mcmc_based_searches.py 87.2 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
2
""" Searches using MCMC-based methods """

3
import sys
Gregory Ashton's avatar
Gregory Ashton committed
4
import os
5
import copy
Gregory Ashton's avatar
Gregory Ashton committed
6
import logging
7
from collections import OrderedDict
8
9
10
11
12
13
14
15

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import emcee
import corner
import dill as pickle

16
import core
Gregory Ashton's avatar
Gregory Ashton committed
17
from core import tqdm, args, earth_ephem, sun_ephem
18
from optimal_setup_functions import get_V_estimate
Gregory Ashton's avatar
Gregory Ashton committed
19
20
from optimal_setup_functions import get_optimal_setup
import helper_functions
21
22


23
class MCMCSearch(core.BaseSearchClass):
Gregory Ashton's avatar
Gregory Ashton committed
24
    """ MCMC search using ComputeFstat"""
25
26
27
28
29
30
31
32
33

    symbol_dictionary = dict(
        F0='$f$', F1='$\dot{f}$', F2='$\ddot{f}$', alpha=r'$\alpha$',
        delta='$\delta$')
    unit_dictionary = dict(
        F0='Hz', F1='Hz/s', F2='Hz/s$^2$', alpha=r'rad', delta='rad')
    rescale_dictionary = {}


Gregory Ashton's avatar
Gregory Ashton committed
34
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
35
36
    def __init__(self, label, outdir, theta_prior, tref, minStartTime,
                 maxStartTime, sftfilepath=None, nsteps=[100, 100],
37
38
                 nwalkers=100, ntemps=1, log10temperature_min=-5,
                 theta_initial=None, scatter_val=1e-10,
39
                 binary=False, BSGL=False, minCoverFreq=None,
40
                 maxCoverFreq=None, detectors=None, earth_ephem=None,
41
                 sun_ephem=None, injectSources=None, assumeSqrtSX=None):
42
43
44
45
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
46
        sftfilepath: str
47
48
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
49
        theta_prior: dict
50
51
52
53
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
54
55
56
57
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
58
        tref, minStartTime, maxStartTime: int
59
60
61
62
63
64
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
65
66
67
68
69
70
71
72
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
        binary: Bool
            If true, search over binary parameters
73
        detectors: str
74
75
            Two character reference to the data to use, specify None for no
            contraint.
76
77
78
79
80
81
82
83
84
85
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

Gregory Ashton's avatar
Gregory Ashton committed
86
87
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
88
        self._add_log_file()
Gregory Ashton's avatar
Gregory Ashton committed
89
90
        logging.info(
            'Set-up MCMC search for model {} on data {}'.format(
91
                self.label, self.sftfilepath))
92
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
93
        self._unpack_input_theta()
94
        self.ndim = len(self.theta_keys)
95
96
97
98
        if self.log10temperature_min:
            self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
        else:
            self.betas = None
99

100
101
102
103
104
105
106
107
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

108
        self._log_input()
109

110
    def _log_input(self):
111
        logging.info('theta_prior = {}'.format(self.theta_prior))
112
        logging.info('nwalkers={}'.format(self.nwalkers))
113
114
115
116
        logging.info('scatter_val = {}'.format(self.scatter_val))
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
        logging.info('log10temperature_min = {}'.format(
117
            self.log10temperature_min))
118

119
    def _initiate_search_object(self):
120
        logging.info('Setting up search object')
121
        self.search = core.ComputeFstat(
122
123
124
            tref=self.tref, sftfilepath=self.sftfilepath,
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
125
            detectors=self.detectors, BSGL=self.BSGL, transient=False,
126
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
127
128
            binary=self.binary, injectSources=self.injectSources,
            assumeSqrtSX=self.assumeSqrtSX)
129
130

    def logp(self, theta_vals, theta_prior, theta_keys, search):
131
        H = [self._generic_lnprior(**theta_prior[key])(p) for p, key in
132
133
134
135
136
137
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
138
139
        FS = search.compute_fullycoherent_det_stat_single_point(
            *self.fixed_theta)
140
141
        return FS

142
    def _unpack_input_theta(self):
143
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']
144
145
146
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
147
148
        full_theta_keys_copy = copy.copy(full_theta_keys)

149
150
        full_theta_symbols = ['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                              r'$\delta$']
151
152
153
154
        if self.binary:
            full_theta_symbols += [
                'asini', 'period', 'period', 'ecc', 'tp', 'argp']

155
156
        self.theta_keys = []
        fixed_theta_dict = {}
157
        for key, val in self.theta_prior.iteritems():
158
159
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
160
                self.theta_keys.append(key)
161
162
163
164
165
166
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
167
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

183
    def _check_initial_points(self, p0):
184
185
186
187
188
189
190
191
192
193
194
195
196
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

197
                p0 = self._generate_new_p0_to_fix_initial_points(
198
199
                    p0, nt, initial_priors)

200
    def _generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
220

221
    def _OLD_run_sampler_with_progress_bar(self, sampler, ns, p0):
222
223
        for result in tqdm(sampler.sample(p0, iterations=ns), total=ns):
            pass
Gregory Ashton's avatar
Gregory Ashton committed
224
225
        return sampler

226
227
    def setup_convergence_testing(
            self, convergence_period=10, convergence_length=10,
228
            convergence_burnin_fraction=0.25, convergence_threshold_number=10,
229
230
            convergence_threshold=1.2, convergence_prod_threshold=2,
            convergence_plot_upper_lim=2):
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
        """
        If called, convergence testing is used during the MCMC simulation

        This uses the Gelmanr-Rubin statistic based on the ratio of between and
        within walkers variance. The original statistic was developed for
        multiple (independent) MCMC simulations, in this context we simply use
        the walkers

        Parameters
        ----------
        convergence_period: int
            period (in number of steps) at which to test convergence
        convergence_length: int
            number of steps to use in testing convergence - this should be
            large enough to measure the variance, but if it is too long
            this will result in incorect early convergence tests
        convergence_burnin_fraction: float [0, 1]
            the fraction of the burn-in period after which to start testing
        convergence_threshold_number: int
            the number of consecutive times where the test passes after which
            to break the burn-in and go to production
        convergence_threshold: float
            the threshold to use in diagnosing convergence. Gelman & Rubin
            recomend a value of 1.2, 1.1 for strict convergence
        convergence_prod_threshold: float
            the threshold to test the production values with
257
258
        convergence_plot_upper_lim: float
            the upper limit to use in the diagnostic plot
259
        """
260
261
262
263
264
265
266

        if convergence_length > convergence_period:
            raise ValueError('convergence_length must be < convergence_period')
        logging.info('Setting up convergence testing')
        self.convergence_length = convergence_length
        self.convergence_period = convergence_period
        self.convergence_burnin_fraction = convergence_burnin_fraction
267
        self.convergence_prod_threshold = convergence_prod_threshold
268
269
270
271
272
        self.convergence_diagnostic = []
        self.convergence_diagnosticx = []
        self.convergence_threshold_number = convergence_threshold_number
        self.convergence_threshold = convergence_threshold
        self.convergence_number = 0
273
        self.convergence_plot_upper_lim = convergence_plot_upper_lim
274

275
    def _get_convergence_statistic(self, i, sampler):
276
277
278
279
280
281
282
283
284
        s = sampler.chain[0, :, i-self.convergence_length+1:i+1, :]
        within_std = np.mean(np.var(s, axis=1), axis=0)
        per_walker_mean = np.mean(s, axis=1)
        mean = np.mean(per_walker_mean, axis=0)
        between_std = np.sqrt(np.mean((per_walker_mean-mean)**2, axis=0))
        W = within_std
        B_over_n = between_std**2 / self.convergence_period
        Vhat = ((self.convergence_period-1.)/self.convergence_period * W
                + B_over_n + B_over_n / float(self.nwalkers))
285
        c = np.sqrt(Vhat/W)
286
        self.convergence_diagnostic.append(c)
287
        self.convergence_diagnosticx.append(i - self.convergence_length/2)
288
289
        return c

290
    def _burnin_convergence_test(self, i, sampler, nburn):
291
292
        if i < self.convergence_burnin_fraction*nburn:
            return False
293
        if np.mod(i+1, self.convergence_period) != 0:
294
            return False
295
        c = self._get_convergence_statistic(i, sampler)
296
297
        if np.all(c < self.convergence_threshold):
            self.convergence_number += 1
298
299
        else:
            self.convergence_number = 0
300
301
        return self.convergence_number > self.convergence_threshold_number

302
    def _prod_convergence_test(self, i, sampler, nburn):
303
304
305
        testA = i > nburn + self.convergence_length
        testB = np.mod(i+1, self.convergence_period) == 0
        if testA and testB:
306
            self._get_convergence_statistic(i, sampler)
307

308
    def _check_production_convergence(self, k):
309
310
311
312
313
314
315
316
        bools = np.any(
            np.array(self.convergence_diagnostic)[k:, :]
            > self.convergence_prod_threshold, axis=1)
        if np.any(bools):
            logging.warning(
                '{} convergence tests in the production run of {} failed'
                .format(np.sum(bools), len(bools)))

317
    def _run_sampler(self, sampler, p0, nprod=0, nburn=0):
318
        if hasattr(self, 'convergence_period'):
319
320
321
322
            logging.info('Running {} burn-in steps with convergence testing'
                         .format(nburn))
            iterator = tqdm(sampler.sample(p0, iterations=nburn), total=nburn)
            for i, output in enumerate(iterator):
323
                if self._burnin_convergence_test(i, sampler, nburn):
324
325
326
327
328
329
330
331
332
333
334
                    logging.info(
                        'Converged at {} before max number {} of steps reached'
                        .format(i, nburn))
                    self.convergence_idx = i
                    break
            iterator.close()
            logging.info('Running {} production steps'.format(nprod))
            j = nburn
            k = len(self.convergence_diagnostic)
            for result in tqdm(sampler.sample(output[0], iterations=nprod),
                               total=nprod):
335
                self._prod_convergence_test(j, sampler, nburn)
336
                j += 1
337
            self._check_production_convergence(k)
338
339
340
341
342
343
            return sampler
        else:
            for result in tqdm(sampler.sample(p0, iterations=nburn+nprod),
                               total=nburn+nprod):
                pass
            return sampler
344

345
    def run(self, proposal_scale_factor=2, create_plots=True, **kwargs):
346
        """ Run the MCMC simulatation """
347

348
        self.old_data_is_okay_to_use = self._check_old_data_is_okay_to_use()
349
350
351
        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
352
            d = self.get_saved_data_dictionary()
353
354
355
356
357
358
            self.sampler = d['sampler']
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
            return

359
        self._initiate_search_object()
360
361
362
363

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
364
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
365

366
367
368
        p0 = self._generate_initial_p0()
        p0 = self._apply_corrections_to_p0(p0)
        self._check_initial_points(p0)
369
370
371
372

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
Gregory Ashton's avatar
Gregory Ashton committed
373
                j, ninit_steps, n))
374
            sampler = self._run_sampler(sampler, p0, nburn=n)
375
376
            logging.info("Mean acceptance fraction: {}"
                         .format(np.mean(sampler.acceptance_fraction, axis=1)))
377
378
379
            if self.ntemps > 1:
                logging.info("Tswap acceptance fraction: {}"
                             .format(sampler.tswap_acceptance_fraction))
380
            if create_plots:
381
                fig, axes = self._plot_walkers(sampler,
382
383
384
385
                                              symbols=self.theta_symbols,
                                              **kwargs)
                fig.tight_layout()
                fig.savefig('{}/{}_init_{}_walkers.png'.format(
386
                    self.outdir, self.label, j), dpi=400)
387

388
389
390
            p0 = self._get_new_p0(sampler)
            p0 = self._apply_corrections_to_p0(p0)
            self._check_initial_points(p0)
391
392
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
393
394
395
396
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
397
398
399
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
400
        sampler = self._run_sampler(sampler, p0, nburn=nburn, nprod=nprod)
401
402
        logging.info("Mean acceptance fraction: {}"
                     .format(np.mean(sampler.acceptance_fraction, axis=1)))
403
404
405
        if self.ntemps > 1:
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
406

407
        if create_plots:
408
            fig, axes = self._plot_walkers(sampler, symbols=self.theta_symbols,
409
                                          nprod=nprod, **kwargs)
410
411
412
            fig.tight_layout()
            fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label),
                        dpi=200)
413
414
415
416
417
418
419
420

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
        self.sampler = sampler
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
421
        self._save_data(sampler, samples, lnprobs, lnlikes)
422

423
    def _get_rescale_multiplier_for_key(self, key):
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
        """ Get the rescale multiplier from the rescale_dictionary

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
        if key not in self.rescale_dictionary:
            return 1

        if 'multiplier' in self.rescale_dictionary[key]:
            val = self.rescale_dictionary[key]['multiplier']
            if type(val) == str:
                if hasattr(self, val):
                    multiplier = getattr(
                        self, self.rescale_dictionary[key]['multiplier'])
                else:
                    raise ValueError(
                        "multiplier {} not a class attribute".format(val))
            else:
                multiplier = val
        else:
            multiplier = 1
        return multiplier

448
    def _get_rescale_subtractor_for_key(self, key):
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
        """ Get the rescale subtractor from the rescale_dictionary

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
        if key not in self.rescale_dictionary:
            return 0

        if 'subtractor' in self.rescale_dictionary[key]:
            val = self.rescale_dictionary[key]['subtractor']
            if type(val) == str:
                if hasattr(self, val):
                    subtractor = getattr(
                        self, self.rescale_dictionary[key]['subtractor'])
                else:
                    raise ValueError(
                        "subtractor {} not a class attribute".format(val))
            else:
                subtractor = val
        else:
            subtractor = 0
        return subtractor

473
    def _scale_samples(self, samples, theta_keys):
474
        """ Scale the samples using the rescale_dictionary """
475
476
477
478
        for key in theta_keys:
            if key in self.rescale_dictionary:
                idx = theta_keys.index(key)
                s = samples[:, idx]
479
                subtractor = self._get_rescale_subtractor_for_key(key)
480
                s = s - subtractor
481
                multiplier = self._get_rescale_multiplier_for_key(key)
482
                s *= multiplier
483
484
                samples[:, idx] = s

485
486
        return samples

487
    def _get_labels(self):
488
        """ Combine the units, symbols and rescaling to give labels """
489

490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
        labels = []
        for key in self.theta_keys:
            label = None
            s = self.symbol_dictionary[key]
            s.replace('_{glitch}', r'_\textrm{glitch}')
            u = self.unit_dictionary[key]
            if key in self.rescale_dictionary:
                if 'symbol' in self.rescale_dictionary[key]:
                    s = self.rescale_dictionary[key]['symbol']
                if 'label' in self.rescale_dictionary[key]:
                    label = self.rescale_dictionary[key]['label']
                if 'unit' in self.rescale_dictionary[key]:
                    u = self.rescale_dictionary[key]['unit']
            if label is None:
                label = '{} \n [{}]'.format(s, u)
            labels.append(label)
        return labels
507

508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    def plot_corner(self, figsize=(7, 7), add_prior=False, nstds=None,
                    label_offset=0.4, dpi=300, rc_context={},
                    tglitch_ratio=False, **kwargs):
        """ Generate a corner plot of the posterior

        Using the `corner` package (https://pypi.python.org/pypi/corner/),
        generate estimates of the posterior from the production samples.

        Parameters
        ----------
        figsize: tuple (7, 7)
            Figure size in inches (passed to plt.subplots)
        add_prior: bool
            If true, plot the prior as a red line
        nstds: float
            The number of standard deviations to plot centered on the mean
        label_offset: float
            Offset the labels from the plot: useful to precent overlapping the
            tick labels with the axis labels
        dpi: int
            Passed to plt.savefig
        rc_context: dict
            Dictionary of rc values to set while generating the figure (see
            matplotlib rc for more details)
        tglitch_ratio: bool
            If true, and tglitch is a parameter, plot posteriors as the
            fractional time at which the glitch occurs instead of the actual
            time

        Note: kwargs are passed on to corner.coner

        """
540

Gregory Ashton's avatar
Gregory Ashton committed
541
542
543
544
545
546
547
548
549
550
        if self.ndim < 2:
            with plt.rc_context(rc_context):
                fig, ax = plt.subplots(figsize=figsize)
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

551
552
553
554
555
        with plt.rc_context(rc_context):
            fig, axes = plt.subplots(self.ndim, self.ndim,
                                     figsize=figsize)

            samples_plt = copy.copy(self.samples)
556
            labels = self._get_labels()
557

558
            samples_plt = self._scale_samples(samples_plt, self.theta_keys)
559
560
561
562
563

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
564
565
566
                        samples_plt[:, j] = (
                            s - self.minStartTime)/(
                                self.maxStartTime - self.minStartTime)
567
                        labels[j] = r'$R_{\textrm{glitch}}$'
568
569
570
571
572
573
574
575
576
577
578

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
            else:
                _range = None

            fig_triangle = corner.corner(samples_plt,
579
                                         labels=labels,
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
605
                self._add_prior_to_corner(axes, self.samples)
606
607
608

            fig_triangle.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
609

610
    def _add_prior_to_corner(self, axes, samples):
611
612
613
614
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            xlim = ax.get_xlim()
            s = samples[:, i]
615
            prior = self._generic_lnprior(**self.theta_prior[key])
616
            x = np.linspace(s.min(), s.max(), 100)
617
618
            multiplier = self._get_rescale_multiplier_for_key(key)
            subtractor = self._get_rescale_subtractor_for_key(key)
619
620
            ax2 = ax.twinx()
            ax2.get_yaxis().set_visible(False)
621
622
            ax2.plot((x-subtractor)*multiplier, [prior(xi) for xi in x], '-r')
            ax2.set_xlim(xlim)
623

624
625
626
627
628
629
630
631
    def plot_prior_posterior(self, normal_stds=2):
        """ Plot the posterior in the context of the prior """
        fig, axes = plt.subplots(nrows=self.ndim, figsize=(8, 4*self.ndim))
        N = 1000
        from scipy.stats import gaussian_kde

        for i, (ax, key) in enumerate(zip(axes, self.theta_keys)):
            prior_dict = self.theta_prior[key]
632
            prior_func = self._generic_lnprior(**prior_dict)
633
634
635
636
637
638
639
640
641
642
            if prior_dict['type'] == 'unif':
                x = np.linspace(prior_dict['lower'], prior_dict['upper'], N)
                prior = prior_func(x)
                prior[0] = 0
                prior[-1] = 0
            elif prior_dict['type'] == 'norm':
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = prior_func(x)
643
644
645
646
647
            elif prior_dict['type'] == 'halfnorm':
                lower = prior_dict['loc']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
Gregory Ashton's avatar
Gregory Ashton committed
648
649
650
651
652
            elif prior_dict['type'] == 'neghalfnorm':
                upper = prior_dict['loc']
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
            else:
                raise ValueError('Not implemented for prior type {}'.format(
                    prior_dict['type']))
            priorln = ax.plot(x, prior, 'r', label='prior')
            ax.set_xlabel(self.theta_symbols[i])

            s = self.samples[:, i]
            while len(s) > 10**4:
                # random downsample to avoid slow calculation of kde
                s = np.random.choice(s, size=int(len(s)/2.))
            kde = gaussian_kde(s)
            ax2 = ax.twinx()
            postln = ax2.plot(x, kde.pdf(x), 'k', label='posterior')
            ax2.set_yticklabels([])
            ax.set_yticklabels([])

        lns = priorln + postln
        labs = [l.get_label() for l in lns]
        axes[0].legend(lns, labs, loc=1, framealpha=0.8)

        fig.savefig('{}/{}_prior_posterior.png'.format(
            self.outdir, self.label))

676
    def plot_cumulative_max(self, **kwargs):
677
678
679
680
        """ Plot the cumulative twoF for the maximum posterior estimate

        See the pyfstat.core.plot_twoF_cumulative function for further details
        """
Gregory Ashton's avatar
Gregory Ashton committed
681
682
683
684
        d, maxtwoF = self.get_max_twoF()
        for key, val in self.theta_prior.iteritems():
            if key not in d:
                d[key] = val
685
686

        if hasattr(self, 'search') is False:
687
            self._initiate_search_object()
688
689
690
        if self.binary is False:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
691
                Alpha=d['Alpha'], Delta=d['Delta'],
692
                tstart=self.minStartTime, tend=self.maxStartTime,
693
                **kwargs)
694
695
696
697
698
        else:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
                Alpha=d['Alpha'], Delta=d['Delta'], asini=d['asini'],
                period=d['period'], ecc=d['ecc'], argp=d['argp'], tp=d['argp'],
699
                tstart=self.minStartTime, tend=self.maxStartTime, **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
700

701
    def _generic_lnprior(self, **kwargs):
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
        """ Return a lambda function of the pdf

        Parameters
        ----------
        kwargs: dict
            A dictionary containing 'type' of pdf and shape parameters

        """

        def logunif(x, a, b):
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

        def halfnorm(x, loc, scale):
726
            if x < loc:
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
            return lambda x: logunif(x, kwargs['lower'], kwargs['upper'])
        elif kwargs['type'] == 'halfnorm':
            return lambda x: halfnorm(x, kwargs['loc'], kwargs['scale'])
744
745
        elif kwargs['type'] == 'neghalfnorm':
            return lambda x: halfnorm(-x, kwargs['loc'], kwargs['scale'])
746
747
748
749
750
751
752
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

753
    def _generate_rv(self, **kwargs):
754
755
756
757
758
759
760
761
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
762
763
764
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
765
766
767
768
769
770
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

771
772
773
774
    def _plot_walkers(self, sampler, symbols=None, alpha=0.4, color="k",
                      temp=0, lw=0.1, nprod=0, add_det_stat_burnin=False,
                      fig=None, axes=None, xoffset=0, plot_det_stat=False,
                      context='classic', subtractions=None, labelpad=0.05):
775
776
        """ Plot all the chains from a sampler """

777
778
779
        if np.ndim(axes) > 1:
            axes = axes.flatten()

780
781
782
783
784
785
786
787
788
789
790
791
792
        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
            chain = sampler.chain[:, :, :]
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
            chain = sampler.chain[temp, :, :, :]

793
794
        if subtractions is None:
            subtractions = [0 for i in range(ndim)]
795
796
797
        else:
            if len(subtractions) != self.ndim:
                raise ValueError('subtractions must be of length ndim')
798

799
800
801
802
        if plot_det_stat:
            extra_subplots = 1
        else:
            extra_subplots = 0
803
        with plt.style.context((context)):
Gregory Ashton's avatar
Gregory Ashton committed
804
            plt.rcParams['text.usetex'] = True
Gregory Ashton's avatar
Gregory Ashton committed
805
            if fig is None and axes is None:
806
                fig = plt.figure(figsize=(4, 3.0*ndim))
807
808
                ax = fig.add_subplot(ndim+extra_subplots, 1, 1)
                axes = [ax] + [fig.add_subplot(ndim+extra_subplots, 1, i)
Gregory Ashton's avatar
Gregory Ashton committed
809
                               for i in range(2, ndim+1)]
810

Gregory Ashton's avatar
Gregory Ashton committed
811
            idxs = np.arange(chain.shape[1])
812
813
814
815
816
            burnin_idx = chain.shape[1] - nprod
            if hasattr(self, 'convergence_idx'):
                convergence_idx = self.convergence_idx
            else:
                convergence_idx = burnin_idx
817
818
            if ndim > 1:
                for i in range(ndim):
819
                    axes[i].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
820
                    cs = chain[:, :, i].T
821
                    if burnin_idx > 0:
822
823
                        axes[i].plot(xoffset+idxs[:convergence_idx+1],
                                     cs[:convergence_idx+1]-subtractions[i],
824
                                     color="r", alpha=alpha,
Gregory Ashton's avatar
Gregory Ashton committed
825
                                     lw=lw)
826
827
                        axes[i].axvline(xoffset+idxs[convergence_idx],
                                        color='k', ls='--', lw=0.25)
828
829
                    axes[i].plot(xoffset+idxs[burnin_idx:],
                                 cs[burnin_idx:]-subtractions[i],
Gregory Ashton's avatar
Gregory Ashton committed
830
                                 color="k", alpha=alpha, lw=lw)
831
                    if symbols:
832
                        if subtractions[i] == 0:
833
                            axes[i].set_ylabel(symbols[i], labelpad=labelpad)
834
835
                        else:
                            axes[i].set_ylabel(
836
837
                                symbols[i]+'$-$'+symbols[i]+'$_0$',
                                labelpad=labelpad)
838

839
840
                    if hasattr(self, 'convergence_diagnostic'):
                        ax = axes[i].twinx()
841
842
                        c_x = np.array(self.convergence_diagnosticx)
                        c_y = np.array(self.convergence_diagnostic)
843
844
845
846
                        break_idx = np.argmin(np.abs(c_x - burnin_idx))
                        ax.plot(c_x[:break_idx], c_y[:break_idx, i], '-b')
                        ax.plot(c_x[break_idx:], c_y[break_idx:, i], '-b')
                        ax.set_ylabel('PSRF')
847
                        ax.ticklabel_format(useOffset=False)
848
                        ax.set_ylim(1, self.convergence_plot_upper_lim)
849
            else:
Gregory Ashton's avatar
Gregory Ashton committed
850
                axes[0].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
851
                cs = chain[:, :, temp].T
Gregory Ashton's avatar
Gregory Ashton committed
852
853
854
855
856
857
                if burnin_idx:
                    axes[0].plot(idxs[:burnin_idx], cs[:burnin_idx],
                                 color="r", alpha=alpha, lw=lw)
                axes[0].plot(idxs[burnin_idx:], cs[burnin_idx:], color="k",
                             alpha=alpha, lw=lw)
                if symbols:
858
                    axes[0].set_ylabel(symbols[0], labelpad=labelpad)
859

860
            if plot_det_stat:
861
862
863
                if len(axes) == ndim:
                    axes.append(fig.add_subplot(ndim+1, 1, ndim+1))

864
865
866
                lnl = sampler.lnlikelihood[temp, :, :]
                if burnin_idx and add_det_stat_burnin:
                    burn_in_vals = lnl[:, :burnin_idx].flatten()
867
868
869
870
871
872
873
                    try:
                        axes[-1].hist(burn_in_vals[~np.isnan(burn_in_vals)],
                                      bins=50, histtype='step', color='r')
                    except ValueError:
                        logging.info('Det. Stat. hist failed, most likely all '
                                     'values where the same')
                        pass
874
875
876
                else:
                    burn_in_vals = []
                prod_vals = lnl[:, burnin_idx:].flatten()
877
878
879
880
881
882
883
                try:
                    axes[-1].hist(prod_vals[~np.isnan(prod_vals)], bins=50,
                                  histtype='step', color='k')
                except ValueError:
                    logging.info('Det. Stat. hist failed, most likely all '
                                 'values where the same')
                    pass
884
885
886
887
888
889
890
891
892
893
894
895
                if self.BSGL:
                    axes[-1].set_xlabel(r'$\mathcal{B}_\mathrm{S/GL}$')
                else:
                    axes[-1].set_xlabel(r'$\widetilde{2\mathcal{F}}$')
                axes[-1].set_ylabel(r'$\textrm{Counts}$')
                combined_vals = np.append(burn_in_vals, prod_vals)
                if len(combined_vals) > 0:
                    minv = np.min(combined_vals)
                    maxv = np.max(combined_vals)
                    Range = abs(maxv-minv)
                    axes[-1].set_xlim(minv-0.1*Range, maxv+0.1*Range)

896
                xfmt = matplotlib.ticker.ScalarFormatter()
897
                xfmt.set_powerlimits((-4, 4))
898
899
                axes[-1].xaxis.set_major_formatter(xfmt)

900
            axes[-2].set_xlabel(r'$\textrm{Number of steps}$', labelpad=0.2)
901
902
        return fig, axes

903
    def _apply_corrections_to_p0(self, p0):
Gregory Ashton's avatar
Gregory Ashton committed
904
905
906
        """ Apply any correction to the initial p0 values """
        return p0

907
    def _generate_scattered_p0(self, p):
908
        """ Generate a set of p0s scattered about p """
Gregory Ashton's avatar
Gregory Ashton committed
909
        p0 = [[p + self.scatter_val * p * np.random.randn(self.ndim)
910
911
912
913
               for i in xrange(self.nwalkers)]
              for j in xrange(self.ntemps)]
        return p0

914
    def _generate_initial_p0(self):
915
916
917
        """ Generate a set of init vals for the walkers """

        if type(self.theta_initial) == dict:
918
            logging.info('Generate initial values from initial dictionary')
919
            if hasattr(self, 'nglitch') and self.nglitch > 1:
920
                raise ValueError('Initial dict not implemented for nglitch>1')
921
            p0 = [[[self._generate_rv(**self.theta_initial[key])
922
923
924
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
925
926
        elif type(self.theta_initial) == list:
            logging.info('Generate initial values from list of theta_initial')
927
            p0 = [[[self._generate_rv(**val)
928
929
930
                    for val in self.theta_initial]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
931
        elif self.theta_initial is None:
932
            logging.info('Generate initial values from prior dictionary')
933
            p0 = [[[self._generate_rv(**self.theta_prior[key])
934
935
936
937
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
        elif len(self.theta_initial) == self.ndim:
938
            p0 = self._generate_scattered_p0(self.theta_initial)
939
940
941
942
943
        else:
            raise ValueError('theta_initial not understood')

        return p0

944
    def _get_new_p0(self, sampler):
945
946
947
948
949
950
        """ Returns new initial positions for walkers are burn0 stage

        This returns new positions for all walkers by scattering points about
        the maximum posterior with scale `scatter_val`.

        """
Gregory Ashton's avatar
Gregory Ashton committed
951
952
953
954
        temp_idx = 0
        pF = sampler.chain[temp_idx, :, :, :]
        lnl = sampler.lnlikelihood[temp_idx, :, :]
        lnp = sampler.lnprobability[temp_idx, :, :]
955
956

        # General warnings about the state of lnp
Gregory Ashton's avatar
Gregory Ashton committed
957
        if np.any(np.isnan(lnp)):
958
959
            logging.warning(
                "Of {} lnprobs {} are nan".format(
Gregory Ashton's avatar
Gregory Ashton committed
960
961
                    np.shape(lnp), np.sum(np.isnan(lnp))))
        if np.any(np.isposinf(lnp)):
962
963
            logging.warning(
                "Of {} lnprobs {} are +np.inf".format(
Gregory Ashton's avatar
Gregory Ashton committed
964
965
                    np.shape(lnp), np.sum(np.isposinf(lnp))))
        if np.any(np.isneginf(lnp)):
966
967
            logging.warning(
                "Of {} lnprobs {} are -np.inf".format(
Gregory Ashton's avatar
Gregory Ashton committed
968
                    np.shape(lnp), np.sum(np.isneginf(lnp))))
969

970
971
        lnp_finite = copy.copy(lnp)
        lnp_finite[np.isinf(lnp)] = np.nan
Gregory Ashton's avatar
Gregory Ashton committed
972
973
        idx = np.unravel_index(np.nanargmax(lnp_finite), lnp_finite.shape)
        p = pF[idx]
974
        p0 = self._generate_scattered_p0(p)
975

976
977
978
979
980
981
982
983
        self.search.BSGL = False
        twoF = self.logl(p, self.search)
        self.search.BSGL = self.BSGL

        logging.info(('Gen. new p0 from pos {} which had det. stat.={:2.1f},'
                      ' twoF={:2.1f} and lnp={:2.1f}')
                     .format(idx[1], lnl[idx], twoF, lnp_finite[idx]))

984
985
        return p0

986
    def _get_data_dictionary_to_save(self):
987
988
        d = dict(nsteps=self.nsteps, nwalkers=self.nwalkers,
                 ntemps=self.ntemps, theta_keys=self.theta_keys,
Gregory Ashton's avatar
Gregory Ashton committed
989
                 theta_prior=self.theta_prior, scatter_val=self.scatter_val,
990
                 log10temperature_min=self.log10temperature_min,
991
                 BSGL=self.BSGL)
992
993
        return d

994
995
    def _save_data(self, sampler, samples, lnprobs, lnlikes):
        d = self._get_data_dictionary_to_save()
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
        d['sampler'] = sampler
        d['samples'] = samples
        d['lnprobs'] = lnprobs
        d['lnlikes'] = lnlikes

        if os.path.isfile(self.pickle_path):
            logging.info('Saving backup of {} as {}.old'.format(
                self.pickle_path, self.pickle_path))
            os.rename(self.pickle_path, self.pickle_path+".old")
        with open(self.pickle_path, "wb") as File:
            pickle.dump(d, File)

1008
1009
    def get_saved_data_dictionary(self):
        """ Returns dictionary of the data saved as pickle """
1010
1011
1012
1013
        with open(self.pickle_path, "r") as File:
            d = pickle.load(File)
        return d

1014
    def _check_old_data_is_okay_to_use(self):
1015
1016
1017
1018
        if args.use_old_data:
            logging.info("Forcing use of old data")
            return True

1019
1020
1021
1022
        if os.path.isfile(self.pickle_path) is False:
            logging.info('No pickled data found')
            return False

Gregory Ashton's avatar
Gregory Ashton committed
1023
1024
        if self.sftfilepath is not None:
            oldest_sft = min([os.path.getmtime(f) for f in
1025
                              self._get_list_of_matching_sfts()])
Gregory Ashton's avatar
Gregory Ashton committed
1026
1027
1028
            if os.path.getmtime(self.pickle_path) < oldest_sft:
                logging.info('Pickled data outdates sft files')
                return False
1029

1030
1031
        old_d = self.get_saved_data_dictionary().copy()
        new_d = self._get_data_dictionary_to_save().copy()
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

        old_d.pop('samples')
        old_d.pop('sampler')
        old_d.pop('lnprobs')
        old_d.pop('lnlikes')

        mod_keys = []
        for key in new_d.keys():
            if key in old_d:
                if new_d[key] != old_d[key]:
                    mod_keys.append((key, old_d[key], new_d[key]))
            else:
1044
                raise ValueError('Keys {} not in old dictionary'.format(key))
1045
1046
1047
1048
1049
1050
1051
1052
1053

        if len(mod_keys) == 0:
            return True
        else:
            logging.warning("Saved data differs from requested")
            logging.info("Differences found in following keys:")
            for key in mod_keys:
                if len(key) == 3:
                    if np.isscalar(key[1]) or key[0] == 'nsteps':
1054
                        logging.info("    {} : {} -> {}".format(*key))
1055
                    else:
1056
                        logging.info("    " + key[0])
1057
1058
1059
1060
1061
                else:
                    logging.info(key)
            return False

    def get_max_twoF(self, threshold=0.05):
1062
        """ Returns the max likelihood sample and the corresponding 2F value
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076

        Note: the sample is returned as a dictionary along with an estimate of
        the standard deviation calculated from the std of all samples with a
        twoF within `threshold` (relative) to the max twoF

        """
        if any(np.isposinf(self.lnlikes)):
            logging.info('twoF values contain positive infinite values')
        if any(np.isneginf(self.lnlikes)):
            logging.info('twoF values contain negative infinite values')
        if any(np.isnan(self.lnlikes)):
            logging.info('twoF values contain nan')
        idxs = np.isfinite(self.lnlikes)
        jmax = np.nanargmax(self.lnlikes[idxs])
1077
        maxlogl = self.lnlikes[jmax]
1078
        d = OrderedDict()
1079

1080
1081
        if self.BSGL:
            if hasattr(self, 'search') is False:
1082
                self._initiate_search_object()
1083
1084
1085
1086
1087
1088
1089
            p = self.samples[jmax]
            self.search.BSGL = False
            maxtwoF = self.logl(p, self.search)
            self.search.BSGL = self.BSGL
        else:
            maxtwoF = maxlogl

Gregory Ashton's avatar
Gregory Ashton committed
1090
        repeats = []
1091
        for i, k in enumerate(self.theta_keys):
Gregory Ashton's avatar
Gregory Ashton committed
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
            if k in d and k not in repeats:
                d[k+'_0'] = d[k]  # relabel the old key
                d.pop(k)
                repeats.append(k)
            if k in repeats:
                k = k + '_0'
                count = 1
                while k in d:
                    k = k.replace('_{}'.format(count-1), '_{}'.format(count))
                    count += 1
1102
1103
1104
1105
1106
            d[k] = self.samples[jmax][i]
        return d, maxtwoF

    def get_median_stds(self):
        """ Returns a dict of the median and std of all production samples """
1107
        d = OrderedDict()
Gregory Ashton's avatar
Gregory Ashton committed
1108
        repeats = []
1109
        for s, k in zip(self.samples.T, self.theta_keys):
Gregory Ashton's avatar
Gregory Ashton committed
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
            if k in d and k not in repeats:
                d[k+'_0'] = d[k]  # relabel the old key
                d[k+'_0_std'] = d[k+'_std']
                d.pop(k)
                d.pop(k+'_std')
                repeats.append(k)
            if k in repeats:
                k = k + '_0'
                count = 1
                while k in d:
                    k = k.replace('_{}'.format(count-1), '_{}'.format(count))
                    count += 1

1123
1124
1125
1126
            d[k] = np.median(s)
            d[k+'_std'] = np.std(s)
        return d

1127
    def check_if_samples_are_railing(self, threshold=0.01):
1128
1129
1130
1131