mcmc_based_searches.py 93.5 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" Searches using MCMC-based methods """
2
from __future__ import division, absolute_import, print_function
Gregory Ashton's avatar
Gregory Ashton committed
3

4
import sys
Gregory Ashton's avatar
Gregory Ashton committed
5
import os
6
import copy
Gregory Ashton's avatar
Gregory Ashton committed
7
import logging
8
from collections import OrderedDict
9
import subprocess
10
11
12
13

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
Gregory Ashton's avatar
Gregory Ashton committed
14
from ptemcee import Sampler as PTSampler
15
16
17
import corner
import dill as pickle

18
import pyfstat.core as core
19
20
from pyfstat.core import tqdm, args, read_par
import pyfstat.optimal_setup_functions as optimal_setup_functions
21
import pyfstat.helper_functions as helper_functions
22
23


24
class MCMCSearch(core.BaseSearchClass):
Gregory Ashton's avatar
Gregory Ashton committed
25
    """MCMC search using ComputeFstat
26
27
28
29
30
31
32
33
34

    Parameters
    ----------
    theta_prior: dict
        Dictionary of priors and fixed values for the search parameters.
        For each parameters (key of the dict), if it is to be held fixed
        the value should be the constant float, if it is be searched, the
        value should be a dictionary of the prior.
    tref, minStartTime, maxStartTime: int
35
36
37
38
39
40
41
        GPS seconds of the reference time, start time and end time. While tref
        is requirede, minStartTime and maxStartTime default to None in which
        case all available data is used.
    label, outdir: str
        A label and output directory (optional, defaults is `'data'`) to
        name files
    sftfilepattern: str, optional
Gregory Ashton's avatar
Gregory Ashton committed
42
43
        Pattern to match SFTs using wildcards (*?) and ranges [0-9];
        mutiple patterns can be given separated by colons.
44
    detectors: str, optional
Gregory Ashton's avatar
Gregory Ashton committed
45
46
        Two character reference to the detectors to use, specify None for no
        contraint and comma separate for multiple references.
47
    nsteps: list (2,), optional
48
49
50
        Number of burn-in and production steps to take, [nburn, nprod]. See
        `pyfstat.MCMCSearch.setup_initialisation()` for details on adding
        initialisation steps.
51
    nwalkers, ntemps: int, optional
52
53
        The number of walkers and temperates to use in the parallel
        tempered PTSampler.
54
    log10beta_min float < 0, optional
55
56
        The  log_10(beta) value, if given the set of betas passed to PTSampler
        are generated from `np.logspace(0, log10beta_min, ntemps)` (given
Gregory Ashton's avatar
Gregory Ashton committed
57
        in descending order to ptemcee).
58
    theta_initial: dict, array, optional
59
60
        A dictionary of distribution about which to distribute the
        initial walkers about
61
    rhohatmax: float, optional
62
63
64
        Upper bound for the SNR scale parameter (required to normalise the
        Bayes factor) - this needs to be carefully set when using the
        evidence.
65
    binary: bool, optional
66
        If true, search over binary parameters
67
    BSGL: bool, optional
Gregory Ashton's avatar
Gregory Ashton committed
68
        If true, use the BSGL statistic
69
    SSBPrec: int, optional
Gregory Ashton's avatar
Gregory Ashton committed
70
        SSBPrec (SSB precision) to use when calling ComputeFstat
71
    minCoverFreq, maxCoverFreq: float, optional
72
73
        Minimum and maximum instantaneous frequency which will be covered
        over the SFT time span as passed to CreateFstatInput
74
    injectSources: dict, optional
Gregory Ashton's avatar
Gregory Ashton committed
75
76
        If given, inject these properties into the SFT files before running
        the search
77
    assumeSqrtSX: float, optional
Gregory Ashton's avatar
Gregory Ashton committed
78
        Don't estimate noise-floors, but assume (stationary) per-IFO sqrt{SX}
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

    Attributes
    ----------
    symbol_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), to Latex math
        symbols for plots
    unit_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), and the
        units (i.e. `Hz`)
    transform_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), where the key is
        itself a dictionary which can item `multiplier`, `subtractor`, or
        `unit` by which to transform by and update the units.

    """
94
95

    symbol_dictionary = dict(
96
        F0='$f$', F1='$\dot{f}$', F2='$\ddot{f}$', Alpha=r'$\alpha$',
97
98
        Delta='$\delta$', asini='asini', period='P', ecc='ecc', tp='tp',
        argp='argp')
99
    unit_dictionary = dict(
100
101
        F0='Hz', F1='Hz/s', F2='Hz/s$^2$', Alpha=r'rad', Delta='rad',
        asini='', period='s', ecc='', tp='', argp='')
102
    transform_dictionary = {}
103

Gregory Ashton's avatar
Gregory Ashton committed
104
    @helper_functions.initializer
105
106
107
    def __init__(self, theta_prior, tref, label, outdir='data',
                 minStartTime=None, maxStartTime=None, sftfilepattern=None,
                 detectors=None, nsteps=[100, 100], nwalkers=100, ntemps=1,
108
                 log10beta_min=-5, theta_initial=None,
109
                 rhohatmax=1000, binary=False, BSGL=False,
Gregory Ashton's avatar
Gregory Ashton committed
110
                 SSBprec=None, minCoverFreq=None, maxCoverFreq=None,
111
                 injectSources=None, assumeSqrtSX=None):
112

Gregory Ashton's avatar
Gregory Ashton committed
113
114
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
115
        self._add_log_file()
116
        logging.info('Set-up MCMC search for model {}'.format(self.label))
117
118
        if sftfilepattern:
            logging.info('Using data {}'.format(self.sftfilepattern))
119
        else:
120
            logging.info('No sftfilepattern given')
121
122
        if injectSources:
            logging.info('Inject sources: {}'.format(injectSources))
123
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
124
        self._unpack_input_theta()
125
        self.ndim = len(self.theta_keys)
126
127
        if self.log10beta_min:
            self.betas = np.logspace(0, self.log10beta_min, self.ntemps)
128
129
        else:
            self.betas = None
130

131
132
133
        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

134
        self._set_likelihoodcoef()
135
        self._log_input()
136
137
138

    def _set_likelihoodcoef(self):
        self.likelihoodcoef = np.log(70./self.rhohatmax**4)
139

140
    def _log_input(self):
141
        logging.info('theta_prior = {}'.format(self.theta_prior))
142
        logging.info('nwalkers={}'.format(self.nwalkers))
143
144
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
145
146
        logging.info('log10beta_min = {}'.format(
            self.log10beta_min))
147

148
    def _initiate_search_object(self):
149
        logging.info('Setting up search object')
150
        self.search = core.ComputeFstat(
151
            tref=self.tref, sftfilepattern=self.sftfilepattern,
152
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
153
            detectors=self.detectors, BSGL=self.BSGL, transient=False,
154
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
155
            binary=self.binary, injectSources=self.injectSources,
156
            assumeSqrtSX=self.assumeSqrtSX, SSBprec=self.SSBprec)
157
158
159
160
        if self.minStartTime is None:
            self.minStartTime = self.search.minStartTime
        if self.maxStartTime is None:
            self.maxStartTime = self.search.maxStartTime
161
162

    def logp(self, theta_vals, theta_prior, theta_keys, search):
163
        H = [self._generic_lnprior(**theta_prior[key])(p) for p, key in
164
165
166
167
168
169
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
170
171
172
        twoF = search.get_fullycoherent_twoF(
            self.minStartTime, self.maxStartTime, *self.fixed_theta)
        return twoF/2.0 + self.likelihoodcoef
173

174
    def _unpack_input_theta(self):
175
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']
176
177
178
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
179
180
        full_theta_keys_copy = copy.copy(full_theta_keys)

181
182
        full_theta_symbols = ['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                              r'$\delta$']
183
184
        if self.binary:
            full_theta_symbols += [
185
                'asini', 'period', 'ecc', 'tp', 'argp']
186

187
188
        self.theta_keys = []
        fixed_theta_dict = {}
189
        for key, val in self.theta_prior.iteritems():
190
191
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
192
                self.theta_keys.append(key)
193
194
195
196
197
198
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
199
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

215
    def _check_initial_points(self, p0):
216
217
218
219
220
221
222
223
224
225
226
227
228
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

229
                p0 = self._generate_new_p0_to_fix_initial_points(
230
231
                    p0, nt, initial_priors)

232
    def _generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
252

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    def setup_initialisation(self, nburn0, scatter_val=1e-10):
        """ Add an initialisation step to the MCMC run

        If called prior to `run()`, adds an intial step in which the MCMC
        simulation is run for `nburn0` steps. After this, the MCMC simulation
        continues in the usual manner (i.e. for nburn and nprod steps), but the
        walkers are reset scattered around the maximum likelihood position
        of the initialisation step.

        Parameters
        ----------
        nburn0: int
            Number of initialisation steps to take
        scatter_val: float
            Relative number to scatter walkers around the maximum likelihood
            position after the initialisation step

        """

        logging.info('Setting up initialisation with nburn0={}, scatter_val={}'
                     .format(nburn0, scatter_val))
        self.nsteps = [nburn0] + self.nsteps
        self.scatter_val = scatter_val

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
#    def setup_burnin_convergence_testing(
#            self, n=10, test_type='autocorr', windowed=False, **kwargs):
#        """ Set up convergence testing during the MCMC simulation
#
#        Parameters
#        ----------
#        n: int
#            Number of steps after which to test convergence
#        test_type: str ['autocorr', 'GR']
#            If 'autocorr' use the exponential autocorrelation time (kwargs
#            passed to `get_autocorr_convergence`). If 'GR' use the Gelman-Rubin
#            statistic (kwargs passed to `get_GR_convergence`)
#        windowed: bool
#            If True, only calculate the convergence test in a window of length
#            `n`
#        **kwargs:
#            Passed to either `_test_autocorr_convergence()` or
#            `_test_GR_convergence()` depending on `test_type`.
#
#        """
#        logging.info('Setting up convergence testing')
#        self.convergence_n = n
#        self.convergence_windowed = windowed
#        self.convergence_test_type = test_type
#        self.convergence_kwargs = kwargs
#        self.convergence_diagnostic = []
#        self.convergence_diagnosticx = []
#        if test_type in ['autocorr']:
#            self._get_convergence_test = self._test_autocorr_convergence
#        elif test_type in ['GR']:
#            self._get_convergence_test = self._test_GR_convergence
#        else:
#            raise ValueError('test_type {} not understood'.format(test_type))
#
#
#    def _test_autocorr_convergence(self, i, sampler, test=True, n_cut=5):
#        try:
#            acors = np.zeros((self.ntemps, self.ndim))
#            for temp in range(self.ntemps):
#                if self.convergence_windowed:
#                    j = i-self.convergence_n
#                else:
#                    j = 0
#                x = np.mean(sampler.chain[temp, :, j:i, :], axis=0)
#                acors[temp, :] = emcee.autocorr.exponential_time(x)
#            c = np.max(acors, axis=0)
#        except emcee.autocorr.AutocorrError:
#            logging.info('Failed to calculate exponential autocorrelation')
#            c = np.zeros(self.ndim) + np.nan
#        except AttributeError:
#            logging.info('Unable to calculate exponential autocorrelation')
#            c = np.zeros(self.ndim) + np.nan
#
#        self.convergence_diagnosticx.append(i - self.convergence_n/2.)
#        self.convergence_diagnostic.append(list(c))
#
#        if test:
#            return i > n_cut * np.max(c)
#
#    def _test_GR_convergence(self, i, sampler, test=True, R=1.1):
#        if self.convergence_windowed:
#            s = sampler.chain[0, :, i-self.convergence_n+1:i+1, :]
#        else:
#            s = sampler.chain[0, :, :i+1, :]
#        N = float(self.convergence_n)
#        M = float(self.nwalkers)
#        W = np.mean(np.var(s, axis=1), axis=0)
#        per_walker_mean = np.mean(s, axis=1)
#        mean = np.mean(per_walker_mean, axis=0)
#        B = N / (M-1.) * np.sum((per_walker_mean-mean)**2, axis=0)
#        Vhat = (N-1)/N * W + (M+1)/(M*N) * B
#        c = np.sqrt(Vhat/W)
#        self.convergence_diagnostic.append(c)
#        self.convergence_diagnosticx.append(i - self.convergence_n/2.)
#
#        if test and np.max(c) < R:
#            return True
#        else:
#            return False
#
#    def _test_convergence(self, i, sampler, **kwargs):
#        if np.mod(i+1, self.convergence_n) == 0:
#            return self._get_convergence_test(i, sampler, **kwargs)
#        else:
#            return False
#
#    def _run_sampler_with_conv_test(self, sampler, p0, nprod=0, nburn=0):
#        logging.info('Running {} burn-in steps with convergence testing'
#                     .format(nburn))
#        iterator = tqdm(sampler.sample(p0, iterations=nburn), total=nburn)
#        for i, output in enumerate(iterator):
#            if self._test_convergence(i, sampler, test=True,
#                                      **self.convergence_kwargs):
#                logging.info(
#                    'Converged at {} before max number {} of steps reached'
#                    .format(i, nburn))
#                self.convergence_idx = i
#                break
#        iterator.close()
#        logging.info('Running {} production steps'.format(nprod))
#        j = nburn
#        iterator = tqdm(sampler.sample(output[0], iterations=nprod),
#                        total=nprod)
#        for result in iterator:
#            self._test_convergence(j, sampler, test=False,
#                                   **self.convergence_kwargs)
#            j += 1
#        return sampler

    def _run_sampler(self, sampler, p0, nprod=0, nburn=0, window=50):
        for result in tqdm(sampler.sample(p0, iterations=nburn+nprod),
                           total=nburn+nprod):
            pass
390

391
392
        self.mean_acceptance_fraction = np.mean(
            sampler.acceptance_fraction, axis=1)
393
        logging.info("Mean acceptance fraction: {}"
394
                     .format(self.mean_acceptance_fraction))
395
        if self.ntemps > 1:
396
            self.tswap_acceptance_fraction = sampler.tswap_acceptance_fraction
397
398
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
Gregory Ashton's avatar
Gregory Ashton committed
399
400
401
        self.autocorr_time = sampler.get_autocorr_time(window=window)
        logging.info("Autocorrelation length: {}".format(
            self.autocorr_time))
402
403
404

        return sampler

405
    def _estimate_run_time(self):
406
407
408
409
410
411
412
413
414
415
        """ Print the estimated run time

        Uses timing coefficients based on a Lenovo T460p Intel(R)
        Core(TM) i5-6300HQ CPU @ 2.30GHz.

        """
        # Todo: add option to time on a machine, and move coefficients to
        # ~/.pyfstat.conf
        if (type(self.theta_prior['Alpha']) == dict or
                type(self.theta_prior['Delta']) == dict):
Gregory Ashton's avatar
Gregory Ashton committed
416
417
418
419
            tau0LD = 5.2e-7
            tau0T = 1.5e-8
            tau0S = 1.2e-4
            tau0C = 5.8e-6
420
        else:
Gregory Ashton's avatar
Gregory Ashton committed
421
            tau0LD = 1.3e-7
422
            tau0T = 1.5e-8
Gregory Ashton's avatar
Gregory Ashton committed
423
424
            tau0S = 9.1e-5
            tau0C = 5.5e-6
425
        Nsfts = (self.maxStartTime - self.minStartTime) / 1800.
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
        if hasattr(self, 'run_setup'):
            ts = []
            for row in self.run_setup:
                nsteps = row[0]
                nsegs = row[1]
                numb_evals = np.sum(nsteps)*self.nwalkers*self.ntemps
                t = (tau0S + tau0LD*Nsfts) * numb_evals
                if nsegs > 1:
                    t += (tau0C + tau0T*Nsfts)*nsegs*numb_evals
                ts.append(t)
            time = np.sum(ts)
        else:
            numb_evals = np.sum(self.nsteps)*self.nwalkers*self.ntemps
            time = (tau0S + tau0LD*Nsfts) * numb_evals
            if getattr(self, 'nsegs', 1) > 1:
                time += (tau0C + tau0T*Nsfts)*self.nsegs*numb_evals

443
        logging.info('Estimated run-time = {} s = {:1.0f}:{:1.0f} m'.format(
444
            time, *divmod(time, 60)))
445

Gregory Ashton's avatar
Gregory Ashton committed
446
447
    def run(self, proposal_scale_factor=2, create_plots=True, window=50,
            **kwargs):
448
449
450
451
452
453
454
455
456
457
458
        """ Run the MCMC simulatation

        Parameters
        ----------
        proposal_scale_factor: float
            The proposal scale factor used by the sampler, see Goodman & Weare
            (2010). If the acceptance fraction is too low, you can raise it by
            decreasing the a parameter; and if it is too high, you can reduce
            it by increasing the a parameter [Foreman-Mackay (2013)].
        create_plots: bool
            If true, save trace plots of the walkers
Gregory Ashton's avatar
Gregory Ashton committed
459
        window: int
460
461
            The minimum number of autocorrelation times needed to trust the
            result when estimating the autocorrelation time (see
Gregory Ashton's avatar
Gregory Ashton committed
462
            ptemcee.Sampler.get_autocorr_time for further details.
463
464
465
        **kwargs:
            Passed to _plot_walkers to control the figures

466
467
        Returns
        -------
Gregory Ashton's avatar
Gregory Ashton committed
468
469
        sampler: ptemcee.Sampler
            The ptemcee ptsampler object
470

471
        """
472

473
        self.old_data_is_okay_to_use = self._check_old_data_is_okay_to_use()
474
475
476
        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
477
            d = self.get_saved_data_dictionary()
478
479
480
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
481
            self.all_lnlikelihood = d['all_lnlikelihood']
482
483
            return

484
        self._initiate_search_object()
485
        self._estimate_run_time()
486

Gregory Ashton's avatar
Gregory Ashton committed
487
488
489
        sampler = PTSampler(
            ntemps=self.ntemps, nwalkers=self.nwalkers, dim=self.ndim,
            logl=self.logl, logp=self.logp,
490
            logpargs=(self.theta_prior, self.theta_keys, self.search),
491
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
492

493
494
495
        p0 = self._generate_initial_p0()
        p0 = self._apply_corrections_to_p0(p0)
        self._check_initial_points(p0)
496

497
        # Run initialisation steps if required
498
499
500
        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
Gregory Ashton's avatar
Gregory Ashton committed
501
                j, ninit_steps, n))
Gregory Ashton's avatar
Gregory Ashton committed
502
            sampler = self._run_sampler(sampler, p0, nburn=n, window=window)
503
            if create_plots:
504
                fig, axes = self._plot_walkers(sampler,
505
                                               **kwargs)
506
507
                fig.tight_layout()
                fig.savefig('{}/{}_init_{}_walkers.png'.format(
Gregory Ashton's avatar
Gregory Ashton committed
508
                    self.outdir, self.label, j))
509

510
511
512
            p0 = self._get_new_p0(sampler)
            p0 = self._apply_corrections_to_p0(p0)
            self._check_initial_points(p0)
513
514
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
515
516
517
518
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
519
520
521
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
522
        sampler = self._run_sampler(sampler, p0, nburn=nburn, nprod=nprod)
523
        if create_plots:
524
            fig, axes = self._plot_walkers(sampler, nprod=nprod, **kwargs)
525
526
            fig.tight_layout()
            fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label),
Gregory Ashton's avatar
Gregory Ashton committed
527
                        )
528
529

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
Gregory Ashton's avatar
Gregory Ashton committed
530
531
532
        lnprobs = sampler.logprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.loglikelihood[0, :, nburn:].reshape((-1))
        all_lnlikelihood = sampler.loglikelihood[:, :, nburn:]
533
534
535
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
536
537
        self.all_lnlikelihood = all_lnlikelihood
        self._save_data(sampler, samples, lnprobs, lnlikes, all_lnlikelihood)
Gregory Ashton's avatar
Gregory Ashton committed
538
        return sampler
539

540
    def _get_rescale_multiplier_for_key(self, key):
541
        """ Get the rescale multiplier from the transform_dictionary
542
543
544
545
546

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
547
        if key not in self.transform_dictionary:
548
549
            return 1

550
551
        if 'multiplier' in self.transform_dictionary[key]:
            val = self.transform_dictionary[key]['multiplier']
552
553
554
            if type(val) == str:
                if hasattr(self, val):
                    multiplier = getattr(
555
                        self, self.transform_dictionary[key]['multiplier'])
556
557
558
559
560
561
562
563
564
                else:
                    raise ValueError(
                        "multiplier {} not a class attribute".format(val))
            else:
                multiplier = val
        else:
            multiplier = 1
        return multiplier

565
    def _get_rescale_subtractor_for_key(self, key):
566
        """ Get the rescale subtractor from the transform_dictionary
567
568
569
570
571

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
572
        if key not in self.transform_dictionary:
573
574
            return 0

575
576
        if 'subtractor' in self.transform_dictionary[key]:
            val = self.transform_dictionary[key]['subtractor']
577
578
579
            if type(val) == str:
                if hasattr(self, val):
                    subtractor = getattr(
580
                        self, self.transform_dictionary[key]['subtractor'])
581
582
583
584
585
586
587
588
589
                else:
                    raise ValueError(
                        "subtractor {} not a class attribute".format(val))
            else:
                subtractor = val
        else:
            subtractor = 0
        return subtractor

590
    def _scale_samples(self, samples, theta_keys):
591
        """ Scale the samples using the transform_dictionary """
592
        for key in theta_keys:
593
            if key in self.transform_dictionary:
594
595
                idx = theta_keys.index(key)
                s = samples[:, idx]
596
                subtractor = self._get_rescale_subtractor_for_key(key)
597
                s = s - subtractor
598
                multiplier = self._get_rescale_multiplier_for_key(key)
599
                s *= multiplier
600
601
                samples[:, idx] = s

602
603
        return samples

604
    def _get_labels(self, newline_units=False):
605
        """ Combine the units, symbols and rescaling to give labels """
606

607
608
609
610
611
612
        labels = []
        for key in self.theta_keys:
            label = None
            s = self.symbol_dictionary[key]
            s.replace('_{glitch}', r'_\textrm{glitch}')
            u = self.unit_dictionary[key]
613
614
615
616
617
618
619
            if key in self.transform_dictionary:
                if 'symbol' in self.transform_dictionary[key]:
                    s = self.transform_dictionary[key]['symbol']
                if 'label' in self.transform_dictionary[key]:
                    label = self.transform_dictionary[key]['label']
                if 'unit' in self.transform_dictionary[key]:
                    u = self.transform_dictionary[key]['unit']
620
            if label is None:
621
622
623
624
                if newline_units:
                    label = '{} \n [{}]'.format(s, u)
                else:
                    label = '{} [{}]'.format(s, u)
625
626
            labels.append(label)
        return labels
627

628
629
    def plot_corner(self, figsize=(7, 7), add_prior=False, nstds=None,
                    label_offset=0.4, dpi=300, rc_context={},
630
                    tglitch_ratio=False, fig_and_axes=None, save_fig=True,
631
                    **kwargs):
632
633
634
635
636
637
638
639
640
        """ Generate a corner plot of the posterior

        Using the `corner` package (https://pypi.python.org/pypi/corner/),
        generate estimates of the posterior from the production samples.

        Parameters
        ----------
        figsize: tuple (7, 7)
            Figure size in inches (passed to plt.subplots)
641
642
643
        add_prior: bool, str
            If true, plot the prior as a red line. If 'full' then for uniform
            priors plot the full extent of the prior.
644
645
646
647
648
649
650
651
652
653
654
655
656
657
        nstds: float
            The number of standard deviations to plot centered on the mean
        label_offset: float
            Offset the labels from the plot: useful to precent overlapping the
            tick labels with the axis labels
        dpi: int
            Passed to plt.savefig
        rc_context: dict
            Dictionary of rc values to set while generating the figure (see
            matplotlib rc for more details)
        tglitch_ratio: bool
            If true, and tglitch is a parameter, plot posteriors as the
            fractional time at which the glitch occurs instead of the actual
            time
658
659
660
661
662
        fig_and_axes: tuple
            fig and axes to plot on, the axes must be of the right shape,
            namely (ndim, ndim)
        save_fig: bool
            If true, save the figure, else return the fig, axes
663
664
        **kwargs:
            Passed to corner.corner
665

666
667
668
669
        Returns
        -------
        fig, axes:
            The matplotlib figure and axes, only returned if save_fig = False
670
671

        """
672

673
674
675
676
        if 'truths' in kwargs and len(kwargs['truths']) != self.ndim:
            logging.warning('len(Truths) != ndim, Truths will be ignored')
            kwargs['truths'] = None

Gregory Ashton's avatar
Gregory Ashton committed
677
678
        if self.ndim < 2:
            with plt.rc_context(rc_context):
679
680
681
682
                if fig_and_axes is None:
                    fig, ax = plt.subplots(figsize=figsize)
                else:
                    fig, ax = fig_and_axes
Gregory Ashton's avatar
Gregory Ashton committed
683
684
685
686
687
688
689
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

690
        with plt.rc_context(rc_context):
691
692
693
694
695
            if fig_and_axes is None:
                fig, axes = plt.subplots(self.ndim, self.ndim,
                                         figsize=figsize)
            else:
                fig, axes = fig_and_axes
696
697

            samples_plt = copy.copy(self.samples)
698
            labels = self._get_labels(newline_units=True)
699

700
            samples_plt = self._scale_samples(samples_plt, self.theta_keys)
701
702
703
704
705

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
706
707
708
                        samples_plt[:, j] = (
                            s - self.minStartTime)/(
                                self.maxStartTime - self.minStartTime)
709
                        labels[j] = r'$R_{\textrm{glitch}}$'
710
711
712
713
714
715
716

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
717
718
            elif 'range' in kwargs:
                _range = kwargs.pop('range')
719
720
721
            else:
                _range = None

722
723
724
725
            hist_kwargs = kwargs.pop('hist_kwargs', dict())
            if 'normed' not in hist_kwargs:
                hist_kwargs['normed'] = True

726
            fig_triangle = corner.corner(samples_plt,
727
                                         labels=labels,
728
729
730
731
732
733
734
735
736
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
737
                                         hist_kwargs=hist_kwargs,
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
754
                self._add_prior_to_corner(axes, self.samples, add_prior)
755

756
757
758
759
760
            if save_fig:
                fig_triangle.savefig('{}/{}_corner.png'.format(
                    self.outdir, self.label), dpi=dpi)
            else:
                return fig, axes
761

762
    def _add_prior_to_corner(self, axes, samples, add_prior):
763
764
765
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            s = samples[:, i]
766
767
768
769
770
771
772
773
774
775
            lnprior = self._generic_lnprior(**self.theta_prior[key])
            if add_prior == 'full' and self.theta_prior[key]['type'] == 'unif':
                lower = self.theta_prior[key]['lower']
                upper = self.theta_prior[key]['upper']
                r = upper-lower
                xlim = [lower-0.05*r, upper+0.05*r]
                x = np.linspace(xlim[0], xlim[1], 1000)
            else:
                xlim = ax.get_xlim()
                x = np.linspace(s.min(), s.max(), 1000)
776
777
            multiplier = self._get_rescale_multiplier_for_key(key)
            subtractor = self._get_rescale_subtractor_for_key(key)
778
779
780
781
782
783
784
785
            ax.plot((x-subtractor)*multiplier,
                    [np.exp(lnprior(xi)) for xi in x], '-C3',
                    label='prior')

            for j in range(i, self.ndim):
                axes[j][i].set_xlim(xlim[0], xlim[1])
            for k in range(0, i):
                axes[i][k].set_ylim(xlim[0], xlim[1])
786

787
788
789
790
791
792
793
794
    def plot_prior_posterior(self, normal_stds=2):
        """ Plot the posterior in the context of the prior """
        fig, axes = plt.subplots(nrows=self.ndim, figsize=(8, 4*self.ndim))
        N = 1000
        from scipy.stats import gaussian_kde

        for i, (ax, key) in enumerate(zip(axes, self.theta_keys)):
            prior_dict = self.theta_prior[key]
795
            prior_func = self._generic_lnprior(**prior_dict)
796
797
798
799
800
            if prior_dict['type'] == 'unif':
                x = np.linspace(prior_dict['lower'], prior_dict['upper'], N)
                prior = prior_func(x)
                prior[0] = 0
                prior[-1] = 0
Gregory Ashton's avatar
Gregory Ashton committed
801
802
803
804
805
            elif prior_dict['type'] == 'log10unif':
                upper = prior_dict['log10upper']
                lower = prior_dict['log10lower']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
806
807
808
809
810
            elif prior_dict['type'] == 'norm':
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = prior_func(x)
811
812
813
814
815
            elif prior_dict['type'] == 'halfnorm':
                lower = prior_dict['loc']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
Gregory Ashton's avatar
Gregory Ashton committed
816
817
818
819
820
            elif prior_dict['type'] == 'neghalfnorm':
                upper = prior_dict['loc']
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
821
822
823
            else:
                raise ValueError('Not implemented for prior type {}'.format(
                    prior_dict['type']))
824
            priorln = ax.plot(x, prior, 'C3', label='prior')
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
            ax.set_xlabel(self.theta_symbols[i])

            s = self.samples[:, i]
            while len(s) > 10**4:
                # random downsample to avoid slow calculation of kde
                s = np.random.choice(s, size=int(len(s)/2.))
            kde = gaussian_kde(s)
            ax2 = ax.twinx()
            postln = ax2.plot(x, kde.pdf(x), 'k', label='posterior')
            ax2.set_yticklabels([])
            ax.set_yticklabels([])

        lns = priorln + postln
        labs = [l.get_label() for l in lns]
        axes[0].legend(lns, labs, loc=1, framealpha=0.8)

        fig.savefig('{}/{}_prior_posterior.png'.format(
            self.outdir, self.label))

844
    def plot_cumulative_max(self, **kwargs):
845
846
847
848
        """ Plot the cumulative twoF for the maximum posterior estimate

        See the pyfstat.core.plot_twoF_cumulative function for further details
        """
Gregory Ashton's avatar
Gregory Ashton committed
849
850
851
852
        d, maxtwoF = self.get_max_twoF()
        for key, val in self.theta_prior.iteritems():
            if key not in d:
                d[key] = val
853

854
855
856
        if 'add_pfs' in kwargs:
            self.generate_loudest()

857
        if hasattr(self, 'search') is False:
858
            self._initiate_search_object()
859
860
861
        if self.binary is False:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
862
                Alpha=d['Alpha'], Delta=d['Delta'],
863
                tstart=self.minStartTime, tend=self.maxStartTime,
864
                **kwargs)
865
866
867
868
869
        else:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
                Alpha=d['Alpha'], Delta=d['Delta'], asini=d['asini'],
                period=d['period'], ecc=d['ecc'], argp=d['argp'], tp=d['argp'],
870
                tstart=self.minStartTime, tend=self.maxStartTime, **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
871

872
    def _generic_lnprior(self, **kwargs):
873
874
875
876
        """ Return a lambda function of the pdf

        Parameters
        ----------
877
        **kwargs:
878
879
880
881
            A dictionary containing 'type' of pdf and shape parameters

        """

Gregory Ashton's avatar
Gregory Ashton committed
882
        def log_of_unif(x, a, b):
883
884
885
886
887
888
889
890
891
892
893
894
895
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

Gregory Ashton's avatar
Gregory Ashton committed
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
        def log_of_log10unif(x, log10lower, log10upper):
            log10x = np.log10(x)
            above = log10x < log10upper
            below = log10x > log10lower
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(x*np.log(10)*(log10upper-log10lower))
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(x*np.log(10)*(log10upper-log10lower))
                return p

        def log_of_halfnorm(x, loc, scale):
912
            if x < loc:
913
914
915
916
917
918
919
920
921
922
923
924
925
926
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
Gregory Ashton's avatar
Gregory Ashton committed
927
928
929
930
            return lambda x: log_of_unif(x, kwargs['lower'], kwargs['upper'])
        if kwargs['type'] == 'log10unif':
            return lambda x: log_of_log10unif(
                x, kwargs['log10lower'], kwargs['log10upper'])
931
        elif kwargs['type'] == 'halfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
932
            return lambda x: log_of_halfnorm(x, kwargs['loc'], kwargs['scale'])
933
        elif kwargs['type'] == 'neghalfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
934
935
            return lambda x: log_of_halfnorm(
                -x, kwargs['loc'], kwargs['scale'])
936
937
938
939
940
941
942
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

943
    def _generate_rv(self, **kwargs):
944
945
946
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
Gregory Ashton's avatar
Gregory Ashton committed
947
948
949
        if dist_type == "log10unif":
            return 10**(np.random.uniform(low=kwargs['log10lower'],
                                          high=kwargs['log10upper']))
950
951
952
953
954
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
955
956
957
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
958
959
960
961
962
963
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

964
    def _plot_walkers(self, sampler, symbols=None, alpha=0.8, color="k",
965
966
                      temp=0, lw=0.1, nprod=0, add_det_stat_burnin=False,
                      fig=None, axes=None, xoffset=0, plot_det_stat=False,
967
                      context='ggplot', labelpad=5):
968
969
        """ Plot all the chains from a sampler """

970
971
        if symbols is None:
            symbols = self._get_labels()
972
973
974
975
976
        if context not in plt.style.available:
            raise ValueError((
                'The requested context {} is not available; please select a'
                ' context from `plt.style.available`').format(context))

977
978
979
        if np.ndim(axes) > 1:
            axes = axes.flatten()

980
981
982
        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
983
            chain = sampler.chain[:, :, :].copy()
984
985
986
987
988
989
990
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
991
            chain = sampler.chain[temp, :, :, :].copy()
992

993
994
995
        samples = chain.reshape((nwalkers*nsteps, ndim))
        samples = self._scale_samples(samples, self.theta_keys)
        chain = chain.reshape((nwalkers, nsteps, ndim))
996

997
998
999
1000
        if plot_det_stat:
            extra_subplots = 1
        else:
            extra_subplots = 0
1001
        with plt.style.context((context)):
Gregory Ashton's avatar
Gregory Ashton committed
1002
            plt.rcParams['text.usetex'] = True
Gregory Ashton's avatar
Gregory Ashton committed
1003
            if fig is None and axes is None:
1004
                fig = plt.figure(figsize=(4, 3.0*ndim))
1005
1006
                ax = fig.add_subplot(ndim+extra_subplots, 1, 1)
                axes = [ax] + [fig.add_subplot(ndim+extra_subplots, 1, i)
Gregory Ashton's avatar
Gregory Ashton committed
1007
                               for i in range(2, ndim+1)]
1008

Gregory Ashton's avatar
Gregory Ashton committed
1009
            idxs = np.arange(chain.shape[1])
1010
            burnin_idx = chain.shape[1] - nprod
1011
1012
1013
1014
            #if hasattr(self, 'convergence_idx'):
            #    last_idx = self.convergence_idx
            #else:
            last_idx = burnin_idx
1015
1016
            if ndim > 1:
                for i in range(ndim):
1017
                    axes[i].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
1018
                    cs = chain[:, :, i].T
1019
                    if burnin_idx > 0:
1020
                        axes[i].plot(xoffset+idxs[:last_idx+1],
1021
                                     cs[:last_idx+1],
1022
                                     color="C3", alpha=alpha,
Gregory Ashton's avatar
Gregory Ashton committed
1023
                                     lw=lw)
1024
                        axes[i].axvline(xoffset+last_idx,
1025
                                        color='k', ls='--', lw=0.5)
1026
                    axes[i].plot(xoffset+idxs[burnin_idx:],
1027
                                 cs[burnin_idx:],
Gregory Ashton's avatar
Gregory Ashton committed
1028
                                 color="k", alpha=alpha, lw=lw)
Gregory Ashton's avatar
Gregory Ashton committed
1029
1030

                    axes[i].set_xlim(0, xoffset+idxs[-1])
1031
                    if symbols:
1032
1033
1034
1035
1036
1037
1038
                        axes[i].set_ylabel(symbols[i], labelpad=labelpad)
                        #if subtractions[i] == 0:
                        #    axes[i].set_ylabel(symbols[i], labelpad=labelpad)
                        #else:
                        #    axes[i].set_ylabel(
                        #        symbols[i]+'$-$'+symbols[i]+'$^\mathrm{s}$',
                        #        labelpad=labelpad)
1039

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
#                    if hasattr(self, 'convergence_diagnostic'):
#                        ax = axes[i].twinx()
#                        axes[i].set_zorder(ax.get_zorder()+1)
#                        axes[i].patch.set_visible(False)
#                        c_x = np.array(self.convergence_diagnosticx)
#                        c_y = np.array(self.convergence_diagnostic)
#                        break_idx = np.argmin(np.abs(c_x - burnin_idx))
#                        ax.plot(c_x[:break_idx], c_y[:break_idx, i], '-C0',
#                                zorder=-10)
#                        ax.plot(c_x[break_idx:], c_y[break_idx:, i], '-C0',
#                                zorder=-10)
#                        if self.convergence_test_type == 'autocorr':
#                            ax.set_ylabel(r'$\tau_\mathrm{exp}$')
#                        elif self.convergence_test_type == 'GR':
#                            ax.set_ylabel('PSRF')
#                        ax.ticklabel_format(useOffset=False)
1056
            else:
Gregory Ashton's avatar
Gregory Ashton committed
1057
                axes[0].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
1058
                cs = chain[:, :, temp].T
Gregory Ashton's avatar
Gregory Ashton committed
1059
1060
                if burnin_idx:
                    axes[0].plot(idxs[:burnin_idx], cs[:burnin_idx],
1061
                                 color="C3", alpha=alpha, lw=lw)
Gregory Ashton's avatar
Gregory Ashton committed
1062
1063
1064
                axes[0].plot(idxs[burnin_idx:], cs[burnin_idx:], color="k",
                             alpha=alpha, lw=lw)
                if symbols:
1065
                    axes[0].set_ylabel(symbols[0], labelpad=labelpad)
1066

Gregory Ashton's avatar
Gregory Ashton committed
1067
1068
            axes[-1].set_xlabel(r'$\textrm{Number of steps}$', labelpad=0.2)

1069
            if plot_det_stat:
1070
1071
1072
                if len(axes) == ndim:
                    axes.append(fig.add_subplot(ndim+1, 1, ndim+1))

Gregory Ashton's avatar
Gregory Ashton committed
1073
                lnl = sampler.loglikelihood[temp, :, :]
1074
1075
                if burnin_idx and add_det_stat_burnin:
                    burn_in_vals = lnl[:, :burnin_idx].flatten()
1076
                    try:
1077
1078
1079
1080
                        twoF_burnin = (burn_in_vals[~np.isnan(burn_in_vals)]
                                       - self.likelihoodcoef)
                        axes[-1].hist(twoF_burnin, bins=50, histtype='step',
                                      color='C3')
1081
1082
1083
1084
                    except ValueError:
                        logging.info('Det. Stat. hist failed, most likely all '
                                     'values where the same')
                        pass
1085
                else:
1086
                    twoF_burnin = []
1087
                prod_vals = lnl[:, burnin_idx:].flatten()
1088
                try:
1089
1090
                    twoF = prod_vals[~np.isnan(prod_vals)]-self.likelihoodcoef
                    axes[-1].hist(twoF, bins=50, histtype='step', color='k')
1091
1092
1093
1094
                except ValueError:
                    logging.info('Det. Stat. hist failed, most likely all '
                                 'values where the same')
                    pass
1095
1096
1097
1098
1099
                if self.BSGL:
                    axes[-1].set_xlabel(r'$\mathcal{B}_\mathrm{S/GL}$')
                else:
                    axes[-1].set_xlabel(r'$\widetilde{2\mathcal{F}}$')
                axes[-1].set_ylabel(r'$\textrm{Counts}$')
1100
                combined_vals = np.append(twoF_burnin, twoF)
1101
1102
1103
1104
1105
1106
                if len(combined_vals) > 0:
                    minv = np.min(combined_vals)
                    maxv = np.max(combined_vals)
                    Range = abs(maxv-minv)
                    axes[-1].set_xlim(minv-0.1*Range, maxv+0.1*Range)

1107
                xfmt = matplotlib.ticker.ScalarFormatter()