grid_based_searches.py 21.4 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" Searches using grid-based methods """
2
from __future__ import division, absolute_import, print_function
Gregory Ashton's avatar
Gregory Ashton committed
3
4
5
6
7
8
9
10
11
12

import os
import logging
import itertools
from collections import OrderedDict

import numpy as np
import matplotlib
import matplotlib.pyplot as plt

13
14
15
16
import pyfstat.helper_functions as helper_functions
from pyfstat.core import (BaseSearchClass, ComputeFstat,
                          SemiCoherentGlitchSearch, SemiCoherentSearch, tqdm,
                          args, earth_ephem, sun_ephem, read_par)
Gregory Ashton's avatar
Gregory Ashton committed
17
18
19
20
21


class GridSearch(BaseSearchClass):
    """ Gridded search using ComputeFstat """
    @helper_functions.initializer
22
    def __init__(self, label, outdir, sftfilepattern, F0s=[0], F1s=[0], F2s=[0],
Gregory Ashton's avatar
Gregory Ashton committed
23
24
                 Alphas=[0], Deltas=[0], tref=None, minStartTime=None,
                 maxStartTime=None, nsegs=1, BSGL=False, minCoverFreq=None,
Gregory Ashton's avatar
Gregory Ashton committed
25
                 maxCoverFreq=None, earth_ephem=None, sun_ephem=None,
26
                 detectors=None, SSBprec=None, injectSources=None,
27
                 input_arrays=False, assumeSqrtSX=None):
Gregory Ashton's avatar
Gregory Ashton committed
28
29
30
31
32
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
33
34
35
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
36
37
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
38
39
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
Gregory Ashton's avatar
Gregory Ashton committed
40
41
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
42
43
        input_arrays: bool
            if true, use the F0s, F1s, etc as is
Gregory Ashton's avatar
Gregory Ashton committed
44
45
46
47
48
49
50
51
52
53
54

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
55
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
56
57
58
59
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']

    def inititate_search_object(self):
        logging.info('Setting up search object')
60
61
        if self.nsegs == 1:
            self.search = ComputeFstat(
62
                tref=self.tref, sftfilepattern=self.sftfilepattern,
63
64
65
66
                minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
                earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
                detectors=self.detectors, transient=False,
                minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
67
                BSGL=self.BSGL, SSBprec=self.SSBprec,
68
69
                injectSources=self.injectSources,
                assumeSqrtSX=self.assumeSqrtSX)
70
71
72
73
            self.search.get_det_stat = self.search.run_computefstatistic_single_point
        else:
            self.search = SemiCoherentSearch(
                label=self.label, outdir=self.outdir, tref=self.tref,
74
                nsegs=self.nsegs, sftfilepattern=self.sftfilepattern,
75
76
77
78
79
80
81
82
                BSGL=self.BSGL, minStartTime=self.minStartTime,
                maxStartTime=self.maxStartTime, minCoverFreq=self.minCoverFreq,
                maxCoverFreq=self.maxCoverFreq, detectors=self.detectors,
                earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem)

            def cut_out_tstart_tend(*vals):
                return self.search.run_semi_coherent_computefstatistic_single_point(*vals[2:])
            self.search.get_det_stat = cut_out_tstart_tend
Gregory Ashton's avatar
Gregory Ashton committed
83
84
85
86

    def get_array_from_tuple(self, x):
        if len(x) == 1:
            return np.array(x)
87
        elif len(x) == 3 and self.input_arrays is False:
Gregory Ashton's avatar
Gregory Ashton committed
88
            return np.arange(x[0], x[1], x[2])
Gregory Ashton's avatar
Gregory Ashton committed
89
        else:
Gregory Ashton's avatar
Gregory Ashton committed
90
91
            logging.info('Using tuple as is')
            return np.array(x)
Gregory Ashton's avatar
Gregory Ashton committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

    def get_input_data_array(self):
        arrays = []
        for tup in ([self.minStartTime], [self.maxStartTime], self.F0s, self.F1s, self.F2s,
                    self.Alphas, self.Deltas):
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        self.arrays = arrays
        self.input_data = np.array(input_data)

    def check_old_data_is_okay_to_use(self):
        if args.clean:
            return False
        if os.path.isfile(self.out_file) is False:
            logging.info('No old data found, continuing with grid search')
            return False
112
        if self.sftfilepattern is not None:
113
114
115
116
117
118
            oldest_sft = min([os.path.getmtime(f) for f in
                              self._get_list_of_matching_sfts()])
            if os.path.getmtime(self.out_file) < oldest_sft:
                logging.info('Search output data outdates sft files,'
                             + ' continuing with grid search')
                return False
Gregory Ashton's avatar
Gregory Ashton committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
        data = np.atleast_2d(np.genfromtxt(self.out_file, delimiter=' '))
        if np.all(data[:, 0:-1] == self.input_data):
            logging.info(
                'Old data found with matching input, no search performed')
            return data
        else:
            logging.info(
                'Old data found, input differs, continuing with grid search')
            return False

    def run(self, return_data=False):
        self.get_input_data_array()
        old_data = self.check_old_data_is_okay_to_use()
        if old_data is not False:
            self.data = old_data
            return

        self.inititate_search_object()

        logging.info('Total number of grid points is {}'.format(
            len(self.input_data)))

        data = []
        for vals in tqdm(self.input_data):
143
            FS = self.search.get_det_stat(*vals)
Gregory Ashton's avatar
Gregory Ashton committed
144
145
            data.append(list(vals) + [FS])

146
        data = np.array(data, dtype=np.float)
Gregory Ashton's avatar
Gregory Ashton committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
        if return_data:
            return data
        else:
            logging.info('Saving data to {}'.format(self.out_file))
            np.savetxt(self.out_file, data, delimiter=' ')
            self.data = data

    def convert_F0_to_mismatch(self, F0, F0hat, Tseg):
        DeltaF0 = F0[1] - F0[0]
        m_spacing = (np.pi*Tseg*DeltaF0)**2 / 12.
        N = len(F0)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def convert_F1_to_mismatch(self, F1, F1hat, Tseg):
        DeltaF1 = F1[1] - F1[0]
        m_spacing = (np.pi*Tseg**2*DeltaF1)**2 / 720.
        N = len(F1)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def add_mismatch_to_ax(self, ax, x, y, xkey, ykey, xhat, yhat, Tseg):
        axX = ax.twiny()
        axX.zorder = -10
        axY = ax.twinx()
        axY.zorder = -10

        if xkey == 'F0':
            m = self.convert_F0_to_mismatch(x, xhat, Tseg)
            axX.set_xlim(m[0], m[-1])

        if ykey == 'F1':
            m = self.convert_F1_to_mismatch(y, yhat, Tseg)
            axY.set_ylim(m[0], m[-1])

    def plot_1D(self, xkey):
        fig, ax = plt.subplots()
        xidx = self.keys.index(xkey)
        x = np.unique(self.data[:, xidx])
        z = self.data[:, -1]
        plt.plot(x, z)
        fig.savefig('{}/{}_1D.png'.format(self.outdir, self.label))

    def plot_2D(self, xkey, ykey, ax=None, save=True, vmin=None, vmax=None,
                add_mismatch=None, xN=None, yN=None, flat_keys=[],
Gregory Ashton's avatar
Gregory Ashton committed
190
                rel_flat_idxs=[], flatten_method=np.max, title=None,
Gregory Ashton's avatar
Gregory Ashton committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
                predicted_twoF=None, cm=None, cbarkwargs={}):
        """ Plots a 2D grid of 2F values

        Parameters
        ----------
        add_mismatch: tuple (xhat, yhat, Tseg)
            If not None, add a secondary axis with the metric mismatch from the
            point xhat, yhat with duration Tseg
        flatten_method: np.max
            Function to use in flattening the flat_keys
        """
        if ax is None:
            fig, ax = plt.subplots()
        xidx = self.keys.index(xkey)
        yidx = self.keys.index(ykey)
        flat_idxs = [self.keys.index(k) for k in flat_keys]

        x = np.unique(self.data[:, xidx])
        y = np.unique(self.data[:, yidx])
        flat_vals = [np.unique(self.data[:, j]) for j in flat_idxs]
        z = self.data[:, -1]

        Y, X = np.meshgrid(y, x)
        shape = [len(x), len(y)] + [len(v) for v in flat_vals]
        Z = z.reshape(shape)

        if len(rel_flat_idxs) > 0:
            Z = flatten_method(Z, axis=tuple(rel_flat_idxs))

        if predicted_twoF:
            Z = (predicted_twoF - Z) / (predicted_twoF + 4)
            if cm is None:
                cm = plt.cm.viridis_r
        else:
            if cm is None:
                cm = plt.cm.viridis

        pax = ax.pcolormesh(X, Y, Z, cmap=cm, vmin=vmin, vmax=vmax)
        cb = plt.colorbar(pax, ax=ax, **cbarkwargs)
        cb.set_label('$2\mathcal{F}$')

        if add_mismatch:
            self.add_mismatch_to_ax(ax, x, y, xkey, ykey, *add_mismatch)

        ax.set_xlim(x[0], x[-1])
        ax.set_ylim(y[0], y[-1])
        labels = {'F0': '$f$', 'F1': '$\dot{f}$'}
        ax.set_xlabel(labels[xkey])
        ax.set_ylabel(labels[ykey])

Gregory Ashton's avatar
Gregory Ashton committed
241
242
243
        if title:
            ax.set_title(title)

Gregory Ashton's avatar
Gregory Ashton committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
        if xN:
            ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(xN))
        if yN:
            ax.yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(yN))

        if save:
            fig.tight_layout()
            fig.savefig('{}/{}_2D.png'.format(self.outdir, self.label))
        else:
            return ax

    def get_max_twoF(self):
        twoF = self.data[:, -1]
        idx = np.argmax(twoF)
        v = self.data[idx, :]
        d = OrderedDict(minStartTime=v[0], maxStartTime=v[1], F0=v[2], F1=v[3],
                        F2=v[4], Alpha=v[5], Delta=v[6], twoF=v[7])
        return d

    def print_max_twoF(self):
        d = self.get_max_twoF()
        print('Max twoF values for {}:'.format(self.label))
        for k, v in d.iteritems():
            print('  {}={}'.format(k, v))

269
    def set_out_file(self, extra_label=None):
270
271
272
273
        if self.detectors:
            dets = self.detectors.replace(',', '')
        else:
            dets = 'NA'
274
275
276
277
278
279
280
281
        if extra_label:
            self.out_file = '{}/{}_{}_{}_{}.txt'.format(
                self.outdir, self.label, dets, type(self).__name__,
                extra_label)
        else:
            self.out_file = '{}/{}_{}_{}.txt'.format(
                self.outdir, self.label, dets, type(self).__name__)

Gregory Ashton's avatar
Gregory Ashton committed
282

Gregory Ashton's avatar
Gregory Ashton committed
283
class GridUniformPriorSearch():
284
    @helper_functions.initializer
285
    def __init__(self, theta_prior, NF0, NF1, label, outdir, sftfilepattern,
286
                 tref, minStartTime, maxStartTime, minCoverFreq=None,
287
288
                 maxCoverFreq=None, BSGL=False, detectors=None, nsegs=1,
                 SSBprec=None):
Gregory Ashton's avatar
Gregory Ashton committed
289
290
291
292
        dF0 = (theta_prior['F0']['upper'] - theta_prior['F0']['lower'])/NF0
        dF1 = (theta_prior['F1']['upper'] - theta_prior['F1']['lower'])/NF1
        F0s = [theta_prior['F0']['lower'], theta_prior['F0']['upper'], dF0]
        F1s = [theta_prior['F1']['lower'], theta_prior['F1']['upper'], dF1]
293
        self.search = GridSearch(
294
            label, outdir, sftfilepattern, F0s=F0s, F1s=F1s, tref=tref,
Gregory Ashton's avatar
Gregory Ashton committed
295
296
            Alphas=[theta_prior['Alpha']], Deltas=[theta_prior['Delta']],
            minStartTime=minStartTime, maxStartTime=maxStartTime, BSGL=BSGL,
297
            detectors=detectors, minCoverFreq=minCoverFreq,
298
            maxCoverFreq=maxCoverFreq, nsegs=nsegs, SSBprec=SSBprec)
299

300
    def run(self):
301
        self.search.run()
302
303

    def get_2D_plot(self, **kwargs):
304
        return self.search.plot_2D('F0', 'F1', **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
305
306


Gregory Ashton's avatar
Gregory Ashton committed
307
308
309
class GridGlitchSearch(GridSearch):
    """ Grid search using the SemiCoherentGlitchSearch """
    @helper_functions.initializer
310
    def __init__(self, label, outdir, sftfilepattern=None, F0s=[0],
Gregory Ashton's avatar
Gregory Ashton committed
311
312
313
314
315
316
317
318
319
320
                 F1s=[0], F2s=[0], delta_F0s=[0], delta_F1s=[0], tglitchs=None,
                 Alphas=[0], Deltas=[0], tref=None, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
                 write_after=1000, earth_ephem=None, sun_ephem=None):

        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
321
322
323
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0].
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see pyfstat.ComputeFStat.
        """
        if tglitchs is None:
            self.tglitchs = [self.maxStartTime]
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        self.search = SemiCoherentGlitchSearch(
340
            label=label, outdir=outdir, sftfilepattern=self.sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
341
342
343
344
345
346
347
            tref=tref, minStartTime=minStartTime, maxStartTime=maxStartTime,
            minCoverFreq=minCoverFreq, maxCoverFreq=maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
            BSGL=self.BSGL)

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
348
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
        self.keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta', 'delta_F0',
                     'delta_F1', 'tglitch']

    def get_input_data_array(self):
        arrays = []
        for tup in (self.F0s, self.F1s, self.F2s, self.Alphas, self.Deltas,
                    self.delta_F0s, self.delta_F1s, self.tglitchs):
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        self.arrays = arrays
        self.input_data = np.array(input_data)


Gregory Ashton's avatar
Gregory Ashton committed
366
367
368
class FrequencySlidingWindow(GridSearch):
    """ A sliding-window search over the Frequency """
    @helper_functions.initializer
369
    def __init__(self, label, outdir, sftfilepattern, F0s, F1, F2,
Gregory Ashton's avatar
Gregory Ashton committed
370
371
372
                 Alpha, Delta, tref, minStartTime=None,
                 maxStartTime=None, window_size=10*86400, window_delta=86400,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
373
                 earth_ephem=None, sun_ephem=None, detectors=None,
Gregory Ashton's avatar
Gregory Ashton committed
374
                 SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
375
376
377
378
379
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
380
381
382
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
        F0s: array
            Frequency range
        F1, F2, Alpha, Delta: float
            Fixed values to compute twoF(F) over
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
400
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
401
402
403
404
405
        self.nsegs = 1
        self.F1s = [F1]
        self.F2s = [F2]
        self.Alphas = [Alpha]
        self.Deltas = [Delta]
Gregory Ashton's avatar
Gregory Ashton committed
406

Gregory Ashton's avatar
Gregory Ashton committed
407
408
409
    def inititate_search_object(self):
        logging.info('Setting up search object')
        self.search = ComputeFstat(
410
            tref=self.tref, sftfilepattern=self.sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
411
412
413
414
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
            detectors=self.detectors, transient=True,
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
Gregory Ashton's avatar
Gregory Ashton committed
415
416
            BSGL=self.BSGL, SSBprec=self.SSBprec,
            injectSources=self.injectSources)
Gregory Ashton's avatar
Gregory Ashton committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
        self.search.get_det_stat = (
            self.search.run_computefstatistic_single_point)

    def get_input_data_array(self):
        arrays = []
        tstarts = [self.minStartTime]
        while tstarts[-1] + self.window_size < self.maxStartTime:
            tstarts.append(tstarts[-1]+self.window_delta)
        arrays = [tstarts]
        for tup in (self.F0s, self.F1s, self.F2s,
                    self.Alphas, self.Deltas):
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        input_data = np.array(input_data)
        input_data = np.insert(
            input_data, 1, input_data[:, 0] + self.window_size, axis=1)

        self.arrays = arrays
        self.input_data = np.array(input_data)

    def plot_sliding_window(self, F0=None, ax=None, savefig=True,
442
                            colorbar=True, timestamps=False):
Gregory Ashton's avatar
Gregory Ashton committed
443
444
445
446
447
448
449
450
451
452
453
        data = self.data
        if ax is None:
            ax = plt.subplot()
        tstarts = np.unique(data[:, 0])
        tends = np.unique(data[:, 1])
        frequencies = np.unique(data[:, 2])
        twoF = data[:, -1]
        tmids = (tstarts + tends) / 2.0
        dts = (tmids - self.minStartTime) / 86400.
        if F0:
            frequencies = frequencies - F0
454
            ax.set_ylabel('Frequency - $f_0$ [Hz] \n $f_0={:0.2f}$'.format(F0))
Gregory Ashton's avatar
Gregory Ashton committed
455
456
457
458
459
460
461
462
463
        else:
            ax.set_ylabel('Frequency [Hz]')
        twoF = twoF.reshape((len(tmids), len(frequencies)))
        Y, X = np.meshgrid(frequencies, dts)
        pax = ax.pcolormesh(X, Y, twoF)
        if colorbar:
            cb = plt.colorbar(pax, ax=ax)
            cb.set_label('$2\mathcal{F}$')
        ax.set_xlabel(
464
465
            r'Mid-point (days after $t_\mathrm{{start}}$={})'.format(
                self.minStartTime))
Gregory Ashton's avatar
Gregory Ashton committed
466
467
        ax.set_title(
            'Sliding window length = {} days in increments of {} days'
468
469
470
471
472
473
474
            .format(self.window_size/86400, self.window_delta/86400),
            )
        if timestamps:
            axT = ax.twiny()
            axT.set_xlim(tmids[0]*1e-9, tmids[-1]*1e-9)
            axT.set_xlabel('Mid-point timestamp [GPS $10^{9}$ s]')
            ax.set_title(ax.get_title(), y=1.18)
Gregory Ashton's avatar
Gregory Ashton committed
475
476
477
478
479
480
        if savefig:
            plt.tight_layout()
            plt.savefig(
                '{}/{}_sliding_window.png'.format(self.outdir, self.label))
        else:
            return ax
481
482
483
484
485


class DMoff_NO_SPIN(GridSearch):
    """ DMoff test using SSBPREC_NO_SPIN """
    @helper_functions.initializer
486
    def __init__(self, par, label, outdir, sftfilepattern, minStartTime=None,
487
488
489
490
491
492
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
                 earth_ephem=None, sun_ephem=None, detectors=None,
                 injectSources=None, assumeSqrtSX=None):
        """
        Parameters
        ----------
493
494
495
        par: dict, str
            Either a par dictionary (containing 'F0', 'F1', 'Alpha', 'Delta'
            and 'tref') or a path to a .par file to read in the F0, F1 etc
496
497
        label, outdir: str
            A label and directory to read/write data from/to
498
499
500
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
501
502
503
504
505
506
507
508
509
510
511
512
513
514
        minStartTime, maxStartTime: int
            GPS seconds of the start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)

515
516
517
518
        if type(par) == dict:
            self.par = par
        elif type(par) == str and os.path.isfile(par):
            self.par = read_par(filename=par)
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
        else:
            raise ValueError('The .par file does not exist')

        self.nsegs = 1
        self.BSGL = False

        self.tref = self.par['tref']
        self.F1s = [self.par.get('F1', 0)]
        self.F2s = [self.par.get('F2', 0)]
        self.Alphas = [self.par['Alpha']]
        self.Deltas = [self.par['Delta']]
        self.Re = 6.371e6
        self.c = 2.998e8
        self.SIDEREAL_DAY = 23*60*60 + 56*60 + 4.0916
        self.TERRESTRIAL_DAY = 86400.
534
        a0 = self.Re/self.c  # *np.cos(self.par['Delta'])
535
        self.m0 = np.max([4, int(np.ceil(2*np.pi*self.par['F0']*a0))])
536
537
        logging.info(
            'Setting up DMoff_NO_SPIN search with m0 = {}'.format(self.m0))
538
539
540
541
542
543
544
545
546
547

    def get_results(self):
        """ Compute the three summed detection statistics

        Returns
        -------
            m0, twoF_SUM, twoFstar_SUM_SIDEREAL, twoFstar_SUM_TERRESTRIAL

        """
        self.SSBprec = 2
548
        self.set_out_file('SSBPREC2')
549
        self.F0s = [self.par['F0']+j/self.SIDEREAL_DAY for j in range(-4, 5)]
550
551
552
553
        self.run()
        twoF_SUM = np.sum(self.data[:, -1])

        self.SSBprec = 4
554
        self.set_out_file('SSBPREC4')
555
556
557
558
559
        self.F0s = [self.par['F0']+j/self.SIDEREAL_DAY
                    for j in range(-self.m0, self.m0+1)]
        self.run()
        twoFstar_SUM = np.sum(self.data[:, -1])

560
        self.set_out_file('SSBPREC4_TERRESTRIAL')
561
562
563
564
565
566
        self.F0s = [self.par['F0']+j/self.TERRESTRIAL_DAY
                    for j in range(-self.m0, self.m0+1)]
        self.run()
        twoFstar_SUM_terrestrial = np.sum(self.data[:, -1])

        return self.m0, twoF_SUM, twoFstar_SUM, twoFstar_SUM_terrestrial