pyfstat.py 124 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
""" Classes for various types of searches using ComputeFstatistic """
import os
import sys
import itertools
import logging
import argparse
import copy
import glob
import inspect
from functools import wraps
11
import subprocess
12
from collections import OrderedDict
13
14
15

import numpy as np
import matplotlib
16
matplotlib.use('Agg')
17
import matplotlib.pyplot as plt
18
import scipy.special
19
import scipy.optimize
20
21
22
import emcee
import corner
import dill as pickle
23
import lal
24
25
import lalpulsar

26
27
28
try:
    from tqdm import tqdm
except ImportError:
29
    def tqdm(x, *args, **kwargs):
30
31
        return x

32
plt.rcParams['text.usetex'] = True
33
plt.rcParams['axes.formatter.useoffset'] = False
34

35
36
37
38
39
40
41
config_file = os.path.expanduser('~')+'/.pyfstat.conf'
if os.path.isfile(config_file):
    d = {}
    with open(config_file, 'r') as f:
        for line in f:
            k, v = line.split('=')
            k = k.replace(' ', '')
42
            v = v.replace(' ', '').replace("'", "").replace('"', '').replace('\n', '')
43
44
45
46
47
48
            d[k] = v
    earth_ephem = d['earth_ephem']
    sun_ephem = d['sun_ephem']
else:
    logging.warning('No ~/.pyfstat.conf file found please provide the paths '
                    'when initialising searches')
49
50
51
    earth_ephem = None
    sun_ephem = None

52
53
54
55
56
parser = argparse.ArgumentParser()
parser.add_argument("-q", "--quite", help="Decrease output verbosity",
                    action="store_true")
parser.add_argument("-c", "--clean", help="Don't use cached data",
                    action="store_true")
57
parser.add_argument("-u", "--use-old-data", action="store_true")
58
parser.add_argument('-s', "--setup-only", action="store_true")
59
parser.add_argument('-n', "--no-template-counting", action="store_true")
60
61
62
63
parser.add_argument('unittest_args', nargs='*')
args, unknown = parser.parse_known_args()
sys.argv[1:] = args.unittest_args

64
65
66
67
if args.quite:
    def tqdm(x, *args, **kwargs):
        return x

Gregory Ashton's avatar
Gregory Ashton committed
68
69
70
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
stream_handler = logging.StreamHandler()
71
if args.quite:
Gregory Ashton's avatar
Gregory Ashton committed
72
    stream_handler.setLevel(logging.WARNING)
73
else:
Gregory Ashton's avatar
Gregory Ashton committed
74
75
76
77
    stream_handler.setLevel(logging.DEBUG)
stream_handler.setFormatter(logging.Formatter(
    '%(asctime)s %(levelname)-8s: %(message)s', datefmt='%H:%M'))
logger.addHandler(stream_handler)
78

79

80
81
82
83
84
85
86
87
88
def round_to_n(x, n):
    if not x:
        return 0
    power = -int(np.floor(np.log10(abs(x)))) + (n - 1)
    factor = (10 ** power)
    return round(x * factor) / factor


def texify_float(x, d=1):
89
90
    if type(x) == str:
        return x
91
92
93
94
95
96
97
98
99
100
101
    x = round_to_n(x, d)
    if 0.01 < abs(x) < 100:
        return str(x)
    else:
        power = int(np.floor(np.log10(abs(x))))
        stem = np.round(x / 10**power, d)
        if d == 1:
            stem = int(stem)
        return r'${}{{\times}}10^{{{}}}$'.format(stem, power)


102
def initializer(func):
103
    """ Decorator function to automatically assign the parameters to self """
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    names, varargs, keywords, defaults = inspect.getargspec(func)

    @wraps(func)
    def wrapper(self, *args, **kargs):
        for name, arg in list(zip(names[1:], args)) + list(kargs.items()):
            setattr(self, name, arg)

        for name, default in zip(reversed(names), reversed(defaults)):
            if not hasattr(self, name):
                setattr(self, name, default)

        func(self, *args, **kargs)

    return wrapper


def read_par(label, outdir):
121
    """ Read in a .par file, returns a dictionary of the values """
122
123
124
125
    filename = '{}/{}.par'.format(outdir, label)
    d = {}
    with open(filename, 'r') as f:
        for line in f:
126
127
128
            if len(line.split('=')) > 1:
                key, val = line.rstrip('\n').split(' = ')
                key = key.strip()
129
                d[key] = np.float64(eval(val.rstrip('; ')))
130
131
132
    return d


133
def get_optimal_setup(
134
        R, Nsegs0, tref, minStartTime, maxStartTime, DeltaOmega,
135
        DeltaFs, fiducial_freq, detector_names, earth_ephem, sun_ephem):
136
137
    logging.info('Calculating optimal setup for R={}, Nsegs0={}'.format(
        R, Nsegs0))
138

139
140
    V_0 = get_V_estimate(
        Nsegs0, tref, minStartTime, maxStartTime, DeltaOmega, DeltaFs,
141
        fiducial_freq, detector_names, earth_ephem, sun_ephem)
142
    logging.info('Stage {}, nsegs={}, V={}'.format(0, Nsegs0, V_0))
143

144
145
    nsegs_vals = [Nsegs0]
    V_vals = [V_0]
146
147

    i = 0
148
149
    nsegs_i = Nsegs0
    while nsegs_i > 1:
150
        nsegs_i, V_i = get_nsegs_ip1(
151
            nsegs_i, R, tref, minStartTime, maxStartTime, DeltaOmega,
152
153
154
155
156
157
158
159
160
161
162
            DeltaFs, fiducial_freq, detector_names, earth_ephem, sun_ephem)
        nsegs_vals.append(nsegs_i)
        V_vals.append(V_i)
        i += 1
        logging.info(
            'Stage {}, nsegs={}, V={}'.format(i, nsegs_i, V_i))

    return nsegs_vals, V_vals


def get_nsegs_ip1(
163
        nsegs_i, R, tref, minStartTime, maxStartTime, DeltaOmega,
164
165
        DeltaFs, fiducial_freq, detector_names, earth_ephem, sun_ephem):

166
    log10R = np.log10(R)
167
168
169
170
171
    log10Vi = np.log10(get_V_estimate(
        nsegs_i, tref, minStartTime, maxStartTime, DeltaOmega, DeltaFs,
        fiducial_freq, detector_names, earth_ephem, sun_ephem))

    def f(nsegs_ip1):
172
173
174
        if nsegs_ip1[0] > nsegs_i:
            return 1e6
        if nsegs_ip1[0] < 0:
175
            return 1e6
176
177
178
        nsegs_ip1 = int(nsegs_ip1[0])
        if nsegs_ip1 == 0:
            nsegs_ip1 = 1
179
        Vip1 = get_V_estimate(
180
181
            nsegs_ip1, tref, minStartTime, maxStartTime, DeltaOmega,
            DeltaFs, fiducial_freq, detector_names, earth_ephem, sun_ephem)
182
183
184
185
        if Vip1[0] is None:
            return 1e6
        else:
            log10Vip1 = np.log10(Vip1)
186
187
188
189
190
191
            return np.abs(log10Vi[0] + log10R - log10Vip1[0])
    res = scipy.optimize.minimize(f, .5*nsegs_i, method='Powell', tol=0.1,
                                  options={'maxiter': 10})
    nsegs_ip1 = int(res.x)
    if nsegs_ip1 == 0:
        nsegs_ip1 = 1
192
    if res.success:
193
194
        return nsegs_ip1, get_V_estimate(
            nsegs_ip1, tref, minStartTime, maxStartTime, DeltaOmega, DeltaFs,
195
196
197
198
199
            fiducial_freq, detector_names, earth_ephem, sun_ephem)
    else:
        raise ValueError('Optimisation unsuccesful')


200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
def get_V_estimate(
        nsegs, tref, minStartTime, maxStartTime, DeltaOmega, DeltaFs,
        fiducial_freq, detector_names, earth_ephem, sun_ephem):
    """ Returns V, Vsky, Vpe estimated from the super-sky metric

    Parameters
    ----------
    nsegs: int
        Number of semi-coherent segments
    tref: int
        Reference time in GPS seconds
    minStartTime, maxStartTime: int
        Minimum and maximum SFT timestamps
    DeltaOmega: float
        Solid angle of the sky-patch
    DeltaFs: array
        Array of [DeltaF0, DeltaF1, ...], length determines the number of
        spin-down terms.
    fiducial_freq: float
        Fidicual frequency
    detector_names: array
        Array of detectors to average over
    earth_ephem, sun_ephem: st
        Paths to the ephemeris files

    """
    spindowns = len(DeltaFs) - 1
    tboundaries = np.linspace(minStartTime, maxStartTime, nsegs+1)

    ref_time = lal.LIGOTimeGPS(tref)
    segments = lal.SegListCreate()
    for j in range(len(tboundaries)-1):
        seg = lal.SegCreate(lal.LIGOTimeGPS(tboundaries[j]),
                            lal.LIGOTimeGPS(tboundaries[j+1]),
                            j)
        lal.SegListAppend(segments, seg)
    detNames = lal.CreateStringVector(*detector_names)
    detectors = lalpulsar.MultiLALDetector()
    lalpulsar.ParseMultiLALDetector(detectors, detNames)
    detector_weights = None
    detector_motion = (lalpulsar.DETMOTION_SPIN
                       + lalpulsar.DETMOTION_ORBIT)
    ephemeris = lalpulsar.InitBarycenter(earth_ephem, sun_ephem)
    try:
        SSkyMetric = lalpulsar.ComputeSuperskyMetrics(
            spindowns, ref_time, segments, fiducial_freq, detectors,
            detector_weights, detector_motion, ephemeris)
    except RuntimeError as e:
        logging.debug('Encountered run-time error {}'.format(e))
        return None, None, None

    sqrtdetG_SKY = np.sqrt(np.linalg.det(
        SSkyMetric.semi_rssky_metric.data[:2, :2]))
    sqrtdetG_PE = np.sqrt(np.linalg.det(
        SSkyMetric.semi_rssky_metric.data[2:, 2:]))

    Vsky = .5*sqrtdetG_SKY*DeltaOmega
    Vpe = sqrtdetG_PE * np.prod(DeltaFs)
    if Vsky == 0:
        Vsky = 1
    if Vpe == 0:
        Vpe = 1
    return (Vsky * Vpe, Vsky, Vpe)


265
class BaseSearchClass(object):
266
    """ The base search class, provides general functions """
267
268
269
270

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

271
    def add_log_file(self):
272
        """ Log output to a file, requires class to have outdir and label """
273
274
        logfilename = '{}/{}.log'.format(self.outdir, self.label)
        fh = logging.FileHandler(logfilename)
Gregory Ashton's avatar
Gregory Ashton committed
275
        fh.setLevel(logging.INFO)
276
277
278
279
280
        fh.setFormatter(logging.Formatter(
            '%(asctime)s %(levelname)-8s: %(message)s',
            datefmt='%y-%m-%d %H:%M'))
        logging.getLogger().addHandler(fh)

281
    def shift_matrix(self, n, dT):
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
        """ Generate the shift matrix

        Parameters
        ----------
        n: int
            The dimension of the shift-matrix to generate
        dT: float
            The time delta of the shift matrix

        Returns
        -------
        m: array (n, n)
            The shift matrix
        """

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
        m = np.zeros((n, n))
        factorial = np.math.factorial
        for i in range(n):
            for j in range(n):
                if i == j:
                    m[i, j] = 1.0
                elif i > j:
                    m[i, j] = 0.0
                else:
                    if i == 0:
                        m[i, j] = 2*np.pi*float(dT)**(j-i) / factorial(j-i)
                    else:
                        m[i, j] = float(dT)**(j-i) / factorial(j-i)
        return m

    def shift_coefficients(self, theta, dT):
        """ Shift a set of coefficients by dT

        Parameters
        ----------
        theta: array-like, shape (n,)
            vector of the expansion coefficients to transform starting from the
319
            lowest degree e.g [phi, F0, F1,...].
320
        dT: float
321
            difference between the two reference times as tref_new - tref_old.
322
323
324
325

        Returns
        -------
        theta_new: array-like shape (n,)
326
            vector of the coefficients as evaluate as the new reference time.
327
        """
328

329
330
331
332
        n = len(theta)
        m = self.shift_matrix(n, dT)
        return np.dot(m, theta)

333
    def calculate_thetas(self, theta, delta_thetas, tbounds, theta0_idx=0):
334
335
336
        """ Calculates the set of coefficients for the post-glitch signal """
        thetas = [theta]
        for i, dt in enumerate(delta_thetas):
337
338
339
340
341
342
343
344
345
346
347
348
349
            if i < theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[0], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch - dt
                thetas.insert(0, self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))

            elif i >= theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[i], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch + dt
                thetas.append(self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))
350
351
        return thetas

Gregory Ashton's avatar
Gregory Ashton committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
    def generate_loudest(self):
        params = read_par(self.label, self.outdir)
        for key in ['Alpha', 'Delta', 'F0', 'F1']:
            if key not in params:
                params[key] = self.theta_prior[key]
        cmd = ('lalapps_ComputeFstatistic_v2 -a {} -d {} -f {} -s {} -D "{}"'
               ' --refTime={} --outputLoudest="{}/{}.loudest" '
               '--minStartTime={} --maxStartTime={}').format(
                    params['Alpha'], params['Delta'], params['F0'],
                    params['F1'], self.sftfilepath, params['tref'],
                    self.outdir, self.label, self.minStartTime,
                    self.maxStartTime)
        subprocess.call([cmd], shell=True)

366

Gregory Ashton's avatar
Gregory Ashton committed
367
class ComputeFstat(object):
368
    """ Base class providing interface to `lalpulsar.ComputeFstat` """
Gregory Ashton's avatar
Gregory Ashton committed
369
370
371
372
373

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

    @initializer
374
375
    def __init__(self, tref, sftfilepath=None, minStartTime=None,
                 maxStartTime=None, binary=False, transient=True, BSGL=False,
376
                 detector=None, minCoverFreq=None, maxCoverFreq=None,
377
                 earth_ephem=None, sun_ephem=None, injectSources=None
378
                 ):
379
380
381
382
383
        """
        Parameters
        ----------
        tref: int
            GPS seconds of the reference time.
384
385
        sftfilepath: str
            File patern to match SFTs
386
387
388
389
390
391
392
393
394
395
396
397
        minStartTime, maxStartTime: float GPStime
            Only use SFTs with timestemps starting from (including, excluding)
            this epoch
        binary: bool
            If true, search of binary parameters.
        transient: bool
            If true, allow for the Fstat to be computed over a transient range.
        BSGL: bool
            If true, compute the BSGL rather than the twoF value.
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
398
399
400
401
402
403
404
405
406
407
        minCoverFreq, maxCoverFreq: float
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput.
            If None defaults defined in BaseSearchClass will be used.

        """
Gregory Ashton's avatar
Gregory Ashton committed
408
409
410
411
412
413
414
415

        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        self.init_computefstatistic_single_point()

Gregory Ashton's avatar
Gregory Ashton committed
416
417
418
    def get_SFTCatalog(self):
        if hasattr(self, 'SFTCatalog'):
            return
Gregory Ashton's avatar
Gregory Ashton committed
419
420
421
422
        logging.info('Initialising SFTCatalog')
        constraints = lalpulsar.SFTConstraints()
        if self.detector:
            constraints.detector = self.detector
423
424
425
426
427
        if self.minStartTime:
            constraints.minStartTime = lal.LIGOTimeGPS(self.minStartTime)
        if self.maxStartTime:
            constraints.maxStartTime = lal.LIGOTimeGPS(self.maxStartTime)

428
        logging.info('Loading data matching pattern {}'.format(
429
430
                     self.sftfilepath))
        SFTCatalog = lalpulsar.SFTdataFind(self.sftfilepath, constraints)
431
432
        detector_names = list(set([d.header.name for d in SFTCatalog.data]))
        self.detector_names = detector_names
433
        SFT_timestamps = [d.header.epoch for d in SFTCatalog.data]
434
435
436
437
438
439
440
        if args.quite is False:
            try:
                from bashplotlib.histogram import plot_hist
                print('Data timestamps histogram:')
                plot_hist(SFT_timestamps, height=5, bincount=50)
            except IOError:
                pass
441
        if len(detector_names) == 0:
Gregory Ashton's avatar
Gregory Ashton committed
442
443
            raise ValueError('No data loaded.')
        logging.info('Loaded {} data files from detectors {}'.format(
444
            len(SFT_timestamps), detector_names))
Gregory Ashton's avatar
Gregory Ashton committed
445
446
447
448
449
450
        logging.info('Data spans from {} ({}) to {} ({})'.format(
            int(SFT_timestamps[0]),
            subprocess.check_output('lalapps_tconvert {}'.format(
                int(SFT_timestamps[0])), shell=True).rstrip('\n'),
            int(SFT_timestamps[-1]),
            subprocess.check_output('lalapps_tconvert {}'.format(
451
                int(SFT_timestamps[-1])), shell=True).rstrip('\n')))
Gregory Ashton's avatar
Gregory Ashton committed
452
453
454
455
456
457
        self.SFTCatalog = SFTCatalog

    def init_computefstatistic_single_point(self):
        """ Initilisation step of run_computefstatistic for a single point """

        self.get_SFTCatalog()
Gregory Ashton's avatar
Gregory Ashton committed
458
459
460
461
462
463

        logging.info('Initialising ephems')
        ephems = lalpulsar.InitBarycenter(self.earth_ephem, self.sun_ephem)

        logging.info('Initialising FstatInput')
        dFreq = 0
464
465
466
467
468
        if self.transient:
            self.whatToCompute = lalpulsar.FSTATQ_ATOMS_PER_DET
        else:
            self.whatToCompute = lalpulsar.FSTATQ_2F

469
470
471
472
473
474
475
476
477
478
479
        FstatOAs = lalpulsar.FstatOptionalArgs()
        FstatOAs.randSeed = lalpulsar.FstatOptionalArgsDefaults.randSeed
        FstatOAs.SSBprec = lalpulsar.FstatOptionalArgsDefaults.SSBprec
        FstatOAs.Dterms = lalpulsar.FstatOptionalArgsDefaults.Dterms
        FstatOAs.runningMedianWindow = lalpulsar.FstatOptionalArgsDefaults.runningMedianWindow
        FstatOAs.FstatMethod = lalpulsar.FstatOptionalArgsDefaults.FstatMethod
        FstatOAs.InjectSqrtSX = lalpulsar.FstatOptionalArgsDefaults.injectSqrtSX
        FstatOAs.assumeSqrtSX = lalpulsar.FstatOptionalArgsDefaults.assumeSqrtSX
        FstatOAs.prevInput = lalpulsar.FstatOptionalArgsDefaults.prevInput
        FstatOAs.collectTiming = lalpulsar.FstatOptionalArgsDefaults.collectTiming

480
        if hasattr(self, 'injectSource') and type(self.injectSources) == dict:
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
            logging.info('Injecting source with params: {}'.format(
                self.injectSources))
            PPV = lalpulsar.CreatePulsarParamsVector(1)
            PP = PPV.data[0]
            PP.Amp.h0 = self.injectSources['h0']
            PP.Amp.cosi = self.injectSources['cosi']
            PP.Amp.phi0 = self.injectSources['phi0']
            PP.Amp.psi = self.injectSources['psi']
            PP.Doppler.Alpha = self.injectSources['Alpha']
            PP.Doppler.Delta = self.injectSources['Delta']
            PP.Doppler.fkdot = np.array(self.injectSources['fkdot'])
            PP.Doppler.refTime = self.tref
            if 't0' not in self.injectSources:
                PP.Transient.type = lalpulsar.TRANSIENT_NONE
            FstatOAs.injectSources = PPV
        else:
            FstatOAs.injectSources = lalpulsar.FstatOptionalArgsDefaults.injectSources
Gregory Ashton's avatar
Gregory Ashton committed
498
499

        if self.minCoverFreq is None or self.maxCoverFreq is None:
Gregory Ashton's avatar
Gregory Ashton committed
500
            fAs = [d.header.f0 for d in self.SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
501
            fBs = [d.header.f0 + (d.numBins-1)*d.header.deltaF
Gregory Ashton's avatar
Gregory Ashton committed
502
                   for d in self.SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
503
504
            self.minCoverFreq = np.min(fAs) + 0.5
            self.maxCoverFreq = np.max(fBs) - 0.5
505
506
507
            logging.info('Min/max cover freqs not provided, using '
                         '{} and {}, est. from SFTs'.format(
                             self.minCoverFreq, self.maxCoverFreq))
Gregory Ashton's avatar
Gregory Ashton committed
508

Gregory Ashton's avatar
Gregory Ashton committed
509
        self.FstatInput = lalpulsar.CreateFstatInput(self.SFTCatalog,
Gregory Ashton's avatar
Gregory Ashton committed
510
511
512
513
                                                     self.minCoverFreq,
                                                     self.maxCoverFreq,
                                                     dFreq,
                                                     ephems,
514
                                                     FstatOAs
Gregory Ashton's avatar
Gregory Ashton committed
515
516
517
518
519
520
521
522
523
524
525
526
527
                                                     )

        logging.info('Initialising PulsarDoplerParams')
        PulsarDopplerParams = lalpulsar.PulsarDopplerParams()
        PulsarDopplerParams.refTime = self.tref
        PulsarDopplerParams.Alpha = 1
        PulsarDopplerParams.Delta = 1
        PulsarDopplerParams.fkdot = np.array([0, 0, 0, 0, 0, 0, 0])
        self.PulsarDopplerParams = PulsarDopplerParams

        logging.info('Initialising FstatResults')
        self.FstatResults = lalpulsar.FstatResults()

528
        if self.BSGL:
Gregory Ashton's avatar
Gregory Ashton committed
529
            if len(self.names) < 2:
Gregory Ashton's avatar
Gregory Ashton committed
530
                raise ValueError("Can't use BSGL with single detector data")
531
            else:
532
                logging.info('Initialising BSGL')
533

534
535
            # Tuning parameters - to be reviewed
            numDetectors = 2
536
537
538
539
540
541
542
543
544
545
            if hasattr(self, 'nsegs'):
                p_val_threshold = 1e-6
                Fstar0s = np.linspace(0, 1000, 10000)
                p_vals = scipy.special.gammaincc(2*self.nsegs, Fstar0s)
                Fstar0 = Fstar0s[np.argmin(np.abs(p_vals - p_val_threshold))]
                if Fstar0 == Fstar0s[-1]:
                    raise ValueError('Max Fstar0 exceeded')
            else:
                Fstar0 = 15.
            logging.info('Using Fstar0 of {:1.2f}'.format(Fstar0))
546
            oLGX = np.zeros(10)
Gregory Ashton's avatar
Gregory Ashton committed
547
            oLGX[:numDetectors] = 1./numDetectors
548
            self.BSGLSetup = lalpulsar.CreateBSGLSetup(numDetectors,
549
                                                       Fstar0,
550
                                                       oLGX,
551
                                                       True,
552
553
                                                       1)
            self.twoFX = np.zeros(10)
Gregory Ashton's avatar
Gregory Ashton committed
554
            self.whatToCompute = (self.whatToCompute +
555
556
                                  lalpulsar.FSTATQ_2F_PER_DET)

557
        if self.transient:
558
            logging.info('Initialising transient parameters')
559
560
561
562
563
564
            self.windowRange = lalpulsar.transientWindowRange_t()
            self.windowRange.type = lalpulsar.TRANSIENT_RECTANGULAR
            self.windowRange.t0Band = 0
            self.windowRange.dt0 = 1
            self.windowRange.tauBand = 0
            self.windowRange.dtau = 1
565

566
567
568
569
570
571
572
573
574
    def compute_fullycoherent_det_stat_single_point(
            self, F0, F1, F2, Alpha, Delta, asini=None, period=None, ecc=None,
            tp=None, argp=None):
        """ Compute the fully-coherent det. statistic at a single point """

        return self.run_computefstatistic_single_point(
            self.minStartTime, self.maxStartTime, F0, F1, F2, Alpha, Delta,
            asini, period, ecc, tp, argp)

Gregory Ashton's avatar
Gregory Ashton committed
575
    def run_computefstatistic_single_point(self, tstart, tend, F0, F1,
576
577
578
                                           F2, Alpha, Delta, asini=None,
                                           period=None, ecc=None, tp=None,
                                           argp=None):
579
        """ Returns twoF or ln(BSGL) fully-coherently at a single point """
Gregory Ashton's avatar
Gregory Ashton committed
580
581
582
583

        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
584
585
586
587
588
589
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp
Gregory Ashton's avatar
Gregory Ashton committed
590
591
592
593

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
594
                               1,
Gregory Ashton's avatar
Gregory Ashton committed
595
596
597
                               self.whatToCompute
                               )

598
        if self.transient is False:
599
600
601
602
603
604
            if self.BSGL is False:
                return self.FstatResults.twoF[0]

            twoF = np.float(self.FstatResults.twoF[0])
            self.twoFX[0] = self.FstatResults.twoFPerDet(0)
            self.twoFX[1] = self.FstatResults.twoFPerDet(1)
605
606
607
            log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
                                               self.BSGLSetup)
            return log10_BSGL/np.log10(np.exp(1))
608

609
610
        self.windowRange.t0 = int(tstart)  # TYPE UINT4
        self.windowRange.tau = int(tend - tstart)  # TYPE UINT4
611

Gregory Ashton's avatar
Gregory Ashton committed
612
        FS = lalpulsar.ComputeTransientFstatMap(
613
            self.FstatResults.multiFatoms[0], self.windowRange, False)
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628

        if self.BSGL is False:
            return 2*FS.F_mn.data[0][0]

        FstatResults_single = copy.copy(self.FstatResults)
        FstatResults_single.lenth = 1
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
        FS0 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
        FS1 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)

        self.twoFX[0] = 2*FS0.F_mn.data[0][0]
        self.twoFX[1] = 2*FS1.F_mn.data[0][0]
629
630
        log10_BSGL = lalpulsar.ComputeBSGL(
                2*FS.F_mn.data[0][0], self.twoFX, self.BSGLSetup)
631

632
        return log10_BSGL/np.log10(np.exp(1))
Gregory Ashton's avatar
Gregory Ashton committed
633

634
635
    def calculate_twoF_cumulative(self, F0, F1, F2, Alpha, Delta, asini=None,
                                  period=None, ecc=None, tp=None, argp=None,
636
637
                                  tstart=None, tend=None, npoints=1000,
                                  minfraction=0.01, maxfraction=1):
638
639
        """ Calculate the cumulative twoF along the obseration span """
        duration = tend - tstart
640
641
        tstart = tstart + minfraction*duration
        taus = np.linspace(minfraction*duration, maxfraction*duration, npoints)
642
        twoFs = []
Gregory Ashton's avatar
Gregory Ashton committed
643
644
645
        if self.transient is False:
            self.transient = True
            self.init_computefstatistic_single_point()
646
647
648
649
650
651
652
653
654
        for tau in taus:
            twoFs.append(self.run_computefstatistic_single_point(
                tstart=tstart, tend=tstart+tau, F0=F0, F1=F1, F2=F2,
                Alpha=Alpha, Delta=Delta, asini=asini, period=period, ecc=ecc,
                tp=tp, argp=argp))

        return taus, np.array(twoFs)

    def plot_twoF_cumulative(self, label, outdir, ax=None, c='k', savefig=True,
655
                             title=None, **kwargs):
656

657
658
659
660
661
662
        taus, twoFs = self.calculate_twoF_cumulative(**kwargs)
        if ax is None:
            fig, ax = plt.subplots()
        ax.plot(taus/86400., twoFs, label=label, color=c)
        ax.set_xlabel(r'Days from $t_{{\rm start}}={:.0f}$'.format(
            kwargs['tstart']))
Gregory Ashton's avatar
Gregory Ashton committed
663
664
665
666
        if self.BSGL:
            ax.set_ylabel(r'$\log_{10}(\mathrm{BSGL})_{\rm cumulative}$')
        else:
            ax.set_ylabel(r'$\widetilde{2\mathcal{F}}_{\rm cumulative}$')
667
        ax.set_xlim(0, taus[-1]/86400)
668
669
        if title:
            ax.set_title(title)
670
        if savefig:
671
            plt.tight_layout()
672
            plt.savefig('{}/{}_twoFcumulative.png'.format(outdir, label))
Gregory Ashton's avatar
Gregory Ashton committed
673
            return taus, twoFs
674
675
676
        else:
            return ax

Gregory Ashton's avatar
Gregory Ashton committed
677

678
679
680
681
682
683
684
class SemiCoherentSearch(BaseSearchClass, ComputeFstat):
    """ A semi-coherent search """

    @initializer
    def __init__(self, label, outdir, tref, nsegs=None, sftfilepath=None,
                 binary=False, BSGL=False, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
685
686
                 detector=None, earth_ephem=None, sun_ephem=None,
                 injectSources=None):
687
688
689
690
691
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to.
692
        tref, minStartTime, maxStartTime: int
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
            GPS seconds of the reference time, and start and end of the data.
        nsegs: int
            The (fixed) number of segments
        sftfilepath: str
            File patern to match SFTs

        For all other parameters, see pyfstat.ComputeFStat.
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
        if self.earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if self.sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default
        self.transient = True
        self.init_computefstatistic_single_point()
        self.init_semicoherent_parameters()

    def init_semicoherent_parameters(self):
712
713
714
        logging.info(('Initialising semicoherent parameters from {} to {} in'
                      ' {} segments').format(
            self.minStartTime, self.maxStartTime, self.nsegs))
715
716
        self.transient = True
        self.whatToCompute = lalpulsar.FSTATQ_2F+lalpulsar.FSTATQ_ATOMS_PER_DET
717
718
719
        self.tboundaries = np.linspace(self.minStartTime, self.maxStartTime,
                                       self.nsegs+1)

Gregory Ashton's avatar
Gregory Ashton committed
720
721
722
723
    def run_semi_coherent_computefstatistic_single_point(
            self, F0, F1, F2, Alpha, Delta, asini=None,
            period=None, ecc=None, tp=None, argp=None):
        """ Returns twoF or ln(BSGL) semi-coherently at a single point """
724

Gregory Ashton's avatar
Gregory Ashton committed
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
                               1,
                               self.whatToCompute
                               )

        if self.transient is False:
            if self.BSGL is False:
                return self.FstatResults.twoF[0]

            twoF = np.float(self.FstatResults.twoF[0])
            self.twoFX[0] = self.FstatResults.twoFPerDet(0)
            self.twoFX[1] = self.FstatResults.twoFPerDet(1)
            log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
                                               self.BSGLSetup)
            return log10_BSGL/np.log10(np.exp(1))

        detStat = 0
        for tstart, tend in zip(self.tboundaries[:-1], self.tboundaries[1:]):
            self.windowRange.t0 = int(tstart)  # TYPE UINT4
            self.windowRange.tau = int(tend - tstart)  # TYPE UINT4

            FS = lalpulsar.ComputeTransientFstatMap(
                self.FstatResults.multiFatoms[0], self.windowRange, False)

            if self.BSGL is False:
                detStat += 2*FS.F_mn.data[0][0]
                continue
764

Gregory Ashton's avatar
Gregory Ashton committed
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
            FstatResults_single = copy.copy(self.FstatResults)
            FstatResults_single.lenth = 1
            FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
            FS0 = lalpulsar.ComputeTransientFstatMap(
                FstatResults_single.multiFatoms[0], self.windowRange, False)
            FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
            FS1 = lalpulsar.ComputeTransientFstatMap(
                FstatResults_single.multiFatoms[0], self.windowRange, False)

            self.twoFX[0] = 2*FS0.F_mn.data[0][0]
            self.twoFX[1] = 2*FS1.F_mn.data[0][0]
            log10_BSGL = lalpulsar.ComputeBSGL(
                    2*FS.F_mn.data[0][0], self.twoFX, self.BSGLSetup)

            detStat += log10_BSGL/np.log10(np.exp(1))

        return detStat
782
783


Gregory Ashton's avatar
Gregory Ashton committed
784
class SemiCoherentGlitchSearch(BaseSearchClass, ComputeFstat):
785
786
787
    """ A semi-coherent glitch search

    This implements a basic `semi-coherent glitch F-stat in which the data
788
789
    is divided into segments either side of the proposed glitches and the
    fully-coherent F-stat in each segment is summed to give the semi-coherent
790
791
792
793
    F-stat
    """

    @initializer
794
795
796
    def __init__(self, label, outdir, tref, minStartTime, maxStartTime,
                 nglitch=0, sftfilepath=None, theta0_idx=0, BSGL=False,
                 minCoverFreq=None, maxCoverFreq=None,
797
                 detector=None, earth_ephem=None, sun_ephem=None):
798
799
800
801
        """
        Parameters
        ----------
        label, outdir: str
802
            A label and directory to read/write data from/to.
803
        tref, minStartTime, maxStartTime: int
804
805
806
807
            GPS seconds of the reference time, and start and end of the data.
        nglitch: int
            The (fixed) number of glitches; this can zero, but occasionally
            this causes issue (in which case just use ComputeFstat).
808
809
        sftfilepath: str
            File patern to match SFTs
810
811
812
813
        theta0_idx, int
            Index (zero-based) of which segment the theta refers to - uyseful
            if providing a tight prior on theta to allow the signal to jump
            too theta (and not just from)
814
815

        For all other parameters, see pyfstat.ComputeFStat.
816
817
818
819
820
821
822
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
        if self.earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if self.sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default
823
824
        self.transient = True
        self.binary = False
825
826
827
        self.init_computefstatistic_single_point()

    def compute_nglitch_fstat(self, F0, F1, F2, Alpha, Delta, *args):
828
        """ Returns the semi-coherent glitch summed twoF """
829
830

        args = list(args)
831
832
        tboundaries = ([self.minStartTime] + args[-self.nglitch:]
                       + [self.maxStartTime])
833
834
835
836
837
838
839
840
        delta_F0s = args[-3*self.nglitch:-2*self.nglitch]
        delta_F1s = args[-2*self.nglitch:-self.nglitch]
        delta_F2 = np.zeros(len(delta_F0s))
        delta_phi = np.zeros(len(delta_F0s))
        theta = [0, F0, F1, F2]
        delta_thetas = np.atleast_2d(
                np.array([delta_phi, delta_F0s, delta_F1s, delta_F2]).T)

841
842
        thetas = self.calculate_thetas(theta, delta_thetas, tboundaries,
                                       theta0_idx=self.theta0_idx)
843
844

        twoFSum = 0
845
        for i, theta_i_at_tref in enumerate(thetas):
846
847
848
            ts, te = tboundaries[i], tboundaries[i+1]

            twoFVal = self.run_computefstatistic_single_point(
849
850
                ts, te, theta_i_at_tref[1], theta_i_at_tref[2],
                theta_i_at_tref[3], Alpha, Delta)
851
852
            twoFSum += twoFVal

853
854
855
        if np.isfinite(twoFSum):
            return twoFSum
        else:
856
            return -np.inf
857
858
859

    def compute_glitch_fstat_single(self, F0, F1, F2, Alpha, Delta, delta_F0,
                                    delta_F1, tglitch):
860
861
        """ Returns the semi-coherent glitch summed twoF for nglitch=1

862
        Note: OBSOLETE, used only for testing
863
        """
864
865
866
867
868
869
870
871
872
873
874

        theta = [F0, F1, F2]
        delta_theta = [delta_F0, delta_F1, 0]
        tref = self.tref

        theta_at_glitch = self.shift_coefficients(theta, tglitch - tref)
        theta_post_glitch_at_glitch = theta_at_glitch + delta_theta
        theta_post_glitch = self.shift_coefficients(
            theta_post_glitch_at_glitch, tref - tglitch)

        twoFsegA = self.run_computefstatistic_single_point(
875
            self.minStartTime, tglitch, theta[0], theta[1], theta[2], Alpha,
876
877
            Delta)

878
        if tglitch == self.maxStartTime:
879
880
881
            return twoFsegA

        twoFsegB = self.run_computefstatistic_single_point(
882
            tglitch, self.maxStartTime, theta_post_glitch[0],
883
884
885
886
887
888
            theta_post_glitch[1], theta_post_glitch[2], Alpha,
            Delta)

        return twoFsegA + twoFsegB


Gregory Ashton's avatar
Gregory Ashton committed
889
890
class MCMCSearch(BaseSearchClass):
    """ MCMC search using ComputeFstat"""
891
    @initializer
892
    def __init__(self, label, outdir, sftfilepath, theta_prior, tref,
Gregory Ashton's avatar
Gregory Ashton committed
893
                 minStartTime, maxStartTime, nsteps=[100, 100],
894
895
                 nwalkers=100, ntemps=1, log10temperature_min=-5,
                 theta_initial=None, scatter_val=1e-10,
896
897
                 binary=False, BSGL=False, minCoverFreq=None,
                 maxCoverFreq=None, detector=None, earth_ephem=None,
898
                 sun_ephem=None, injectSources=None):
899
900
901
902
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
903
904
        sftfilepath: str
            File patern to match SFTs
905
        theta_prior: dict
906
907
908
909
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
910
911
912
913
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
914
        tref, minStartTime, maxStartTime: int
915
916
917
918
919
920
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
921
922
923
924
925
926
927
928
929
930
931
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
        binary: Bool
            If true, search over binary parameters
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
932
933
934
935
936
937
938
939
940
941
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

Gregory Ashton's avatar
Gregory Ashton committed
942
943
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
944
        self.add_log_file()
Gregory Ashton's avatar
Gregory Ashton committed
945
946
        logging.info(
            'Set-up MCMC search for model {} on data {}'.format(
947
                self.label, self.sftfilepath))
948
949
950
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
        self.unpack_input_theta()
        self.ndim = len(self.theta_keys)
951
952
953
954
        if self.log10temperature_min:
            self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
        else:
            self.betas = None
955

956
957
958
959
960
961
962
963
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

964
965
966
        self.log_input()

    def log_input(self):
967
        logging.info('theta_prior = {}'.format(self.theta_prior))
968
        logging.info('nwalkers={}'.format(self.nwalkers))
969
970
971
972
        logging.info('scatter_val = {}'.format(self.scatter_val))
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
        logging.info('log10temperature_min = {}'.format(
973
            self.log10temperature_min))
974
975
976

    def inititate_search_object(self):
        logging.info('Setting up search object')
Gregory Ashton's avatar
Gregory Ashton committed
977
        self.search = ComputeFstat(
978
979
980
981
            tref=self.tref, sftfilepath=self.sftfilepath,
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
            detector=self.detector, BSGL=self.BSGL, transient=False,
982
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
983
            binary=self.binary, injectSources=self.injectSources)
984
985

    def logp(self, theta_vals, theta_prior, theta_keys, search):
Gregory Ashton's avatar
Gregory Ashton committed
986
        H = [self.generic_lnprior(**theta_prior[key])(p) for p, key in
987
988
989
990
991
992
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
993
994
        FS = search.compute_fullycoherent_det_stat_single_point(
            *self.fixed_theta)
995
996
997
        return FS

    def unpack_input_theta(self):
998
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']
999
1000
1001
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
1002
1003
        full_theta_keys_copy = copy.copy(full_theta_keys)

1004
1005
        full_theta_symbols = ['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                              r'$\delta$']
1006
1007
1008
1009
        if self.binary:
            full_theta_symbols += [
                'asini', 'period', 'period', 'ecc', 'tp', 'argp']

1010
1011
        self.theta_keys = []
        fixed_theta_dict = {}
1012
        for key, val in self.theta_prior.iteritems():
1013
1014
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
1015
                self.theta_keys.append(key)
1016
1017
1018
1019
1020
1021
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
1022
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

    def check_initial_points(self, p0):
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

                p0 = self.generate_new_p0_to_fix_initial_points(
                    p0, nt, initial_priors)

    def generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
1075

Gregory Ashton's avatar
Gregory Ashton committed
1076
    def run_sampler_with_progress_bar(self, sampler, ns, p0):
1077
1078
        for result in tqdm(sampler.sample(p0, iterations=ns), total=ns):
            pass
Gregory Ashton's avatar
Gregory Ashton committed
1079
1080
        return sampler

1081
    def run(self, proposal_scale_factor=2, create_plots=True, **kwargs):
1082

Gregory Ashton's avatar
Gregory Ashton committed
1083
        self.old_data_is_okay_to_use = self.check_old_data_is_okay_to_use()
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
            d = self.get_saved_data()
            self.sampler = d['sampler']
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
            return

        self.inititate_search_object()

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
1099
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
1100

Gregory Ashton's avatar
Gregory Ashton committed
1101
1102
        p0 = self.generate_initial_p0()
        p0 = self.apply_corrections_to_p0(p0)
1103
1104
1105
1106
1107
        self.check_initial_points(p0)

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
Gregory Ashton's avatar
Gregory Ashton committed
1108
                j, ninit_steps, n))
Gregory Ashton's avatar
Gregory Ashton committed
1109
            sampler = self.run_sampler_with_progress_bar(sampler, n, p0)
1110
1111
            logging.info("Mean acceptance fraction: {}"
                         .format(np.mean(sampler.acceptance_fraction, axis=1)))
1112
1113
1114
            if self.ntemps > 1:
                logging.info("Tswap acceptance fraction: {}"
                             .format(sampler.tswap_acceptance_fraction))
1115
1116
1117
1118
1119
1120
1121
            if create_plots:
                fig, axes = self.plot_walkers(sampler,
                                              symbols=self.theta_symbols,
                                              **kwargs)
                fig.tight_layout()
                fig.savefig('{}/{}_init_{}_walkers.png'.format(
                    self.outdir, self.label, j), dpi=200)
1122

1123
            p0 = self.get_new_p0(sampler)
Gregory Ashton's avatar
Gregory Ashton committed
1124
            p0 = self.apply_corrections_to_p0(p0)
1125
1126
1127
            self.check_initial_points(p0)
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
1128
1129
1130
1131
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
1132
1133
1134
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
Gregory Ashton's avatar
Gregory Ashton committed
1135
        sampler = self.run_sampler_with_progress_bar(sampler, nburn+nprod, p0)
1136
1137
        logging.info("Mean acceptance fraction: {}"
                     .format(np.mean(sampler.acceptance_fraction, axis=1)))
1138
1139
1140
        if self.ntemps > 1:
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
1141

1142
1143
1144
1145
1146
1147
        if create_plots:
            fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols,
                                          burnin_idx=nburn, **kwargs)
            fig.tight_layout()
            fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label),
                        dpi=200)
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
        self.sampler = sampler
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
        self.save_data(sampler, samples, lnprobs, lnlikes)

1158
    def plot_corner(self, figsize=(7, 7),  tglitch_ratio=False,
1159
1160
1161
                    add_prior=False, nstds=None, label_offset=0.4,
                    dpi=300, rc_context={}, **kwargs):

Gregory Ashton's avatar
Gregory Ashton committed
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
        if self.ndim < 2:
            with plt.rc_context(rc_context):
                fig, ax = plt.subplots(figsize=figsize)
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

1172
1173
1174
1175
1176
1177
        with plt.rc_context(rc_context):
            fig, axes = plt.subplots(self.ndim, self.ndim,
                                     figsize=figsize)

            samples_plt = copy.copy(self.samples)
            theta_symbols_plt = copy.copy(self.theta_symbols)
1178
1179
            theta_symbols_plt = [s.replace('_{glitch}', r'_\textrm{glitch}')
                                 for s in theta_symbols_plt]
1180
1181
1182
1183
1184

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
1185
1186
1187
                        samples_plt[:, j] = (
                            s - self.minStartTime)/(
                                self.maxStartTime - self.minStartTime)
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
                        theta_symbols_plt[j] = r'$R_{\textrm{glitch}}$'

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
            else:
                _range = None

            fig_triangle = corner.corner(samples_plt,
                                         labels=theta_symbols_plt,
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
                self.add_prior_to_corner(axes, samples_plt)

            fig_triangle.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
1230
1231
1232
1233
1234
1235

    def add_prior_to_corner(self, axes, samples):
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            xlim = ax.get_xlim()
            s = samples[:, i]
Gregory Ashton's avatar
Gregory Ashton committed
1236
            prior = self.generic_lnprior(**self.theta_prior[key])
1237
1238
1239
1240
1241
1242
            x = np.linspace(s.min(), s.max(), 100)
            ax2 = ax.twinx()
            ax2.get_yaxis().set_visible(False)
            ax2.plot(x, [prior(xi) for xi in x], '-r')
            ax.set_xlim(xlim)

1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259