self.FstatResults.twoFPerDet(0)
            self.twoFX[1] = self.FstatResults.twoFPerDet(1)
600
601
602
            log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
                                               self.BSGLSetup)
            return log10_BSGL/np.log10(np.exp(1))
603

604
605
        self.windowRange.t0 = int(tstart)  # TYPE UINT4
        self.windowRange.tau = int(tend - tstart)  # TYPE UINT4
606

Gregory Ashton's avatar
Gregory Ashton committed
607
        FS = lalpulsar.ComputeTransientFstatMap(
608
            self.FstatResults.multiFatoms[0], self.windowRange, False)
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

        if self.BSGL is False:
            return 2*FS.F_mn.data[0][0]

        FstatResults_single = copy.copy(self.FstatResults)
        FstatResults_single.lenth = 1
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
        FS0 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
        FS1 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)

        self.twoFX[0] = 2*FS0.F_mn.data[0][0]
        self.twoFX[1] = 2*FS1.F_mn.data[0][0]
624
625
        log10_BSGL = lalpulsar.ComputeBSGL(
                2*FS.F_mn.data[0][0], self.twoFX, self.BSGLSetup)
626

627
        return log10_BSGL/np.log10(np.exp(1))
Gregory Ashton's avatar
Gregory Ashton committed
628

629
630
    def calculate_twoF_cumulative(self, F0, F1, F2, Alpha, Delta, asini=None,
                                  period=None, ecc=None, tp=None, argp=None,
631
632
                                  tstart=None, tend=None, npoints=1000,
                                  minfraction=0.01, maxfraction=1):
633
634
        """ Calculate the cumulative twoF along the obseration span """
        duration = tend - tstart
635
636
        tstart = tstart + minfraction*duration
        taus = np.linspace(minfraction*duration, maxfraction*duration, npoints)
637
        twoFs = []
Gregory Ashton's avatar
Gregory Ashton committed
638
639
640
        if self.transient is False:
            self.transient = True
            self.init_computefstatistic_single_point()
641
642
643
644
645
646
647
648
649
        for tau in taus:
            twoFs.append(self.run_computefstatistic_single_point(
                tstart=tstart, tend=tstart+tau, F0=F0, F1=F1, F2=F2,
                Alpha=Alpha, Delta=Delta, asini=asini, period=period, ecc=ecc,
                tp=tp, argp=argp))

        return taus, np.array(twoFs)

    def plot_twoF_cumulative(self, label, outdir, ax=None, c='k', savefig=True,
650
                             title=None, **kwargs):
651

652
653
654
655
656
657
        taus, twoFs = self.calculate_twoF_cumulative(**kwargs)
        if ax is None:
            fig, ax = plt.subplots()
        ax.plot(taus/86400., twoFs, label=label, color=c)
        ax.set_xlabel(r'Days from $t_{{\rm start}}={:.0f}$'.format(
            kwargs['tstart']))
Gregory Ashton's avatar
Gregory Ashton committed
658
659
660
661
        if self.BSGL:
            ax.set_ylabel(r'$\log_{10}(\mathrm{BSGL})_{\rm cumulative}$')
        else:
            ax.set_ylabel(r'$\widetilde{2\mathcal{F}}_{\rm cumulative}$')
662
        ax.set_xlim(0, taus[-1]/86400)
663
664
        if title:
            ax.set_title(title)
665
        if savefig:
666
            plt.tight_layout()
667
            plt.savefig('{}/{}_twoFcumulative.png'.format(outdir, label))
Gregory Ashton's avatar
Gregory Ashton committed
668
            return taus, twoFs
669
670
671
        else:
            return ax

Gregory Ashton's avatar
Gregory Ashton committed
672

673
674
675
676
677
678
679
class SemiCoherentSearch(BaseSearchClass, ComputeFstat):
    """ A semi-coherent search """

    @initializer
    def __init__(self, label, outdir, tref, nsegs=None, sftfilepath=None,
                 binary=False, BSGL=False, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
680
681
                 detector=None, earth_ephem=None, sun_ephem=None,
                 injectSources=None):
682
683
684
685
686
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to.
687
        tref, minStartTime, maxStartTime: int
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
            GPS seconds of the reference time, and start and end of the data.
        nsegs: int
            The (fixed) number of segments
        sftfilepath: str
            File patern to match SFTs

        For all other parameters, see pyfstat.ComputeFStat.
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
        if self.earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if self.sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default
        self.transient = True
        self.init_computefstatistic_single_point()
        self.init_semicoherent_parameters()

    def init_semicoherent_parameters(self):
707
708
709
        logging.info(('Initialising semicoherent parameters from {} to {} in'
                      ' {} segments').format(
            self.minStartTime, self.maxStartTime, self.nsegs))
710
711
        self.transient = True
        self.whatToCompute = lalpulsar.FSTATQ_2F+lalpulsar.FSTATQ_ATOMS_PER_DET
712
713
714
        self.tboundaries = np.linspace(self.minStartTime, self.maxStartTime,
                                       self.nsegs+1)

Gregory Ashton's avatar
Gregory Ashton committed
715
716
717
718
    def run_semi_coherent_computefstatistic_single_point(
            self, F0, F1, F2, Alpha, Delta, asini=None,
            period=None, ecc=None, tp=None, argp=None):
        """ Returns twoF or ln(BSGL) semi-coherently at a single point """
719

Gregory Ashton's avatar
Gregory Ashton committed
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
                               1,
                               self.whatToCompute
                               )

        if self.transient is False:
            if self.BSGL is False:
                return self.FstatResults.twoF[0]

            twoF = np.float(self.FstatResults.twoF[0])
            self.twoFX[0] = self.FstatResults.twoFPerDet(0)
            self.twoFX[1] = self.FstatResults.twoFPerDet(1)
            log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
                                               self.BSGLSetup)
            return log10_BSGL/np.log10(np.exp(1))

        detStat = 0
        for tstart, tend in zip(self.tboundaries[:-1], self.tboundaries[1:]):
            self.windowRange.t0 = int(tstart)  # TYPE UINT4
            self.windowRange.tau = int(tend - tstart)  # TYPE UINT4

            FS = lalpulsar.ComputeTransientFstatMap(
                self.FstatResults.multiFatoms[0], self.windowRange, False)

            if self.BSGL is False:
                detStat += 2*FS.F_mn.data[0][0]
                continue
759

Gregory Ashton's avatar
Gregory Ashton committed
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
            FstatResults_single = copy.copy(self.FstatResults)
            FstatResults_single.lenth = 1
            FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
            FS0 = lalpulsar.ComputeTransientFstatMap(
                FstatResults_single.multiFatoms[0], self.windowRange, False)
            FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
            FS1 = lalpulsar.ComputeTransientFstatMap(
                FstatResults_single.multiFatoms[0], self.windowRange, False)

            self.twoFX[0] = 2*FS0.F_mn.data[0][0]
            self.twoFX[1] = 2*FS1.F_mn.data[0][0]
            log10_BSGL = lalpulsar.ComputeBSGL(
                    2*FS.F_mn.data[0][0], self.twoFX, self.BSGLSetup)

            detStat += log10_BSGL/np.log10(np.exp(1))

        return detStat
777
778


Gregory Ashton's avatar
Gregory Ashton committed
779
class SemiCoherentGlitchSearch(BaseSearchClass, ComputeFstat):
780
781
782
    """ A semi-coherent glitch search

    This implements a basic `semi-coherent glitch F-stat in which the data
783
784
    is divided into segments either side of the proposed glitches and the
    fully-coherent F-stat in each segment is summed to give the semi-coherent
785
786
787
788
    F-stat
    """

    @initializer
789
790
791
    def __init__(self, label, outdir, tref, minStartTime, maxStartTime,
                 nglitch=0, sftfilepath=None, theta0_idx=0, BSGL=False,
                 minCoverFreq=None, maxCoverFreq=None,
792
                 detector=None, earth_ephem=None, sun_ephem=None):
793
794
795
796
        """
        Parameters
        ----------
        label, outdir: str
797
            A label and directory to read/write data from/to.
798
        tref, minStartTime, maxStartTime: int
799
800
801
802
            GPS seconds of the reference time, and start and end of the data.
        nglitch: int
            The (fixed) number of glitches; this can zero, but occasionally
            this causes issue (in which case just use ComputeFstat).
803
804
        sftfilepath: str
            File patern to match SFTs
805
806
807
808
        theta0_idx, int
            Index (zero-based) of which segment the theta refers to - uyseful
            if providing a tight prior on theta to allow the signal to jump
            too theta (and not just from)
809
810

        For all other parameters, see pyfstat.ComputeFStat.
811
812
813
814
815
816
817
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
        if self.earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if self.sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default
818
819
        self.transient = True
        self.binary = False
820
821
822
        self.init_computefstatistic_single_point()

    def compute_nglitch_fstat(self, F0, F1, F2, Alpha, Delta, *args):
823
        """ Returns the semi-coherent glitch summed twoF """
824
825

        args = list(args)
826
827
        tboundaries = ([self.minStartTime] + args[-self.nglitch:]
                       + [self.maxStartTime])
828
829
830
831
832
833
834
835
        delta_F0s = args[-3*self.nglitch:-2*self.nglitch]
        delta_F1s = args[-2*self.nglitch:-self.nglitch]
        delta_F2 = np.zeros(len(delta_F0s))
        delta_phi = np.zeros(len(delta_F0s))
        theta = [0, F0, F1, F2]
        delta_thetas = np.atleast_2d(
                np.array([delta_phi, delta_F0s, delta_F1s, delta_F2]).T)

836
837
        thetas = self.calculate_thetas(theta, delta_thetas, tboundaries,
                                       theta0_idx=self.theta0_idx)
838
839

        twoFSum = 0
840
        for i, theta_i_at_tref in enumerate(thetas):
841
842
843
            ts, te = tboundaries[i], tboundaries[i+1]

            twoFVal = self.run_computefstatistic_single_point(
844
845
                ts, te, theta_i_at_tref[1], theta_i_at_tref[2],
                theta_i_at_tref[3], Alpha, Delta)
846
847
            twoFSum += twoFVal

848
849
850
        if np.isfinite(twoFSum):
            return twoFSum
        else:
851
            return -np.inf
852
853
854

    def compute_glitch_fstat_single(self, F0, F1, F2, Alpha, Delta, delta_F0,
                                    delta_F1, tglitch):
855
856
        """ Returns the semi-coherent glitch summed twoF for nglitch=1

857
        Note: OBSOLETE, used only for testing
858
        """
859
860
861
862
863
864
865
866
867
868
869

        theta = [F0, F1, F2]
        delta_theta = [delta_F0, delta_F1, 0]
        tref = self.tref

        theta_at_glitch = self.shift_coefficients(theta, tglitch - tref)
        theta_post_glitch_at_glitch = theta_at_glitch + delta_theta
        theta_post_glitch = self.shift_coefficients(
            theta_post_glitch_at_glitch, tref - tglitch)

        twoFsegA = self.run_computefstatistic_single_point(
870
            self.minStartTime, tglitch, theta[0], theta[1], theta[2], Alpha,
871
872
            Delta)

873
        if tglitch == self.maxStartTime:
874
875
876
            return twoFsegA

        twoFsegB = self.run_computefstatistic_single_point(
877
            tglitch, self.maxStartTime, theta_post_glitch[0],
878
879
880
881
882
883
            theta_post_glitch[1], theta_post_glitch[2], Alpha,
            Delta)

        return twoFsegA + twoFsegB


Gregory Ashton's avatar
Gregory Ashton committed
884
885
class MCMCSearch(BaseSearchClass):
    """ MCMC search using ComputeFstat"""
886
    @initializer
887
    def __init__(self, label, outdir, sftfilepath, theta_prior, tref,
Gregory Ashton's avatar
Gregory Ashton committed
888
                 minStartTime, maxStartTime, nsteps=[100, 100],
889
890
                 nwalkers=100, ntemps=1, log10temperature_min=-5,
                 theta_initial=None, scatter_val=1e-10,
891
892
                 binary=False, BSGL=False, minCoverFreq=None,
                 maxCoverFreq=None, detector=None, earth_ephem=None,
893
                 sun_ephem=None, injectSources=None):
894
895
896
897
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
898
899
        sftfilepath: str
            File patern to match SFTs
900
        theta_prior: dict
901
902
903
904
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
905
906
907
908
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
909
        tref, minStartTime, maxStartTime: int
910
911
912
913
914
915
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
916
917
918
919
920
921
922
923
924
925
926
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
        binary: Bool
            If true, search over binary parameters
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
927
928
929
930
931
932
933
934
935
936
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

Gregory Ashton's avatar
Gregory Ashton committed
937
938
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
939
        self.add_log_file()
Gregory Ashton's avatar
Gregory Ashton committed
940
941
        logging.info(
            'Set-up MCMC search for model {} on data {}'.format(
942
                self.label, self.sftfilepath))
943
944
945
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
        self.unpack_input_theta()
        self.ndim = len(self.theta_keys)
946
947
948
949
        if self.log10temperature_min:
            self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
        else:
            self.betas = None
950

951
952
953
954
955
956
957
958
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

959
960
961
        self.log_input()

    def log_input(self):
962
        logging.info('theta_prior = {}'.format(self.theta_prior))
963
        logging.info('nwalkers={}'.format(self.nwalkers))
964
965
966
967
        logging.info('scatter_val = {}'.format(self.scatter_val))
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
        logging.info('log10temperature_min = {}'.format(
968
            self.log10temperature_min))
969
970
971

    def inititate_search_object(self):
        logging.info('Setting up search object')
Gregory Ashton's avatar
Gregory Ashton committed
972
        self.search = ComputeFstat(
973
974
975
976
            tref=self.tref, sftfilepath=self.sftfilepath,
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
            detector=self.detector, BSGL=self.BSGL, transient=False,
977
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
978
            binary=self.binary, injectSources=self.injectSources)
979
980

    def logp(self, theta_vals, theta_prior, theta_keys, search):
Gregory Ashton's avatar
Gregory Ashton committed
981
        H = [self.generic_lnprior(**theta_prior[key])(p) for p, key in
982
983
984
985
986
987
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
988
989
        FS = search.compute_fullycoherent_det_stat_single_point(
            *self.fixed_theta)
990
991
992
        return FS

    def unpack_input_theta(self):
993
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']
994
995
996
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
997
998
        full_theta_keys_copy = copy.copy(full_theta_keys)

999
1000
        full_theta_symbols = ['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                              r'$\delta$']
1001
1002
1003
1004
        if self.binary:
            full_theta_symbols += [
                'asini', 'period', 'period', 'ecc', 'tp', 'argp']

1005
1006
        self.theta_keys = []
        fixed_theta_dict = {}
1007
        for key, val in self.theta_prior.iteritems():
1008
1009
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
1010
                self.theta_keys.append(key)
1011
1012
1013
1014
1015
1016
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
1017
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

    def check_initial_points(self, p0):
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

                p0 = self.generate_new_p0_to_fix_initial_points(
                    p0, nt, initial_priors)

    def generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
1070

Gregory Ashton's avatar
Gregory Ashton committed
1071
    def run_sampler_with_progress_bar(self, sampler, ns, p0):
1072
1073
        for result in tqdm(sampler.sample(p0, iterations=ns), total=ns):
            pass
Gregory Ashton's avatar
Gregory Ashton committed
1074
1075
        return sampler

1076
    def run(self, proposal_scale_factor=2, create_plots=True, **kwargs):
1077

Gregory Ashton's avatar
Gregory Ashton committed
1078
        self.old_data_is_okay_to_use = self.check_old_data_is_okay_to_use()
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
            d = self.get_saved_data()
            self.sampler = d['sampler']
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
            return

        self.inititate_search_object()

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
1094
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
1095

Gregory Ashton's avatar
Gregory Ashton committed
1096
1097
        p0 = self.generate_initial_p0()
        p0 = self.apply_corrections_to_p0(p0)
1098
1099
1100
1101
1102
        self.check_initial_points(p0)

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
Gregory Ashton's avatar
Gregory Ashton committed
1103
                j, ninit_steps, n))
Gregory Ashton's avatar
Gregory Ashton committed
1104
            sampler = self.run_sampler_with_progress_bar(sampler, n, p0)
1105
1106
            logging.info("Mean acceptance fraction: {}"
                         .format(np.mean(sampler.acceptance_fraction, axis=1)))
1107
1108
1109
            if self.ntemps > 1:
                logging.info("Tswap acceptance fraction: {}"
                             .format(sampler.tswap_acceptance_fraction))
1110
1111
1112
1113
1114
1115
1116
            if create_plots:
                fig, axes = self.plot_walkers(sampler,
                                              symbols=self.theta_symbols,
                                              **kwargs)
                fig.tight_layout()
                fig.savefig('{}/{}_init_{}_walkers.png'.format(
                    self.outdir, self.label, j), dpi=200)
1117

1118
            p0 = self.get_new_p0(sampler)
Gregory Ashton's avatar
Gregory Ashton committed
1119
            p0 = self.apply_corrections_to_p0(p0)
1120
1121
1122
            self.check_initial_points(p0)
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
1123
1124
1125
1126
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
1127
1128
1129
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
Gregory Ashton's avatar
Gregory Ashton committed
1130
        sampler = self.run_sampler_with_progress_bar(sampler, nburn+nprod, p0)
1131
1132
        logging.info("Mean acceptance fraction: {}"
                     .format(np.mean(sampler.acceptance_fraction, axis=1)))
1133
1134
1135
        if self.ntemps > 1:
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
1136

1137
1138
1139
1140
1141
1142
        if create_plots:
            fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols,
                                          burnin_idx=nburn, **kwargs)
            fig.tight_layout()
            fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label),
                        dpi=200)
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
        self.sampler = sampler
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
        self.save_data(sampler, samples, lnprobs, lnlikes)

1153
    def plot_corner(self, figsize=(7, 7),  tglitch_ratio=False,
1154
1155
1156
                    add_prior=False, nstds=None, label_offset=0.4,
                    dpi=300, rc_context={}, **kwargs):

Gregory Ashton's avatar
Gregory Ashton committed
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
        if self.ndim < 2:
            with plt.rc_context(rc_context):
                fig, ax = plt.subplots(figsize=figsize)
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

1167
1168
1169
1170
1171
1172
        with plt.rc_context(rc_context):
            fig, axes = plt.subplots(self.ndim, self.ndim,
                                     figsize=figsize)

            samples_plt = copy.copy(self.samples)
            theta_symbols_plt = copy.copy(self.theta_symbols)
1173
1174
            theta_symbols_plt = [s.replace('_{glitch}', r'_\textrm{glitch}')
                                 for s in theta_symbols_plt]
1175
1176
1177
1178
1179

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
1180
1181
1182
                        samples_plt[:, j] = (
                            s - self.minStartTime)/(
                                self.maxStartTime - self.minStartTime)
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
                        theta_symbols_plt[j] = r'$R_{\textrm{glitch}}$'

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
            else:
                _range = None

            fig_triangle = corner.corner(samples_plt,
                                         labels=theta_symbols_plt,
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
                self.add_prior_to_corner(axes, samples_plt)

            fig_triangle.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
1225
1226
1227
1228
1229
1230

    def add_prior_to_corner(self, axes, samples):
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            xlim = ax.get_xlim()
            s = samples[:, i]
Gregory Ashton's avatar
Gregory Ashton committed
1231
            prior = self.generic_lnprior(**self.theta_prior[key])
1232
1233
1234
1235
1236
1237
            x = np.linspace(s.min(), s.max(), 100)
            ax2 = ax.twinx()
            ax2.get_yaxis().set_visible(False)
            ax2.plot(x, [prior(xi) for xi in x], '-r')
            ax.set_xlim(xlim)

1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
    def plot_prior_posterior(self, normal_stds=2):
        """ Plot the posterior in the context of the prior """
        fig, axes = plt.subplots(nrows=self.ndim, figsize=(8, 4*self.ndim))
        N = 1000
        from scipy.stats import gaussian_kde

        for i, (ax, key) in enumerate(zip(axes, self.theta_keys)):
            prior_dict = self.theta_prior[key]
            prior_func = self.generic_lnprior(**prior_dict)
            if prior_dict['type'] == 'unif':
                x = np.linspace(prior_dict['lower'], prior_dict['upper'], N)
                prior = prior_func(x)
                prior[0] = 0
                prior[-1] = 0
            elif prior_dict['type'] == 'norm':
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = prior_func(x)
1257
1258
1259
1260
1261
            elif prior_dict['type'] == 'halfnorm':
                lower = prior_dict['loc']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
Gregory Ashton's avatar
Gregory Ashton committed
1262
1263
1264
1265
1266
            elif prior_dict['type'] == 'neghalfnorm':
                upper = prior_dict['loc']
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
            else:
                raise ValueError('Not implemented for prior type {}'.format(
                    prior_dict['type']))
            priorln = ax.plot(x, prior, 'r', label='prior')
            ax.set_xlabel(self.theta_symbols[i])

            s = self.samples[:, i]
            while len(s) > 10**4:
                # random downsample to avoid slow calculation of kde
                s = np.random.choice(s, size=int(len(s)/2.))
            kde = gaussian_kde(s)
            ax2 = ax.twinx()
            postln = ax2.plot(x, kde.pdf(x), 'k', label='posterior')
            ax2.set_yticklabels([])
            ax.set_yticklabels([])

        lns = priorln + postln
        labs = [l.get_label() for l in lns]
        axes[0].legend(lns, labs, loc=1, framealpha=0.8)

        fig.savefig('{}/{}_prior_posterior.png'.format(
            self.outdir, self.label))

1290
    def plot_cumulative_max(self, **kwargs):
Gregory Ashton's avatar
Gregory Ashton committed
1291
1292
1293
1294
        d, maxtwoF = self.get_max_twoF()
        for key, val in self.theta_prior.iteritems():
            if key not in d:
                d[key] = val
1295
1296
1297
1298
1299
1300

        if hasattr(self, 'search') is False:
            self.inititate_search_object()
        if self.binary is False:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
1301
                Alpha=d['Alpha'], Delta=d['Delta'],
1302
                tstart=self.minStartTime, tend=self.maxStartTime,
1303
                **kwargs)
1304
1305
1306
1307
1308
        else:
            self.search.plot_twoF_cumulative(
                self.