mcmc_based_searches.py 93.4 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
2
""" Searches using MCMC-based methods """

3
import sys
Gregory Ashton's avatar
Gregory Ashton committed
4
import os
5
import copy
Gregory Ashton's avatar
Gregory Ashton committed
6
import logging
7
from collections import OrderedDict
8
import subprocess
9
10
11
12
13
14
15
16

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import emcee
import corner
import dill as pickle

17
import core
18
from core import tqdm, args, earth_ephem, sun_ephem, read_par
19
from optimal_setup_functions import get_V_estimate
Gregory Ashton's avatar
Gregory Ashton committed
20
21
from optimal_setup_functions import get_optimal_setup
import helper_functions
22
23


24
class MCMCSearch(core.BaseSearchClass):
Gregory Ashton's avatar
Gregory Ashton committed
25
    """ MCMC search using ComputeFstat"""
26
27

    symbol_dictionary = dict(
28
        F0='$f$', F1='$\dot{f}$', F2='$\ddot{f}$', Alpha=r'$\alpha$',
29
30
        Delta='$\delta$', asini='asini', period='P', ecc='ecc', tp='tp',
        argp='argp')
31
    unit_dictionary = dict(
32
33
        F0='Hz', F1='Hz/s', F2='Hz/s$^2$', Alpha=r'rad', Delta='rad',
        asini='', period='s', ecc='', tp='', argp='')
34
35
36
    rescale_dictionary = {}


Gregory Ashton's avatar
Gregory Ashton committed
37
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
38
    def __init__(self, label, outdir, theta_prior, tref, minStartTime,
39
                 maxStartTime, sftfilepattern=None, nsteps=[100, 100],
40
                 nwalkers=100, ntemps=1, log10temperature_min=-5,
41
                 theta_initial=None, scatter_val=1e-10, rhohatmax=1000,
42
                 binary=False, BSGL=False, minCoverFreq=None, SSBprec=None,
43
                 maxCoverFreq=None, detectors=None, earth_ephem=None,
44
                 sun_ephem=None, injectSources=None, assumeSqrtSX=None):
45
46
47
48
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
49
        sftfilepattern: str
50
51
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
52
        theta_prior: dict
53
54
55
56
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
57
58
59
60
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
61
        tref, minStartTime, maxStartTime: int
62
63
64
65
66
67
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
68
69
70
71
72
73
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
74
75
76
77
        rhohatmax: float
            Upper bound for the SNR scale parameter (required to normalise the
            Bayes factor) - this needs to be carefully set when using the
            evidence.
78
79
        binary: Bool
            If true, search over binary parameters
80
        detectors: str
81
82
            Two character reference to the data to use, specify None for no
            contraint.
83
84
85
86
87
88
89
90
91
92
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

Gregory Ashton's avatar
Gregory Ashton committed
93
94
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
95
        self._add_log_file()
96
        logging.info('Set-up MCMC search for model {}'.format(self.label))
97
98
        if sftfilepattern:
            logging.info('Using data {}'.format(self.sftfilepattern))
99
        else:
100
            logging.info('No sftfilepattern given')
101
102
        if injectSources:
            logging.info('Inject sources: {}'.format(injectSources))
103
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
104
        self._unpack_input_theta()
105
        self.ndim = len(self.theta_keys)
106
107
108
109
        if self.log10temperature_min:
            self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
        else:
            self.betas = None
110

111
112
113
114
115
116
117
118
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

119
120
121
122
        self._set_likelihoodcoef()

    def _set_likelihoodcoef(self):
        self.likelihoodcoef = np.log(70./self.rhohatmax**4)
123

124
        self._log_input()
125

126
    def _log_input(self):
127
        logging.info('theta_prior = {}'.format(self.theta_prior))
128
        logging.info('nwalkers={}'.format(self.nwalkers))
129
130
131
132
        logging.info('scatter_val = {}'.format(self.scatter_val))
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
        logging.info('log10temperature_min = {}'.format(
133
            self.log10temperature_min))
134

135
    def _initiate_search_object(self):
136
        logging.info('Setting up search object')
137
        self.search = core.ComputeFstat(
138
            tref=self.tref, sftfilepattern=self.sftfilepattern,
139
140
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
141
            detectors=self.detectors, BSGL=self.BSGL, transient=False,
142
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
143
            binary=self.binary, injectSources=self.injectSources,
144
            assumeSqrtSX=self.assumeSqrtSX, SSBprec=self.SSBprec)
145
146

    def logp(self, theta_vals, theta_prior, theta_keys, search):
147
        H = [self._generic_lnprior(**theta_prior[key])(p) for p, key in
148
149
150
151
152
153
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
154
155
        FS = search.compute_fullycoherent_det_stat_single_point(
            *self.fixed_theta)
156
        return FS + self.likelihoodcoef
157

158
    def _unpack_input_theta(self):
159
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']
160
161
162
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
163
164
        full_theta_keys_copy = copy.copy(full_theta_keys)

165
166
        full_theta_symbols = ['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                              r'$\delta$']
167
168
        if self.binary:
            full_theta_symbols += [
169
                'asini', 'period', 'ecc', 'tp', 'argp']
170

171
172
        self.theta_keys = []
        fixed_theta_dict = {}
173
        for key, val in self.theta_prior.iteritems():
174
175
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
176
                self.theta_keys.append(key)
177
178
179
180
181
182
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
183
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

199
    def _check_initial_points(self, p0):
200
201
202
203
204
205
206
207
208
209
210
211
212
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

213
                p0 = self._generate_new_p0_to_fix_initial_points(
214
215
                    p0, nt, initial_priors)

216
    def _generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
236

237
    def _OLD_run_sampler_with_progress_bar(self, sampler, ns, p0):
238
239
        for result in tqdm(sampler.sample(p0, iterations=ns), total=ns):
            pass
Gregory Ashton's avatar
Gregory Ashton committed
240
241
        return sampler

242
243
    def setup_convergence_testing(
            self, convergence_period=10, convergence_length=10,
244
            convergence_burnin_fraction=0.25, convergence_threshold_number=10,
245
            convergence_threshold=1.2, convergence_prod_threshold=2,
246
            convergence_plot_upper_lim=2, convergence_early_stopping=True):
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        """
        If called, convergence testing is used during the MCMC simulation

        This uses the Gelmanr-Rubin statistic based on the ratio of between and
        within walkers variance. The original statistic was developed for
        multiple (independent) MCMC simulations, in this context we simply use
        the walkers

        Parameters
        ----------
        convergence_period: int
            period (in number of steps) at which to test convergence
        convergence_length: int
            number of steps to use in testing convergence - this should be
            large enough to measure the variance, but if it is too long
            this will result in incorect early convergence tests
        convergence_burnin_fraction: float [0, 1]
            the fraction of the burn-in period after which to start testing
        convergence_threshold_number: int
            the number of consecutive times where the test passes after which
            to break the burn-in and go to production
        convergence_threshold: float
            the threshold to use in diagnosing convergence. Gelman & Rubin
            recomend a value of 1.2, 1.1 for strict convergence
        convergence_prod_threshold: float
            the threshold to test the production values with
273
274
        convergence_plot_upper_lim: float
            the upper limit to use in the diagnostic plot
275
276
        convergence_early_stopping: bool
            if true, stop the burnin early if convergence is reached
277
        """
278
279
280
281
282
283
284

        if convergence_length > convergence_period:
            raise ValueError('convergence_length must be < convergence_period')
        logging.info('Setting up convergence testing')
        self.convergence_length = convergence_length
        self.convergence_period = convergence_period
        self.convergence_burnin_fraction = convergence_burnin_fraction
285
        self.convergence_prod_threshold = convergence_prod_threshold
286
287
288
289
290
        self.convergence_diagnostic = []
        self.convergence_diagnosticx = []
        self.convergence_threshold_number = convergence_threshold_number
        self.convergence_threshold = convergence_threshold
        self.convergence_number = 0
291
        self.convergence_plot_upper_lim = convergence_plot_upper_lim
292
        self.convergence_early_stopping = convergence_early_stopping
293

294
    def _get_convergence_statistic(self, i, sampler):
295
        s = sampler.chain[0, :, i-self.convergence_length+1:i+1, :]
296
297
298
        N = float(self.convergence_length)
        M = float(self.nwalkers)
        W = np.mean(np.var(s, axis=1), axis=0)
299
300
        per_walker_mean = np.mean(s, axis=1)
        mean = np.mean(per_walker_mean, axis=0)
301
302
        B = N / (M-1.) * np.sum((per_walker_mean-mean)**2, axis=0)
        Vhat = (N-1)/N * W + (M+1)/(M*N) * B
303
        c = np.sqrt(Vhat/W)
304
        self.convergence_diagnostic.append(c)
305
        self.convergence_diagnosticx.append(i - self.convergence_length/2)
306
307
        return c

308
    def _burnin_convergence_test(self, i, sampler, nburn):
309
310
        if i < self.convergence_burnin_fraction*nburn:
            return False
311
        if np.mod(i+1, self.convergence_period) != 0:
312
            return False
313
        c = self._get_convergence_statistic(i, sampler)
314
315
        if np.all(c < self.convergence_threshold):
            self.convergence_number += 1
316
317
        else:
            self.convergence_number = 0
318
319
        if self.convergence_early_stopping:
            return self.convergence_number > self.convergence_threshold_number
320

321
    def _prod_convergence_test(self, i, sampler, nburn):
322
323
324
        testA = i > nburn + self.convergence_length
        testB = np.mod(i+1, self.convergence_period) == 0
        if testA and testB:
325
            self._get_convergence_statistic(i, sampler)
326

327
    def _check_production_convergence(self, k):
328
329
330
331
332
333
334
335
        bools = np.any(
            np.array(self.convergence_diagnostic)[k:, :]
            > self.convergence_prod_threshold, axis=1)
        if np.any(bools):
            logging.warning(
                '{} convergence tests in the production run of {} failed'
                .format(np.sum(bools), len(bools)))

336
    def _run_sampler(self, sampler, p0, nprod=0, nburn=0):
337
        if hasattr(self, 'convergence_period'):
338
339
340
341
            logging.info('Running {} burn-in steps with convergence testing'
                         .format(nburn))
            iterator = tqdm(sampler.sample(p0, iterations=nburn), total=nburn)
            for i, output in enumerate(iterator):
342
                if self._burnin_convergence_test(i, sampler, nburn):
343
344
345
346
347
348
349
350
351
352
353
                    logging.info(
                        'Converged at {} before max number {} of steps reached'
                        .format(i, nburn))
                    self.convergence_idx = i
                    break
            iterator.close()
            logging.info('Running {} production steps'.format(nprod))
            j = nburn
            k = len(self.convergence_diagnostic)
            for result in tqdm(sampler.sample(output[0], iterations=nprod),
                               total=nprod):
354
                self._prod_convergence_test(j, sampler, nburn)
355
                j += 1
356
            self._check_production_convergence(k)
357
358
359
360
        else:
            for result in tqdm(sampler.sample(p0, iterations=nburn+nprod),
                               total=nburn+nprod):
                pass
361

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
        logging.info("Mean acceptance fraction: {}"
                     .format(np.mean(sampler.acceptance_fraction, axis=1)))
        if self.ntemps > 1:
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
        try:
            logging.info("Autocorrelation length: {}".format(
                sampler.get_autocorr_time(c=5)))
        except emcee.autocorr.AutocorrError as e:
            logging.warning(
                'Autocorrelation calculation failed with message {}'.format(e))

        return sampler

    def run(self, proposal_scale_factor=2, create_plots=True, c=5, **kwargs):
        """ Run the MCMC simulatation

        Parameters
        ----------
        proposal_scale_factor: float
            The proposal scale factor used by the sampler, see Goodman & Weare
            (2010). If the acceptance fraction is too low, you can raise it by
            decreasing the a parameter; and if it is too high, you can reduce
            it by increasing the a parameter [Foreman-Mackay (2013)].
        create_plots: bool
            If true, save trace plots of the walkers
        c: int
            The minimum number of autocorrelation times needed to trust the
            result when estimating the autocorrelation time (see
            emcee.autocorr.integrated_time for further details. Default is 5
        **kwargs:
            Passed to _plot_walkers to control the figures

        """
396

397
        self.old_data_is_okay_to_use = self._check_old_data_is_okay_to_use()
398
399
400
        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
401
            d = self.get_saved_data_dictionary()
402
403
404
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
405
            self.all_lnlikelihood = d['all_lnlikelihood']
406
407
            return

408
        self._initiate_search_object()
409
410
411
412

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
413
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
414

415
416
417
        p0 = self._generate_initial_p0()
        p0 = self._apply_corrections_to_p0(p0)
        self._check_initial_points(p0)
418
419
420
421

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
Gregory Ashton's avatar
Gregory Ashton committed
422
                j, ninit_steps, n))
423
            sampler = self._run_sampler(sampler, p0, nburn=n)
424
            if create_plots:
425
                fig, axes = self._plot_walkers(sampler,
426
427
                                               symbols=self.theta_symbols,
                                               **kwargs)
428
429
                fig.tight_layout()
                fig.savefig('{}/{}_init_{}_walkers.png'.format(
430
                    self.outdir, self.label, j), dpi=400)
431

432
433
434
            p0 = self._get_new_p0(sampler)
            p0 = self._apply_corrections_to_p0(p0)
            self._check_initial_points(p0)
435
436
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
437
438
439
440
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
441
442
443
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
444
        sampler = self._run_sampler(sampler, p0, nburn=nburn, nprod=nprod)
445
        if create_plots:
446
            fig, axes = self._plot_walkers(sampler, symbols=self.theta_symbols,
447
                                           nprod=nprod, **kwargs)
448
449
450
            fig.tight_layout()
            fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label),
                        dpi=200)
451
452
453
454

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
455
        all_lnlikelihood = sampler.lnlikelihood[:, :, nburn:]
456
457
458
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
459
460
        self.all_lnlikelihood = all_lnlikelihood
        self._save_data(sampler, samples, lnprobs, lnlikes, all_lnlikelihood)
461

462
    def _get_rescale_multiplier_for_key(self, key):
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
        """ Get the rescale multiplier from the rescale_dictionary

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
        if key not in self.rescale_dictionary:
            return 1

        if 'multiplier' in self.rescale_dictionary[key]:
            val = self.rescale_dictionary[key]['multiplier']
            if type(val) == str:
                if hasattr(self, val):
                    multiplier = getattr(
                        self, self.rescale_dictionary[key]['multiplier'])
                else:
                    raise ValueError(
                        "multiplier {} not a class attribute".format(val))
            else:
                multiplier = val
        else:
            multiplier = 1
        return multiplier

487
    def _get_rescale_subtractor_for_key(self, key):
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
        """ Get the rescale subtractor from the rescale_dictionary

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
        if key not in self.rescale_dictionary:
            return 0

        if 'subtractor' in self.rescale_dictionary[key]:
            val = self.rescale_dictionary[key]['subtractor']
            if type(val) == str:
                if hasattr(self, val):
                    subtractor = getattr(
                        self, self.rescale_dictionary[key]['subtractor'])
                else:
                    raise ValueError(
                        "subtractor {} not a class attribute".format(val))
            else:
                subtractor = val
        else:
            subtractor = 0
        return subtractor

512
    def _scale_samples(self, samples, theta_keys):
513
        """ Scale the samples using the rescale_dictionary """
514
515
516
517
        for key in theta_keys:
            if key in self.rescale_dictionary:
                idx = theta_keys.index(key)
                s = samples[:, idx]
518
                subtractor = self._get_rescale_subtractor_for_key(key)
519
                s = s - subtractor
520
                multiplier = self._get_rescale_multiplier_for_key(key)
521
                s *= multiplier
522
523
                samples[:, idx] = s

524
525
        return samples

526
    def _get_labels(self):
527
        """ Combine the units, symbols and rescaling to give labels """
528

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
        labels = []
        for key in self.theta_keys:
            label = None
            s = self.symbol_dictionary[key]
            s.replace('_{glitch}', r'_\textrm{glitch}')
            u = self.unit_dictionary[key]
            if key in self.rescale_dictionary:
                if 'symbol' in self.rescale_dictionary[key]:
                    s = self.rescale_dictionary[key]['symbol']
                if 'label' in self.rescale_dictionary[key]:
                    label = self.rescale_dictionary[key]['label']
                if 'unit' in self.rescale_dictionary[key]:
                    u = self.rescale_dictionary[key]['unit']
            if label is None:
                label = '{} \n [{}]'.format(s, u)
            labels.append(label)
        return labels
546

547
548
    def plot_corner(self, figsize=(7, 7), add_prior=False, nstds=None,
                    label_offset=0.4, dpi=300, rc_context={},
549
                    tglitch_ratio=False, fig_and_axes=None, save_fig=True,
550
                    **kwargs):
551
552
553
554
555
556
557
558
559
        """ Generate a corner plot of the posterior

        Using the `corner` package (https://pypi.python.org/pypi/corner/),
        generate estimates of the posterior from the production samples.

        Parameters
        ----------
        figsize: tuple (7, 7)
            Figure size in inches (passed to plt.subplots)
560
561
562
        add_prior: bool, str
            If true, plot the prior as a red line. If 'full' then for uniform
            priors plot the full extent of the prior.
563
564
565
566
567
568
569
570
571
572
573
574
575
576
        nstds: float
            The number of standard deviations to plot centered on the mean
        label_offset: float
            Offset the labels from the plot: useful to precent overlapping the
            tick labels with the axis labels
        dpi: int
            Passed to plt.savefig
        rc_context: dict
            Dictionary of rc values to set while generating the figure (see
            matplotlib rc for more details)
        tglitch_ratio: bool
            If true, and tglitch is a parameter, plot posteriors as the
            fractional time at which the glitch occurs instead of the actual
            time
577
578
579
580
581
        fig_and_axes: tuple
            fig and axes to plot on, the axes must be of the right shape,
            namely (ndim, ndim)
        save_fig: bool
            If true, save the figure, else return the fig, axes
582

583
        Note: kwargs are passed on to corner.corner
584
585

        """
586

587
588
589
590
        if 'truths' in kwargs and len(kwargs['truths']) != self.ndim:
            logging.warning('len(Truths) != ndim, Truths will be ignored')
            kwargs['truths'] = None

Gregory Ashton's avatar
Gregory Ashton committed
591
592
        if self.ndim < 2:
            with plt.rc_context(rc_context):
593
594
595
596
                if fig_and_axes is None:
                    fig, ax = plt.subplots(figsize=figsize)
                else:
                    fig, ax = fig_and_axes
Gregory Ashton's avatar
Gregory Ashton committed
597
598
599
600
601
602
603
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

604
        with plt.rc_context(rc_context):
605
606
607
608
609
            if fig_and_axes is None:
                fig, axes = plt.subplots(self.ndim, self.ndim,
                                         figsize=figsize)
            else:
                fig, axes = fig_and_axes
610
611

            samples_plt = copy.copy(self.samples)
612
            labels = self._get_labels()
613

614
            samples_plt = self._scale_samples(samples_plt, self.theta_keys)
615
616
617
618
619

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
620
621
622
                        samples_plt[:, j] = (
                            s - self.minStartTime)/(
                                self.maxStartTime - self.minStartTime)
623
                        labels[j] = r'$R_{\textrm{glitch}}$'
624
625
626
627
628
629
630

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
631
632
            elif 'range' in kwargs:
                _range = kwargs.pop('range')
633
634
635
            else:
                _range = None

636
637
638
639
            hist_kwargs = kwargs.pop('hist_kwargs', dict())
            if 'normed' not in hist_kwargs:
                hist_kwargs['normed'] = True

640
            fig_triangle = corner.corner(samples_plt,
641
                                         labels=labels,
642
643
644
645
646
647
648
649
650
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
651
                                         hist_kwargs=hist_kwargs,
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
668
                self._add_prior_to_corner(axes, self.samples, add_prior)
669

670
671
672
673
674
            if save_fig:
                fig_triangle.savefig('{}/{}_corner.png'.format(
                    self.outdir, self.label), dpi=dpi)
            else:
                return fig, axes
675

676
    def _add_prior_to_corner(self, axes, samples, add_prior):
677
678
679
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            s = samples[:, i]
680
681
682
683
684
685
686
687
688
689
            lnprior = self._generic_lnprior(**self.theta_prior[key])
            if add_prior == 'full' and self.theta_prior[key]['type'] == 'unif':
                lower = self.theta_prior[key]['lower']
                upper = self.theta_prior[key]['upper']
                r = upper-lower
                xlim = [lower-0.05*r, upper+0.05*r]
                x = np.linspace(xlim[0], xlim[1], 1000)
            else:
                xlim = ax.get_xlim()
                x = np.linspace(s.min(), s.max(), 1000)
690
691
            multiplier = self._get_rescale_multiplier_for_key(key)
            subtractor = self._get_rescale_subtractor_for_key(key)
692
693
694
695
696
697
698
699
            ax.plot((x-subtractor)*multiplier,
                    [np.exp(lnprior(xi)) for xi in x], '-C3',
                    label='prior')

            for j in range(i, self.ndim):
                axes[j][i].set_xlim(xlim[0], xlim[1])
            for k in range(0, i):
                axes[i][k].set_ylim(xlim[0], xlim[1])
700

701
702
703
704
705
706
707
708
    def plot_prior_posterior(self, normal_stds=2):
        """ Plot the posterior in the context of the prior """
        fig, axes = plt.subplots(nrows=self.ndim, figsize=(8, 4*self.ndim))
        N = 1000
        from scipy.stats import gaussian_kde

        for i, (ax, key) in enumerate(zip(axes, self.theta_keys)):
            prior_dict = self.theta_prior[key]
709
            prior_func = self._generic_lnprior(**prior_dict)
710
711
712
713
714
            if prior_dict['type'] == 'unif':
                x = np.linspace(prior_dict['lower'], prior_dict['upper'], N)
                prior = prior_func(x)
                prior[0] = 0
                prior[-1] = 0
Gregory Ashton's avatar
Gregory Ashton committed
715
716
717
718
719
            elif prior_dict['type'] == 'log10unif':
                upper = prior_dict['log10upper']
                lower = prior_dict['log10lower']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
720
721
722
723
724
            elif prior_dict['type'] == 'norm':
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = prior_func(x)
725
726
727
728
729
            elif prior_dict['type'] == 'halfnorm':
                lower = prior_dict['loc']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
Gregory Ashton's avatar
Gregory Ashton committed
730
731
732
733
734
            elif prior_dict['type'] == 'neghalfnorm':
                upper = prior_dict['loc']
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
735
736
737
            else:
                raise ValueError('Not implemented for prior type {}'.format(
                    prior_dict['type']))
738
            priorln = ax.plot(x, prior, 'C3', label='prior')
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
            ax.set_xlabel(self.theta_symbols[i])

            s = self.samples[:, i]
            while len(s) > 10**4:
                # random downsample to avoid slow calculation of kde
                s = np.random.choice(s, size=int(len(s)/2.))
            kde = gaussian_kde(s)
            ax2 = ax.twinx()
            postln = ax2.plot(x, kde.pdf(x), 'k', label='posterior')
            ax2.set_yticklabels([])
            ax.set_yticklabels([])

        lns = priorln + postln
        labs = [l.get_label() for l in lns]
        axes[0].legend(lns, labs, loc=1, framealpha=0.8)

        fig.savefig('{}/{}_prior_posterior.png'.format(
            self.outdir, self.label))

758
    def plot_cumulative_max(self, **kwargs):
759
760
761
762
        """ Plot the cumulative twoF for the maximum posterior estimate

        See the pyfstat.core.plot_twoF_cumulative function for further details
        """
Gregory Ashton's avatar
Gregory Ashton committed
763
764
765
766
        d, maxtwoF = self.get_max_twoF()
        for key, val in self.theta_prior.iteritems():
            if key not in d:
                d[key] = val
767
768

        if hasattr(self, 'search') is False:
769
            self._initiate_search_object()
770
771
772
        if self.binary is False:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
773
                Alpha=d['Alpha'], Delta=d['Delta'],
774
                tstart=self.minStartTime, tend=self.maxStartTime,
775
                **kwargs)
776
777
778
779
780
        else:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
                Alpha=d['Alpha'], Delta=d['Delta'], asini=d['asini'],
                period=d['period'], ecc=d['ecc'], argp=d['argp'], tp=d['argp'],
781
                tstart=self.minStartTime, tend=self.maxStartTime, **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
782

783
    def _generic_lnprior(self, **kwargs):
784
785
786
787
788
789
790
791
792
        """ Return a lambda function of the pdf

        Parameters
        ----------
        kwargs: dict
            A dictionary containing 'type' of pdf and shape parameters

        """

Gregory Ashton's avatar
Gregory Ashton committed
793
        def log_of_unif(x, a, b):
794
795
796
797
798
799
800
801
802
803
804
805
806
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

Gregory Ashton's avatar
Gregory Ashton committed
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
        def log_of_log10unif(x, log10lower, log10upper):
            log10x = np.log10(x)
            above = log10x < log10upper
            below = log10x > log10lower
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(x*np.log(10)*(log10upper-log10lower))
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(x*np.log(10)*(log10upper-log10lower))
                return p

        def log_of_halfnorm(x, loc, scale):
823
            if x < loc:
824
825
826
827
828
829
830
831
832
833
834
835
836
837
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
Gregory Ashton's avatar
Gregory Ashton committed
838
839
840
841
            return lambda x: log_of_unif(x, kwargs['lower'], kwargs['upper'])
        if kwargs['type'] == 'log10unif':
            return lambda x: log_of_log10unif(
                x, kwargs['log10lower'], kwargs['log10upper'])
842
        elif kwargs['type'] == 'halfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
843
            return lambda x: log_of_halfnorm(x, kwargs['loc'], kwargs['scale'])
844
        elif kwargs['type'] == 'neghalfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
845
846
            return lambda x: log_of_halfnorm(
                -x, kwargs['loc'], kwargs['scale'])
847
848
849
850
851
852
853
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

854
    def _generate_rv(self, **kwargs):
855
856
857
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
Gregory Ashton's avatar
Gregory Ashton committed
858
859
860
        if dist_type == "log10unif":
            return 10**(np.random.uniform(low=kwargs['log10lower'],
                                          high=kwargs['log10upper']))
861
862
863
864
865
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
866
867
868
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
869
870
871
872
873
874
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

875
    def _plot_walkers(self, sampler, symbols=None, alpha=0.8, color="k",
876
877
                      temp=0, lw=0.1, nprod=0, add_det_stat_burnin=False,
                      fig=None, axes=None, xoffset=0, plot_det_stat=False,
878
                      context='ggplot', subtractions=None, labelpad=0.05):
879
880
        """ Plot all the chains from a sampler """

881
882
883
884
885
        if context not in plt.style.available:
            raise ValueError((
                'The requested context {} is not available; please select a'
                ' context from `plt.style.available`').format(context))

886
887
888
        if np.ndim(axes) > 1:
            axes = axes.flatten()

889
890
891
892
893
894
895
896
897
898
899
900
901
        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
            chain = sampler.chain[:, :, :]
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
            chain = sampler.chain[temp, :, :, :]

902
903
        if subtractions is None:
            subtractions = [0 for i in range(ndim)]
904
905
906
        else:
            if len(subtractions) != self.ndim:
                raise ValueError('subtractions must be of length ndim')
907

908
909
910
911
        if plot_det_stat:
            extra_subplots = 1
        else:
            extra_subplots = 0
912
        with plt.style.context((context)):
Gregory Ashton's avatar
Gregory Ashton committed
913
            plt.rcParams['text.usetex'] = True
Gregory Ashton's avatar
Gregory Ashton committed
914
            if fig is None and axes is None:
915
                fig = plt.figure(figsize=(4, 3.0*ndim))
916
917
                ax = fig.add_subplot(ndim+extra_subplots, 1, 1)
                axes = [ax] + [fig.add_subplot(ndim+extra_subplots, 1, i)
Gregory Ashton's avatar
Gregory Ashton committed
918
                               for i in range(2, ndim+1)]
919

Gregory Ashton's avatar
Gregory Ashton committed
920
            idxs = np.arange(chain.shape[1])
921
922
923
924
925
            burnin_idx = chain.shape[1] - nprod
            if hasattr(self, 'convergence_idx'):
                convergence_idx = self.convergence_idx
            else:
                convergence_idx = burnin_idx
926
927
            if ndim > 1:
                for i in range(ndim):
928
                    axes[i].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
929
                    cs = chain[:, :, i].T
930
                    if burnin_idx > 0:
931
932
                        axes[i].plot(xoffset+idxs[:convergence_idx+1],
                                     cs[:convergence_idx+1]-subtractions[i],
933
                                     color="C3", alpha=alpha,
Gregory Ashton's avatar
Gregory Ashton committed
934
                                     lw=lw)
935
                        axes[i].axvline(xoffset+convergence_idx,
936
                                        color='k', ls='--', lw=0.25)
937
938
                    axes[i].plot(xoffset+idxs[burnin_idx:],
                                 cs[burnin_idx:]-subtractions[i],
Gregory Ashton's avatar
Gregory Ashton committed
939
                                 color="k", alpha=alpha, lw=lw)
940
                    if symbols:
941
                        if subtractions[i] == 0:
942
                            axes[i].set_ylabel(symbols[i], labelpad=labelpad)
943
944
                        else:
                            axes[i].set_ylabel(
945
946
                                symbols[i]+'$-$'+symbols[i]+'$_0$',
                                labelpad=labelpad)
947

948
949
                    if hasattr(self, 'convergence_diagnostic'):
                        ax = axes[i].twinx()
950
951
                        axes[i].set_zorder(ax.get_zorder()+1)
                        axes[i].patch.set_visible(False)
952
953
                        c_x = np.array(self.convergence_diagnosticx)
                        c_y = np.array(self.convergence_diagnostic)
954
                        break_idx = np.argmin(np.abs(c_x - burnin_idx))
955
956
957
958
                        ax.plot(c_x[:break_idx], c_y[:break_idx, i], '-C0',
                                zorder=-10)
                        ax.plot(c_x[break_idx:], c_y[break_idx:, i], '-C0',
                                zorder=-10)
959
                        ax.set_ylabel('PSRF')
960
                        ax.ticklabel_format(useOffset=False)
961
                        ax.set_ylim(0.5, self.convergence_plot_upper_lim)
962
            else:
Gregory Ashton's avatar
Gregory Ashton committed
963
                axes[0].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
964
                cs = chain[:, :, temp].T
Gregory Ashton's avatar
Gregory Ashton committed
965
966
                if burnin_idx:
                    axes[0].plot(idxs[:burnin_idx], cs[:burnin_idx],
967
                                 color="C3", alpha=alpha, lw=lw)
Gregory Ashton's avatar
Gregory Ashton committed
968
969
970
                axes[0].plot(idxs[burnin_idx:], cs[burnin_idx:], color="k",
                             alpha=alpha, lw=lw)
                if symbols:
971
                    axes[0].set_ylabel(symbols[0], labelpad=labelpad)
972

Gregory Ashton's avatar
Gregory Ashton committed
973
974
            axes[-1].set_xlabel(r'$\textrm{Number of steps}$', labelpad=0.2)

975
            if plot_det_stat:
976
977
978
                if len(axes) == ndim:
                    axes.append(fig.add_subplot(ndim+1, 1, ndim+1))

979
980
981
                lnl = sampler.lnlikelihood[temp, :, :]
                if burnin_idx and add_det_stat_burnin:
                    burn_in_vals = lnl[:, :burnin_idx].flatten()
982
983
                    try:
                        axes[-1].hist(burn_in_vals[~np.isnan(burn_in_vals)],
984
                                      bins=50, histtype='step', color='C3')
985
986
987
988
                    except ValueError:
                        logging.info('Det. Stat. hist failed, most likely all '
                                     'values where the same')
                        pass
989
990
991
                else:
                    burn_in_vals = []
                prod_vals = lnl[:, burnin_idx:].flatten()
992
993
994
995
996
997
998
                try:
                    axes[-1].hist(prod_vals[~np.isnan(prod_vals)], bins=50,
                                  histtype='step', color='k')
                except ValueError:
                    logging.info('Det. Stat. hist failed, most likely all '
                                 'values where the same')
                    pass
999
1000
                if self.BSGL:
                    axes[-1].set_xlabel(r'$\mathcal{B}_\mathrm{S/GL}$')
For faster browsing, not all history is shown. View entire blame