mcmc_based_searches.py 71.2 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
2
""" Searches using MCMC-based methods """

3
import sys
Gregory Ashton's avatar
Gregory Ashton committed
4
import os
5
import copy
Gregory Ashton's avatar
Gregory Ashton committed
6
import logging
7
from collections import OrderedDict
8
9
10
11
12
13
14
15

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import emcee
import corner
import dill as pickle

16
17
from core import BaseSearchClass, ComputeFstat, SemiCoherentSearch
from optimal_setup_functions import get_V_estimate
Gregory Ashton's avatar
Gregory Ashton committed
18
19
20
from core import tqdm, args, earth_ephem, sun_ephem
from optimal_setup_functions import get_optimal_setup
import helper_functions
21
22


Gregory Ashton's avatar
Gregory Ashton committed
23
24
class MCMCSearch(BaseSearchClass):
    """ MCMC search using ComputeFstat"""
Gregory Ashton's avatar
Gregory Ashton committed
25
    @helper_functions.initializer
26
    def __init__(self, label, outdir, sftfilepath, theta_prior, tref,
Gregory Ashton's avatar
Gregory Ashton committed
27
                 minStartTime, maxStartTime, nsteps=[100, 100],
28
29
                 nwalkers=100, ntemps=1, log10temperature_min=-5,
                 theta_initial=None, scatter_val=1e-10,
30
31
                 binary=False, BSGL=False, minCoverFreq=None,
                 maxCoverFreq=None, detector=None, earth_ephem=None,
32
                 sun_ephem=None, injectSources=None, assumeSqrtSX=None):
33
34
35
36
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
37
38
        sftfilepath: str
            File patern to match SFTs
39
        theta_prior: dict
40
41
42
43
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
44
45
46
47
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
48
        tref, minStartTime, maxStartTime: int
49
50
51
52
53
54
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
55
56
57
58
59
60
61
62
63
64
65
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
        binary: Bool
            If true, search over binary parameters
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
66
67
68
69
70
71
72
73
74
75
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

Gregory Ashton's avatar
Gregory Ashton committed
76
77
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
78
        self.add_log_file()
Gregory Ashton's avatar
Gregory Ashton committed
79
80
        logging.info(
            'Set-up MCMC search for model {} on data {}'.format(
81
                self.label, self.sftfilepath))
82
83
84
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
        self.unpack_input_theta()
        self.ndim = len(self.theta_keys)
85
86
87
88
        if self.log10temperature_min:
            self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
        else:
            self.betas = None
89

90
91
92
93
94
95
96
97
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

98
99
100
        self.log_input()

    def log_input(self):
101
        logging.info('theta_prior = {}'.format(self.theta_prior))
102
        logging.info('nwalkers={}'.format(self.nwalkers))
103
104
105
106
        logging.info('scatter_val = {}'.format(self.scatter_val))
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
        logging.info('log10temperature_min = {}'.format(
107
            self.log10temperature_min))
108
109
110

    def inititate_search_object(self):
        logging.info('Setting up search object')
Gregory Ashton's avatar
Gregory Ashton committed
111
        self.search = ComputeFstat(
112
113
114
115
            tref=self.tref, sftfilepath=self.sftfilepath,
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
            detector=self.detector, BSGL=self.BSGL, transient=False,
116
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
117
118
            binary=self.binary, injectSources=self.injectSources,
            assumeSqrtSX=self.assumeSqrtSX)
119
120

    def logp(self, theta_vals, theta_prior, theta_keys, search):
Gregory Ashton's avatar
Gregory Ashton committed
121
        H = [self.generic_lnprior(**theta_prior[key])(p) for p, key in
122
123
124
125
126
127
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
128
129
        FS = search.compute_fullycoherent_det_stat_single_point(
            *self.fixed_theta)
130
131
132
        return FS

    def unpack_input_theta(self):
133
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']
134
135
136
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
137
138
        full_theta_keys_copy = copy.copy(full_theta_keys)

139
140
        full_theta_symbols = ['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                              r'$\delta$']
141
142
143
144
        if self.binary:
            full_theta_symbols += [
                'asini', 'period', 'period', 'ecc', 'tp', 'argp']

145
146
        self.theta_keys = []
        fixed_theta_dict = {}
147
        for key, val in self.theta_prior.iteritems():
148
149
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
150
                self.theta_keys.append(key)
151
152
153
154
155
156
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
157
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

    def check_initial_points(self, p0):
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

                p0 = self.generate_new_p0_to_fix_initial_points(
                    p0, nt, initial_priors)

    def generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
210

Gregory Ashton's avatar
Gregory Ashton committed
211
    def run_sampler_with_progress_bar(self, sampler, ns, p0):
212
213
        for result in tqdm(sampler.sample(p0, iterations=ns), total=ns):
            pass
Gregory Ashton's avatar
Gregory Ashton committed
214
215
        return sampler

216
    def run(self, proposal_scale_factor=2, create_plots=True, **kwargs):
217

Gregory Ashton's avatar
Gregory Ashton committed
218
        self.old_data_is_okay_to_use = self.check_old_data_is_okay_to_use()
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
            d = self.get_saved_data()
            self.sampler = d['sampler']
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
            return

        self.inititate_search_object()

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
234
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
235

Gregory Ashton's avatar
Gregory Ashton committed
236
237
        p0 = self.generate_initial_p0()
        p0 = self.apply_corrections_to_p0(p0)
238
239
240
241
242
        self.check_initial_points(p0)

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
Gregory Ashton's avatar
Gregory Ashton committed
243
                j, ninit_steps, n))
Gregory Ashton's avatar
Gregory Ashton committed
244
            sampler = self.run_sampler_with_progress_bar(sampler, n, p0)
245
246
            logging.info("Mean acceptance fraction: {}"
                         .format(np.mean(sampler.acceptance_fraction, axis=1)))
247
248
249
            if self.ntemps > 1:
                logging.info("Tswap acceptance fraction: {}"
                             .format(sampler.tswap_acceptance_fraction))
250
251
252
253
254
255
256
            if create_plots:
                fig, axes = self.plot_walkers(sampler,
                                              symbols=self.theta_symbols,
                                              **kwargs)
                fig.tight_layout()
                fig.savefig('{}/{}_init_{}_walkers.png'.format(
                    self.outdir, self.label, j), dpi=200)
257

258
            p0 = self.get_new_p0(sampler)
Gregory Ashton's avatar
Gregory Ashton committed
259
            p0 = self.apply_corrections_to_p0(p0)
260
261
262
            self.check_initial_points(p0)
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
263
264
265
266
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
267
268
269
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
Gregory Ashton's avatar
Gregory Ashton committed
270
        sampler = self.run_sampler_with_progress_bar(sampler, nburn+nprod, p0)
271
272
        logging.info("Mean acceptance fraction: {}"
                     .format(np.mean(sampler.acceptance_fraction, axis=1)))
273
274
275
        if self.ntemps > 1:
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
276

277
278
279
280
281
282
        if create_plots:
            fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols,
                                          burnin_idx=nburn, **kwargs)
            fig.tight_layout()
            fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label),
                        dpi=200)
283
284
285
286
287
288
289
290
291
292

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
        self.sampler = sampler
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
        self.save_data(sampler, samples, lnprobs, lnlikes)

293
    def plot_corner(self, figsize=(7, 7),  tglitch_ratio=False,
294
295
296
                    add_prior=False, nstds=None, label_offset=0.4,
                    dpi=300, rc_context={}, **kwargs):

Gregory Ashton's avatar
Gregory Ashton committed
297
298
299
300
301
302
303
304
305
306
        if self.ndim < 2:
            with plt.rc_context(rc_context):
                fig, ax = plt.subplots(figsize=figsize)
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

307
308
309
310
311
312
        with plt.rc_context(rc_context):
            fig, axes = plt.subplots(self.ndim, self.ndim,
                                     figsize=figsize)

            samples_plt = copy.copy(self.samples)
            theta_symbols_plt = copy.copy(self.theta_symbols)
313
314
            theta_symbols_plt = [s.replace('_{glitch}', r'_\textrm{glitch}')
                                 for s in theta_symbols_plt]
315
316
317
318
319

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
320
321
322
                        samples_plt[:, j] = (
                            s - self.minStartTime)/(
                                self.maxStartTime - self.minStartTime)
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
                        theta_symbols_plt[j] = r'$R_{\textrm{glitch}}$'

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
            else:
                _range = None

            fig_triangle = corner.corner(samples_plt,
                                         labels=theta_symbols_plt,
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
                self.add_prior_to_corner(axes, samples_plt)

            fig_triangle.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
365
366
367
368
369
370

    def add_prior_to_corner(self, axes, samples):
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            xlim = ax.get_xlim()
            s = samples[:, i]
Gregory Ashton's avatar
Gregory Ashton committed
371
            prior = self.generic_lnprior(**self.theta_prior[key])
372
373
374
375
376
377
            x = np.linspace(s.min(), s.max(), 100)
            ax2 = ax.twinx()
            ax2.get_yaxis().set_visible(False)
            ax2.plot(x, [prior(xi) for xi in x], '-r')
            ax.set_xlim(xlim)

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
    def plot_prior_posterior(self, normal_stds=2):
        """ Plot the posterior in the context of the prior """
        fig, axes = plt.subplots(nrows=self.ndim, figsize=(8, 4*self.ndim))
        N = 1000
        from scipy.stats import gaussian_kde

        for i, (ax, key) in enumerate(zip(axes, self.theta_keys)):
            prior_dict = self.theta_prior[key]
            prior_func = self.generic_lnprior(**prior_dict)
            if prior_dict['type'] == 'unif':
                x = np.linspace(prior_dict['lower'], prior_dict['upper'], N)
                prior = prior_func(x)
                prior[0] = 0
                prior[-1] = 0
            elif prior_dict['type'] == 'norm':
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = prior_func(x)
397
398
399
400
401
            elif prior_dict['type'] == 'halfnorm':
                lower = prior_dict['loc']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
Gregory Ashton's avatar
Gregory Ashton committed
402
403
404
405
406
            elif prior_dict['type'] == 'neghalfnorm':
                upper = prior_dict['loc']
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
            else:
                raise ValueError('Not implemented for prior type {}'.format(
                    prior_dict['type']))
            priorln = ax.plot(x, prior, 'r', label='prior')
            ax.set_xlabel(self.theta_symbols[i])

            s = self.samples[:, i]
            while len(s) > 10**4:
                # random downsample to avoid slow calculation of kde
                s = np.random.choice(s, size=int(len(s)/2.))
            kde = gaussian_kde(s)
            ax2 = ax.twinx()
            postln = ax2.plot(x, kde.pdf(x), 'k', label='posterior')
            ax2.set_yticklabels([])
            ax.set_yticklabels([])

        lns = priorln + postln
        labs = [l.get_label() for l in lns]
        axes[0].legend(lns, labs, loc=1, framealpha=0.8)

        fig.savefig('{}/{}_prior_posterior.png'.format(
            self.outdir, self.label))

430
    def plot_cumulative_max(self, **kwargs):
Gregory Ashton's avatar
Gregory Ashton committed
431
432
433
434
        d, maxtwoF = self.get_max_twoF()
        for key, val in self.theta_prior.iteritems():
            if key not in d:
                d[key] = val
435
436
437
438
439
440

        if hasattr(self, 'search') is False:
            self.inititate_search_object()
        if self.binary is False:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
441
                Alpha=d['Alpha'], Delta=d['Delta'],
442
                tstart=self.minStartTime, tend=self.maxStartTime,
443
                **kwargs)
444
445
446
447
448
        else:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
                Alpha=d['Alpha'], Delta=d['Delta'], asini=d['asini'],
                period=d['period'], ecc=d['ecc'], argp=d['argp'], tp=d['argp'],
449
                tstart=self.minStartTime, tend=self.maxStartTime, **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
450

Gregory Ashton's avatar
Gregory Ashton committed
451
    def generic_lnprior(self, **kwargs):
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
        """ Return a lambda function of the pdf

        Parameters
        ----------
        kwargs: dict
            A dictionary containing 'type' of pdf and shape parameters

        """

        def logunif(x, a, b):
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

        def halfnorm(x, loc, scale):
476
            if x < loc:
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
            return lambda x: logunif(x, kwargs['lower'], kwargs['upper'])
        elif kwargs['type'] == 'halfnorm':
            return lambda x: halfnorm(x, kwargs['loc'], kwargs['scale'])
494
495
        elif kwargs['type'] == 'neghalfnorm':
            return lambda x: halfnorm(-x, kwargs['loc'], kwargs['scale'])
496
497
498
499
500
501
502
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

Gregory Ashton's avatar
Gregory Ashton committed
503
    def generate_rv(self, **kwargs):
504
505
506
507
508
509
510
511
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
512
513
514
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
515
516
517
518
519
520
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

Gregory Ashton's avatar
Gregory Ashton committed
521
    def plot_walkers(self, sampler, symbols=None, alpha=0.4, color="k", temp=0,
Gregory Ashton's avatar
Gregory Ashton committed
522
                     lw=0.1, burnin_idx=None, add_det_stat_burnin=False,
523
                     fig=None, axes=None, xoffset=0, plot_det_stat=True,
524
                     context='classic', subtractions=None, labelpad=0.05):
525
526
        """ Plot all the chains from a sampler """

527
528
529
        if np.ndim(axes) > 1:
            axes = axes.flatten()

530
531
532
533
534
535
536
537
538
539
540
541
542
        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
            chain = sampler.chain[:, :, :]
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
            chain = sampler.chain[temp, :, :, :]

543
544
        if subtractions is None:
            subtractions = [0 for i in range(ndim)]
545
546
547
        else:
            if len(subtractions) != self.ndim:
                raise ValueError('subtractions must be of length ndim')
548

549
        with plt.style.context((context)):
Gregory Ashton's avatar
Gregory Ashton committed
550
            plt.rcParams['text.usetex'] = True
Gregory Ashton's avatar
Gregory Ashton committed
551
            if fig is None and axes is None:
552
                fig = plt.figure(figsize=(4, 3.0*ndim))
Gregory Ashton's avatar
Gregory Ashton committed
553
                ax = fig.add_subplot(ndim+1, 1, 1)
Gregory Ashton's avatar
Gregory Ashton committed
554
                axes = [ax] + [fig.add_subplot(ndim+1, 1, i)
Gregory Ashton's avatar
Gregory Ashton committed
555
                               for i in range(2, ndim+1)]
556

Gregory Ashton's avatar
Gregory Ashton committed
557
            idxs = np.arange(chain.shape[1])
558
559
            if ndim > 1:
                for i in range(ndim):
560
                    axes[i].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
561
562
                    cs = chain[:, :, i].T
                    if burnin_idx:
Gregory Ashton's avatar
Gregory Ashton committed
563
                        axes[i].plot(xoffset+idxs[:burnin_idx],
564
565
                                     cs[:burnin_idx]-subtractions[i],
                                     color="r", alpha=alpha,
Gregory Ashton's avatar
Gregory Ashton committed
566
                                     lw=lw)
567
568
                    axes[i].plot(xoffset+idxs[burnin_idx:],
                                 cs[burnin_idx:]-subtractions[i],
Gregory Ashton's avatar
Gregory Ashton committed
569
                                 color="k", alpha=alpha, lw=lw)
570
                    if symbols:
571
                        if subtractions[i] == 0:
572
                            axes[i].set_ylabel(symbols[i], labelpad=labelpad)
573
574
                        else:
                            axes[i].set_ylabel(
575
576
                                symbols[i]+'$-$'+symbols[i]+'$_0$',
                                labelpad=labelpad)
577

578
            else:
Gregory Ashton's avatar
Gregory Ashton committed
579
                axes[0].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
580
                cs = chain[:, :, temp].T
Gregory Ashton's avatar
Gregory Ashton committed
581
582
583
584
585
586
                if burnin_idx:
                    axes[0].plot(idxs[:burnin_idx], cs[:burnin_idx],
                                 color="r", alpha=alpha, lw=lw)
                axes[0].plot(idxs[burnin_idx:], cs[burnin_idx:], color="k",
                             alpha=alpha, lw=lw)
                if symbols:
587
                    axes[0].set_ylabel(symbols[0], labelpad=labelpad)
588

589
            if plot_det_stat:
590
591
592
                if len(axes) == ndim:
                    axes.append(fig.add_subplot(ndim+1, 1, ndim+1))

593
594
595
                lnl = sampler.lnlikelihood[temp, :, :]
                if burnin_idx and add_det_stat_burnin:
                    burn_in_vals = lnl[:, :burnin_idx].flatten()
596
597
598
599
600
601
602
                    try:
                        axes[-1].hist(burn_in_vals[~np.isnan(burn_in_vals)],
                                      bins=50, histtype='step', color='r')
                    except ValueError:
                        logging.info('Det. Stat. hist failed, most likely all '
                                     'values where the same')
                        pass
603
604
605
                else:
                    burn_in_vals = []
                prod_vals = lnl[:, burnin_idx:].flatten()
606
607
608
609
610
611
612
                try:
                    axes[-1].hist(prod_vals[~np.isnan(prod_vals)], bins=50,
                                  histtype='step', color='k')
                except ValueError:
                    logging.info('Det. Stat. hist failed, most likely all '
                                 'values where the same')
                    pass
613
614
615
616
617
618
619
620
621
622
623
624
                if self.BSGL:
                    axes[-1].set_xlabel(r'$\mathcal{B}_\mathrm{S/GL}$')
                else:
                    axes[-1].set_xlabel(r'$\widetilde{2\mathcal{F}}$')
                axes[-1].set_ylabel(r'$\textrm{Counts}$')
                combined_vals = np.append(burn_in_vals, prod_vals)
                if len(combined_vals) > 0:
                    minv = np.min(combined_vals)
                    maxv = np.max(combined_vals)
                    Range = abs(maxv-minv)
                    axes[-1].set_xlim(minv-0.1*Range, maxv+0.1*Range)

625
626
627
628
                xfmt = matplotlib.ticker.ScalarFormatter()
                xfmt.set_powerlimits((-4, 4)) 
                axes[-1].xaxis.set_major_formatter(xfmt)

629
            axes[-2].set_xlabel(r'$\textrm{Number of steps}$', labelpad=0.2)
630
631
        return fig, axes

Gregory Ashton's avatar
Gregory Ashton committed
632
633
634
635
636
    def apply_corrections_to_p0(self, p0):
        """ Apply any correction to the initial p0 values """
        return p0

    def generate_scattered_p0(self, p):
637
        """ Generate a set of p0s scattered about p """
Gregory Ashton's avatar
Gregory Ashton committed
638
        p0 = [[p + self.scatter_val * p * np.random.randn(self.ndim)
639
640
641
642
               for i in xrange(self.nwalkers)]
              for j in xrange(self.ntemps)]
        return p0

Gregory Ashton's avatar
Gregory Ashton committed
643
    def generate_initial_p0(self):
644
645
646
        """ Generate a set of init vals for the walkers """

        if type(self.theta_initial) == dict:
647
            logging.info('Generate initial values from initial dictionary')
648
            if hasattr(self, 'nglitch') and self.nglitch > 1:
649
                raise ValueError('Initial dict not implemented for nglitch>1')
Gregory Ashton's avatar
Gregory Ashton committed
650
            p0 = [[[self.generate_rv(**self.theta_initial[key])
651
652
653
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
654
655
656
657
658
659
        elif type(self.theta_initial) == list:
            logging.info('Generate initial values from list of theta_initial')
            p0 = [[[self.generate_rv(**val)
                    for val in self.theta_initial]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
660
        elif self.theta_initial is None:
661
            logging.info('Generate initial values from prior dictionary')
Gregory Ashton's avatar
Gregory Ashton committed
662
            p0 = [[[self.generate_rv(**self.theta_prior[key])
663
664
665
666
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
        elif len(self.theta_initial) == self.ndim:
Gregory Ashton's avatar
Gregory Ashton committed
667
            p0 = self.generate_scattered_p0(self.theta_initial)
668
669
670
671
672
        else:
            raise ValueError('theta_initial not understood')

        return p0

673
    def get_new_p0(self, sampler):
674
675
676
677
678
679
        """ Returns new initial positions for walkers are burn0 stage

        This returns new positions for all walkers by scattering points about
        the maximum posterior with scale `scatter_val`.

        """
Gregory Ashton's avatar
Gregory Ashton committed
680
681
682
683
        temp_idx = 0
        pF = sampler.chain[temp_idx, :, :, :]
        lnl = sampler.lnlikelihood[temp_idx, :, :]
        lnp = sampler.lnprobability[temp_idx, :, :]
684
685

        # General warnings about the state of lnp
Gregory Ashton's avatar
Gregory Ashton committed
686
        if np.any(np.isnan(lnp)):
687
688
            logging.warning(
                "Of {} lnprobs {} are nan".format(
Gregory Ashton's avatar
Gregory Ashton committed
689
690
                    np.shape(lnp), np.sum(np.isnan(lnp))))
        if np.any(np.isposinf(lnp)):
691
692
            logging.warning(
                "Of {} lnprobs {} are +np.inf".format(
Gregory Ashton's avatar
Gregory Ashton committed
693
694
                    np.shape(lnp), np.sum(np.isposinf(lnp))))
        if np.any(np.isneginf(lnp)):
695
696
            logging.warning(
                "Of {} lnprobs {} are -np.inf".format(
Gregory Ashton's avatar
Gregory Ashton committed
697
                    np.shape(lnp), np.sum(np.isneginf(lnp))))
698

699
700
        lnp_finite = copy.copy(lnp)
        lnp_finite[np.isinf(lnp)] = np.nan
Gregory Ashton's avatar
Gregory Ashton committed
701
702
        idx = np.unravel_index(np.nanargmax(lnp_finite), lnp_finite.shape)
        p = pF[idx]
703
        p0 = self.generate_scattered_p0(p)
704

705
706
707
708
709
710
711
712
        self.search.BSGL = False
        twoF = self.logl(p, self.search)
        self.search.BSGL = self.BSGL

        logging.info(('Gen. new p0 from pos {} which had det. stat.={:2.1f},'
                      ' twoF={:2.1f} and lnp={:2.1f}')
                     .format(idx[1], lnl[idx], twoF, lnp_finite[idx]))

713
714
715
716
717
        return p0

    def get_save_data_dictionary(self):
        d = dict(nsteps=self.nsteps, nwalkers=self.nwalkers,
                 ntemps=self.ntemps, theta_keys=self.theta_keys,
Gregory Ashton's avatar
Gregory Ashton committed
718
                 theta_prior=self.theta_prior, scatter_val=self.scatter_val,
719
                 log10temperature_min=self.log10temperature_min,
720
                 BSGL=self.BSGL)
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
        return d

    def save_data(self, sampler, samples, lnprobs, lnlikes):
        d = self.get_save_data_dictionary()
        d['sampler'] = sampler
        d['samples'] = samples
        d['lnprobs'] = lnprobs
        d['lnlikes'] = lnlikes

        if os.path.isfile(self.pickle_path):
            logging.info('Saving backup of {} as {}.old'.format(
                self.pickle_path, self.pickle_path))
            os.rename(self.pickle_path, self.pickle_path+".old")
        with open(self.pickle_path, "wb") as File:
            pickle.dump(d, File)

    def get_saved_data(self):
        with open(self.pickle_path, "r") as File:
            d = pickle.load(File)
        return d

    def check_old_data_is_okay_to_use(self):
743
744
745
746
        if args.use_old_data:
            logging.info("Forcing use of old data")
            return True

747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
        if os.path.isfile(self.pickle_path) is False:
            logging.info('No pickled data found')
            return False

        oldest_sft = min([os.path.getmtime(f) for f in
                          self.get_list_of_matching_sfts()])
        if os.path.getmtime(self.pickle_path) < oldest_sft:
            logging.info('Pickled data outdates sft files')
            return False

        old_d = self.get_saved_data().copy()
        new_d = self.get_save_data_dictionary().copy()

        old_d.pop('samples')
        old_d.pop('sampler')
        old_d.pop('lnprobs')
        old_d.pop('lnlikes')

        mod_keys = []
        for key in new_d.keys():
            if key in old_d:
                if new_d[key] != old_d[key]:
                    mod_keys.append((key, old_d[key], new_d[key]))
            else:
771
                raise ValueError('Keys {} not in old dictionary'.format(key))
772
773
774
775
776
777
778
779
780

        if len(mod_keys) == 0:
            return True
        else:
            logging.warning("Saved data differs from requested")
            logging.info("Differences found in following keys:")
            for key in mod_keys:
                if len(key) == 3:
                    if np.isscalar(key[1]) or key[0] == 'nsteps':
781
                        logging.info("    {} : {} -> {}".format(*key))
782
                    else:
783
                        logging.info("    " + key[0])
784
785
786
787
788
                else:
                    logging.info(key)
            return False

    def get_max_twoF(self, threshold=0.05):
789
        """ Returns the max likelihood sample and the corresponding 2F value
790
791
792
793
794
795
796
797
798
799
800
801
802
803

        Note: the sample is returned as a dictionary along with an estimate of
        the standard deviation calculated from the std of all samples with a
        twoF within `threshold` (relative) to the max twoF

        """
        if any(np.isposinf(self.lnlikes)):
            logging.info('twoF values contain positive infinite values')
        if any(np.isneginf(self.lnlikes)):
            logging.info('twoF values contain negative infinite values')
        if any(np.isnan(self.lnlikes)):
            logging.info('twoF values contain nan')
        idxs = np.isfinite(self.lnlikes)
        jmax = np.nanargmax(self.lnlikes[idxs])
804
        maxlogl = self.lnlikes[jmax]
805
        d = OrderedDict()
806

807
808
809
810
811
812
813
814
815
816
        if self.BSGL:
            if hasattr(self, 'search') is False:
                self.inititate_search_object()
            p = self.samples[jmax]
            self.search.BSGL = False
            maxtwoF = self.logl(p, self.search)
            self.search.BSGL = self.BSGL
        else:
            maxtwoF = maxlogl

Gregory Ashton's avatar
Gregory Ashton committed
817
        repeats = []
818
        for i, k in enumerate(self.theta_keys):
Gregory Ashton's avatar
Gregory Ashton committed
819
820
821
822
823
824
825
826
827
828
            if k in d and k not in repeats:
                d[k+'_0'] = d[k]  # relabel the old key
                d.pop(k)
                repeats.append(k)
            if k in repeats:
                k = k + '_0'
                count = 1
                while k in d:
                    k = k.replace('_{}'.format(count-1), '_{}'.format(count))
                    count += 1
829
830
831
832
833
            d[k] = self.samples[jmax][i]
        return d, maxtwoF

    def get_median_stds(self):
        """ Returns a dict of the median and std of all production samples """
834
        d = OrderedDict()
Gregory Ashton's avatar
Gregory Ashton committed
835
        repeats = []
836
        for s, k in zip(self.samples.T, self.theta_keys):
Gregory Ashton's avatar
Gregory Ashton committed
837
838
839
840
841
842
843
844
845
846
847
848
849
            if k in d and k not in repeats:
                d[k+'_0'] = d[k]  # relabel the old key
                d[k+'_0_std'] = d[k+'_std']
                d.pop(k)
                d.pop(k+'_std')
                repeats.append(k)
            if k in repeats:
                k = k + '_0'
                count = 1
                while k in d:
                    k = k.replace('_{}'.format(count-1), '_{}'.format(count))
                    count += 1

850
851
852
853
854
855
856
857
            d[k] = np.median(s)
            d[k+'_std'] = np.std(s)
        return d

    def write_par(self, method='med'):
        """ Writes a .par of the best-fit params with an estimated std """
        logging.info('Writing {}/{}.par using the {} method'.format(
            self.outdir, self.label, method))
858
859
860
861

        median_std_d = self.get_median_stds()
        max_twoF_d, max_twoF = self.get_max_twoF()

Gregory Ashton's avatar
Gregory Ashton committed
862
        logging.info('Writing par file with max twoF = {}'.format(max_twoF))
863
864
865
        filename = '{}/{}.par'.format(self.outdir, self.label)
        with open(filename, 'w+') as f:
            f.write('MaxtwoF = {}\n'.format(max_twoF))
Gregory Ashton's avatar
Gregory Ashton committed
866
            f.write('tref = {}\n'.format(self.tref))
867
868
            if hasattr(self, 'theta0_index'):
                f.write('theta0_index = {}\n'.format(self.theta0_idx))
869
            if method == 'med':
870
871
                for key, val in median_std_d.iteritems():
                    f.write('{} = {:1.16e}\n'.format(key, val))
872
            if method == 'twoFmax':
873
874
875
876
                for key, val in max_twoF_d.iteritems():
                    f.write('{} = {:1.16e}\n'.format(key, val))

    def print_summary(self):
Gregory Ashton's avatar
Gregory Ashton committed
877
        max_twoFd, max_twoF = self.get_max_twoF()
878
        median_std_d = self.get_median_stds()
Gregory Ashton's avatar
Gregory Ashton committed
879
        logging.info('Summary:')
880
        if hasattr(self, 'theta0_idx'):
Gregory Ashton's avatar
Gregory Ashton committed
881
882
            logging.info('theta0 index: {}'.format(self.theta0_idx))
        logging.info('Max twoF: {} with parameters:'.format(max_twoF))
Gregory Ashton's avatar
Gregory Ashton committed
883
884
        for k in np.sort(max_twoFd.keys()):
            print('  {:10s} = {:1.9e}'.format(k, max_twoFd[k]))
Gregory Ashton's avatar
Gregory Ashton committed
885
        logging.info('Median +/- std for production values')
886
        for k in np.sort(median_std_d.keys()):
887
            if 'std' not in k:
Gregory Ashton's avatar
Gregory Ashton committed
888
                logging.info('  {:10s} = {:1.9e} +/- {:1.9e}'.format(
889
                    k, median_std_d[k], median_std_d[k+'_std']))
Gregory Ashton's avatar
Gregory Ashton committed
890
        logging.info('\n')
891

892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
    def CF_twoFmax(self, theta, twoFmax, ntrials):
        Fmax = twoFmax/2.0
        return (np.exp(1j*theta*twoFmax)*ntrials/2.0
                * Fmax*np.exp(-Fmax)*(1-(1+Fmax)*np.exp(-Fmax))**(ntrials-1))

    def pdf_twoFhat(self, twoFhat, nglitch, ntrials, twoFmax=100, dtwoF=0.1):
        if np.ndim(ntrials) == 0:
            ntrials = np.zeros(nglitch+1) + ntrials
        twoFmax_int = np.arange(0, twoFmax, dtwoF)
        theta_int = np.arange(-1/dtwoF, 1./dtwoF, 1./twoFmax)
        CF_twoFmax_theta = np.array(
            [[np.trapz(self.CF_twoFmax(t, twoFmax_int, ntrial), twoFmax_int)
              for t in theta_int]
             for ntrial in ntrials])
        CF_twoFhat_theta = np.prod(CF_twoFmax_theta, axis=0)
        pdf = (1/(2*np.pi)) * np.array(
            [np.trapz(np.exp(-1j*theta_int*twoFhat_val)
             * CF_twoFhat_theta, theta_int) for twoFhat_val in twoFhat])
        return pdf.real

    def p_val_twoFhat(self, twoFhat, ntrials, twoFhatmax=500, Npoints=1000):
913
        """ Caluculate the p-value for the given twoFhat in Gaussian noise
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932

        Parameters
        ----------
        twoFhat: float
            The observed twoFhat value
        ntrials: int, array of len Nglitch+1
            The number of trials for each glitch+1
        """
        twoFhats = np.linspace(twoFhat, twoFhatmax, Npoints)
        pdf = self.pdf_twoFhat(twoFhats, self.nglitch, ntrials)
        return np.trapz(pdf, twoFhats)

    def get_p_value(self, delta_F0, time_trials=0):
        """ Get's the p-value for the maximum twoFhat value """
        d, max_twoF = self.get_max_twoF()
        if self.nglitch == 1:
            tglitches = [d['tglitch']]
        else:
            tglitches = [d['tglitch_{}'.format(i)] for i in range(self.nglitch)]
933
        tboundaries = [self.minStartTime] + tglitches + [self.maxStartTime]
934
        deltaTs = np.diff(tboundaries)
935
936
        ntrials = [time_trials + delta_F0 * dT for dT in deltaTs]
        p_val = self.p_val_twoFhat(max_twoF, ntrials)
937
        print('p-value = {}'.format(p_val))
938
939
        return p_val

940
    def get_evidence(self):
941
942
943
944
945
946
        fburnin = float(self.nsteps[-2])/np.sum(self.nsteps[-2:])
        lnev, lnev_err = self.sampler.thermodynamic_integration_log_evidence(
            fburnin=fburnin)

        log10evidence = lnev/np.log(10)
        log10evidence_err = lnev_err/np.log(10)
947
948
949
950
        return log10evidence, log10evidence_err

    def compute_evidence_long(self):
        """ Computes the evidence/marginal likelihood for the model """
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
        betas = self.betas
        alllnlikes = self.sampler.lnlikelihood[:, :, self.nsteps[-2]:]
        mean_lnlikes = np.mean(np.mean(alllnlikes, axis=1), axis=1)

        mean_lnlikes = mean_lnlikes[::-1]
        betas = betas[::-1]

        fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=(6, 8))

        if any(np.isinf(mean_lnlikes)):
            print("WARNING mean_lnlikes contains inf: recalculating without"
                  " the {} infs".format(len(betas[np.isinf(mean_lnlikes)])))
            idxs = np.isinf(mean_lnlikes)
            mean_lnlikes = mean_lnlikes[~idxs]
            betas = betas[~idxs]
            log10evidence = np.trapz(mean_lnlikes, betas)/np.log(10)
            z1 = np.trapz(mean_lnlikes, betas)
            z2 = np.trapz(mean_lnlikes[::-1][::2][::-1],
                          betas[::-1][::2][::-1])
            log10evidence_err = np.abs(z1 - z2) / np.log(10)

        ax1.semilogx(betas, mean_lnlikes, "-o")
        ax1.set_xlabel(r"$\beta$")
        ax1.set_ylabel(r"$\langle \log(\mathcal{L}) \rangle$")
        print("log10 evidence for {} = {} +/- {}".format(
              self.label, log10evidence, log10evidence_err))
        min_betas = []
        evidence = []
        for i in range(len(betas)/2):
            min_betas.append(betas[i])
            lnZ = np.trapz(mean_lnlikes[i:], betas[i:])
            evidence.append(lnZ/np.log(10))

        ax2.semilogx(min_betas, evidence, "-o")
        ax2.set_ylabel(r"$\int_{\beta_{\textrm{Min}}}^{\beta=1}" +
                       r"\langle \log(\mathcal{L})\rangle d\beta$", size=16)
        ax2.set_xlabel(r"$\beta_{\textrm{min}}$")
        plt.tight_layout()
        fig.savefig("{}/{}_beta_lnl.png".format(self.outdir, self.label))

991

Gregory Ashton's avatar
Gregory Ashton committed
992
993
class MCMCGlitchSearch(MCMCSearch):
    """ MCMC search using the SemiCoherentGlitchSearch """
Gregory Ashton's avatar
Gregory Ashton committed
994
    @helper_functions.initializer
995
    def __init__(self, label, outdir, sftfilepath, theta_prior, tref,
Gregory Ashton's avatar
Gregory Ashton committed
996
                 minStartTime, maxStartTime, nglitch=1, nsteps=[100, 100],
997
998
999
1000
                 nwalkers=100, ntemps=1, log10temperature_min=-5,
                 theta_initial=None, scatter_val=1e-10, dtglitchmin=1*86400,
                 theta0_idx=0, detector=None, BSGL=False, minCoverFreq=None,
                 maxCoverFreq=None, earth_ephem=None, sun_ephem=None):
Gregory Ashton's avatar
Gregory Ashton committed
1001
1002
        """
        Parameters
Gregory Ashton's avatar
Gregory Ashton committed
1003
        ----------
Gregory Ashton's avatar
Gregory Ashton committed
1004
1005
        label, outdir: str
            A label and directory to read/write data from/to
Gregory Ashton's avatar
Gregory Ashton committed
1006
        sftfilepath: str
1007
            File patern to match SFTs
Gregory Ashton's avatar
Gregory Ashton committed
1008
1009
1010
1011
1012
1013
1014
1015
        theta_prior: dict
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
Gregory Ashton's avatar
Gregory Ashton committed
1016
            scattered by scatter_val), or None in which case the prior is used.
1017
1018
1019
1020
        scatter_val, float or ndim array
            Size of scatter to use about the initialisation step, if given as
            an array it must be of length ndim and the order is given by
            theta_keys
Gregory Ashton's avatar
Gregory Ashton committed
1021
1022
        nglitch: int
            The number of glitches to allow
1023
        tref, minStartTime, maxStartTime: int
Gregory Ashton's avatar
Gregory Ashton committed
1024
1025
1026
1027
1028
1029
1030
1031
1032
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
        dtglitchmin: int
            The minimum duration (in seconds) of a segment between two glitches
            or a glitch and the start/end of the data
1033
1034
1035
1036
1037
1038
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
1039
1040
1041
1042
        theta0_idx, int
            Index (zero-based) of which segment the theta refers to - uyseful
            if providing a tight prior on theta to allow the signal to jump
            too theta (and not just from)
1043
1044
1045
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
Gregory Ashton's avatar
Gregory Ashton committed
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

Gregory Ashton's avatar
Gregory Ashton committed
1056
1057
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
1058
        self.add_log_file()
Gregory Ashton's avatar
Gregory Ashton committed
1059
1060
        logging.info(('Set-up MCMC glitch search with {} glitches for model {}'
                      ' on data {}').format(self.nglitch, self.label,
1061
                                            self.sftfilepath))
Gregory Ashton's avatar
Gregory Ashton committed
1062
1063
1064
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
        self.unpack_input_theta()
        self.ndim = len(self.theta_keys)
1065
1066
1067
1068
        if self.log10temperature_min:
            self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
        else:
            self.betas = None
Gregory Ashton's avatar
Gregory Ashton committed
1069
1070
1071
1072
1073
1074
1075
1076
1077
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

        self.old_data_is_okay_to_use = self.check_old_data_is_okay_to_use()
1078
        self.log_input()
Gregory Ashton's avatar
Gregory Ashton committed
1079
1080
1081
1082

    def inititate_search_object(self):
        logging.info('Setting up search object')
        self.search = SemiCoherentGlitchSearch(
1083
            label=self.label, outdir=self.outdir, sftfilepath=self.sftfilepath,
1084
1085
            tref=self.tref, minStartTime=self.minStartTime,
            maxStartTime=self.maxStartTime, minCoverFreq=self.minCoverFreq,
Gregory Ashton's avatar
Gregory Ashton committed
1086
            maxCoverFreq=self.maxCoverFreq, earth_ephem=self.earth_ephem,
1087
            sun_ephem=self.sun_ephem, detector=self.detector, BSGL=self.BSGL,
1088
            nglitch=self.nglitch, theta0_idx=self.theta0_idx)
Gregory Ashton's avatar
Gregory Ashton committed
1089
1090
1091

    def logp(self, theta_vals, theta_prior, theta_keys, search):
        if self.nglitch > 1:
1092
1093
            ts = ([self.minStartTime] + list(theta_vals[-self.nglitch:])
                  + [self.maxStartTime])
Gregory Ashton's avatar
Gregory Ashton committed
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
            if np.array_equal(ts, np.sort(ts)) is False:
                return -np.inf
            if any(np.diff(ts) < self.dtglitchmin):
                return -np.inf

        H = [self.generic_lnprior(**theta_prior[key])(p) for p, key in
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
Gregory Ashton's avatar
Gregory Ashton committed
1104
        if self.nglitch > 1:
1105
1106
            ts = ([self.minStartTime] + list(theta_vals[-self.nglitch:])
                  + [self.maxStartTime])
Gregory Ashton's avatar
Gregory Ashton committed
1107
1108
1109
            if np.array_equal(ts, np.sort(ts)) is False:
                return -np.inf

Gregory Ashton's avatar
Gregory Ashton committed
1110
1111
1112
1113
1114
1115
1116
1117
1118
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
        FS = search.compute_nglitch_fstat(*self.fixed_theta)
        return FS

    def unpack_input_theta(self):
        glitch_keys = ['delta_F0', 'delta_F1', 'tglitch']
        full_glitch_keys = list(np.array(
            [[gk]*self.nglitch for gk in glitch_keys]).flatten())
1119
1120
1121
1122

        if 'tglitch_0' in self.theta_prior:
            full_glitch_keys[-self.nglitch:] = [
                'tglitch_{}'.format(i) for i in range(self.nglitch)]
1123
1124
1125
1126
            full_glitch_keys[-2*self.nglitch:-1*self.nglitch] = [
                'delta_F1_{}'.format(i) for i in range(self.nglitch)]
            full_glitch_keys[-4*self.nglitch:-2*self.nglitch] = [
                'delta_F0_{}'.format(i) for i in range(self.nglitch)]
Gregory Ashton's avatar
Gregory Ashton committed
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']+full_glitch_keys
        full_theta_keys_copy = copy.copy(full_theta_keys)

        glitch_symbols = ['$\delta f$', '$\delta \dot{f}$', r'$t_{glitch}$']
        full_glitch_symbols = list(np.array(
            [[gs]*self.nglitch for gs in glitch_symbols]).flatten())
        full_theta_symbols = (['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                               r'$\delta$'] + full_glitch_symbols)
        self.theta_keys = []
        fixed_theta_dict = {}
        for key, val in self.theta_prior.iteritems():
            if type(val) is dict:
                fixed_theta_dict[key] = 0
                if key in glitch_keys:
                    for i in range(self.nglitch):
                        self.theta_keys.append(key)
                else:
                    self.theta_keys.append(key)
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
            if key in glitch_keys:
                for i in range(self.nglitch):
                    full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
            else:
                full_theta_keys_copy.pop(full_theta_keys_copy.index(key))

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

        # Correct for number of glitches in the idxs
        self.theta_idxs = np.array(self.theta_idxs)
        while np.sum(self.theta_idxs[:-1] == self.theta_idxs[1:]) > 0:
            for i, idx in enumerate(self.theta_idxs):
                if idx in self.theta_idxs[:i]:
                    self.theta_idxs[i] += 1

1178
1179
1180
1181
1182
1183
1184
1185
    def get_save_data_dictionary(self):
        d = dict(nsteps=self.nsteps, nwalkers=self.nwalkers,
                 ntemps=self.ntemps, theta_keys=self.theta_keys,
                 theta_prior=self.theta_prior, scatter_val=self.scatter_val,
                 log10temperature_min=self.log10temperature_min,
                 theta0_idx=self.theta0_idx, BSGL=self.BSGL)
        return d

Gregory Ashton's avatar
Gregory Ashton committed
1186
1187
1188
1189
1190
1191
1192
    def apply_corrections_to_p0(self, p0):
        p0 = np.array(p0)
        if self.nglitch > 1:
            p0[:, :, -self.nglitch:] = np.sort(p0[:, :, -self.nglitch:],
                                               axis=2)
        return p0

Gregory Ashton's avatar
Gregory Ashton committed
1193
1194
1195
1196
1197
1198
1199
1200
    def plot_cumulative_max(self):

        fig, ax = plt.subplots()
        d, maxtwoF = self.get_max_twoF()
        for key, val in self.theta_prior.iteritems():
            if key not in d:
                d[key] = val

1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
        if self.nglitch > 1:
            delta_F0s = [d['delta_F0_{}'.format(i)] for i in
                         range(self.nglitch)]
            delta_F0s.insert(self.theta0_idx, 0)
            delta_F0s = np.array(delta_F0s)
            delta_F0s[:self.theta0_idx] *= -1
            tglitches = [d['tglitch_{}'.format(i)] for i in
                         range(self.nglitch)]
        elif self.nglitch == 1:
            delta_F0s = [d['delta_F0']]
            delta_F0s.insert(self.theta0_idx, 0)
            delta_F0s = np.array(delta_F0s)
            delta_F0s[:self.theta0_idx] *= -1
            tglitches = [d['tglitch']]
Gregory Ashton's avatar
Gregory Ashton committed
1215

1216
        tboundaries = [self.minStartTime] + tglitches + [self.maxStartTime]
Gregory Ashton's avatar
Gregory Ashton committed
1217
1218

        for j in range(self.nglitch+1):