core.py 47.4 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" The core tools used in pyfstat """
2
3
from __future__ import division, absolute_import, print_function

Gregory Ashton's avatar
Gregory Ashton committed
4
5
6
7
import os
import logging
import copy

8
import glob
Gregory Ashton's avatar
Gregory Ashton committed
9
import numpy as np
10
11
12
13
14
import scipy.special
import scipy.optimize

import lal
import lalpulsar
15
import pyfstat.helper_functions as helper_functions
16
import pyfstat.tcw_fstat_map_funcs as tcw
17
18

# workaround for matplotlib on X-less remote logins
19
if 'DISPLAY' in os.environ:
20
21
    import matplotlib.pyplot as plt
else:
22
23
    logging.info('No $DISPLAY environment variable found, so importing \
                  matplotlib.pyplot with non-interactive "Agg" backend.')
24
25
26
27
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt

Gregory Ashton's avatar
Gregory Ashton committed
28
helper_functions.set_up_matplotlib_defaults()
29
args, tqdm = helper_functions.set_up_command_line_arguments()
30
detector_colors = {'h1': 'C0', 'l1': 'C1'}
Gregory Ashton's avatar
Gregory Ashton committed
31
32


Gregory Ashton's avatar
Gregory Ashton committed
33
class Bunch(object):
34
35
    """ Turns dictionary into object with attribute-style access

36
37
    Parameters
    ----------
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    dict
        Input dictionary

    Examples
    --------
    >>> data = Bunch(dict(x=1, y=[1, 2, 3], z=True))
    >>> print(data.x)
    1
    >>> print(data.y)
    [1, 2, 3]
    >>> print(data.z)
    True

    """
Gregory Ashton's avatar
Gregory Ashton committed
52
53
54
55
56
    def __init__(self, dictionary):
        self.__dict__.update(dictionary)


def read_par(filename=None, label=None, outdir=None, suffix='par',
57
58
             return_type='dict', comments=['%', '#'], raise_error=False):
    """ Read in a .par or .loudest file, returns a dict or Bunch of the data
59

Gregory Ashton's avatar
Gregory Ashton committed
60
61
    Parameters
    ----------
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    filename : str
        Filename (path) containing rows of `key=val` data to read in.
    label, outdir, suffix : str, optional
        If filename is None, form the file to read as `outdir/label.suffix`.
    return_type : {'dict', 'bunch'}, optional
        If `dict`, return a dictionary, if 'bunch' return a Bunch
    comments : str or list of strings, optional
        Characters denoting that a row is a comment.
    raise_error : bool, optional
        If True, raise an error for lines which are not comments, but cannot
        be read.

    Notes
    -----
    This can also be used to read in .loudest files, or any file which has
    rows of `key=val` data (in which the val can be understood using eval(val)
Gregory Ashton's avatar
Gregory Ashton committed
78
79
80
81
82

    Returns
    -------
    d: Bunch or dict
        The par values as either a `Bunch` or dict type
83

84
85
86
87
    """
    if filename is None:
        filename = '{}/{}.{}'.format(outdir, label, suffix)
    if os.path.isfile(filename) is False:
88
        raise ValueError("No file {} found".format(filename))
Gregory Ashton's avatar
Gregory Ashton committed
89
90
    d = {}
    with open(filename, 'r') as f:
91
        d = _get_dictionary_from_lines(f, comments, raise_error)
Gregory Ashton's avatar
Gregory Ashton committed
92
93
94
95
96
97
    if return_type in ['bunch', 'Bunch']:
        return Bunch(d)
    elif return_type in ['dict', 'dictionary']:
        return d
    else:
        raise ValueError('return_type {} not understood'.format(return_type))
Gregory Ashton's avatar
Gregory Ashton committed
98
99


100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
def _get_dictionary_from_lines(lines, comments, raise_error):
    """ Return dictionary of key=val pairs for each line in lines

    Parameters
    ----------
    comments : str or list of strings
        Characters denoting that a row is a comment.
    raise_error : bool
        If True, raise an error for lines which are not comments, but cannot
        be read.

    Returns
    -------
    d: Bunch or dict
        The par values as either a `Bunch` or dict type

    """
117
118
    d = {}
    for line in lines:
119
        if line[0] not in comments and len(line.split('=')) == 2:
120
121
122
            try:
                key, val = line.rstrip('\n').split('=')
                key = key.strip()
Gregory Ashton's avatar
Gregory Ashton committed
123
124
125
126
                try:
                    d[key] = np.float64(eval(val.rstrip('; ')))
                except NameError:
                    d[key] = val.rstrip('; ')
127
            except SyntaxError:
128
129
                if raise_error:
                    raise IOError('Line {} not understood'.format(line))
130
131
132
133
134
                pass
    return d


def predict_fstat(h0, cosi, psi, Alpha, Delta, Freq, sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
135
136
                  minStartTime, maxStartTime, IFO=None, assumeSqrtSX=None,
                  **kwargs):
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    """ Wrapper to lalapps_PredictFstat

    Parameters
    ----------
    h0, cosi, psi, Alpha, Delta, Freq : float
        Signal properties, see `lalapps_PredictFstat --help` for more info.
    sftfilepattern : str
        Pattern matching the sftfiles to use.
    minStartTime, maxStartTime : int
    IFO : str
        See `lalapps_PredictFstat --help`
    assumeSqrtSX : float or None
        See `lalapps_PredictFstat --help`, if None this option is not used

    Returns
    -------
    twoF_expected, twoF_sigma : float
        The expectation and standard deviation of 2F

    """
157
158
    tempory_filename = 'fs.tmp'

159
160
161
162
163
164
165
166
167
168
    cl_pfs = []
    cl_pfs.append("lalapps_PredictFstat")
    cl_pfs.append("--h0={}".format(h0))
    cl_pfs.append("--cosi={}".format(cosi))
    cl_pfs.append("--psi={}".format(psi))
    cl_pfs.append("--Alpha={}".format(Alpha))
    cl_pfs.append("--Delta={}".format(Delta))
    cl_pfs.append("--Freq={}".format(Freq))

    cl_pfs.append("--DataFiles='{}'".format(sftfilepattern))
169
    if assumeSqrtSX:
170
        cl_pfs.append("--assumeSqrtSX={}".format(assumeSqrtSX))
171
    if IFO:
172
173
174
175
176
        if ',' in IFO:
            logging.warning('Multiple detector selection not available, using'
                            ' all available data')
        else:
            cl_pfs.append("--IFO={}".format(IFO))
177

178
179
    cl_pfs.append("--minStartTime={}".format(int(minStartTime)))
    cl_pfs.append("--maxStartTime={}".format(int(maxStartTime)))
180
    cl_pfs.append("--outputFstat={}".format(tempory_filename))
181

182
183
    cl_pfs = " ".join(cl_pfs)
    helper_functions.run_commandline(cl_pfs)
184
185
    d = read_par(filename=tempory_filename)
    os.remove(tempory_filename)
186
187
188
    return float(d['twoF_expected']), float(d['twoF_sigma'])


Gregory Ashton's avatar
Gregory Ashton committed
189
class BaseSearchClass(object):
190
    """ The base search class providing parent methods to other searches """
Gregory Ashton's avatar
Gregory Ashton committed
191

192
    def _add_log_file(self):
Gregory Ashton's avatar
Gregory Ashton committed
193
194
195
196
197
198
199
200
201
        """ Log output to a file, requires class to have outdir and label """
        logfilename = '{}/{}.log'.format(self.outdir, self.label)
        fh = logging.FileHandler(logfilename)
        fh.setLevel(logging.INFO)
        fh.setFormatter(logging.Formatter(
            '%(asctime)s %(levelname)-8s: %(message)s',
            datefmt='%y-%m-%d %H:%M'))
        logging.getLogger().addHandler(fh)

202
    def _shift_matrix(self, n, dT):
Gregory Ashton's avatar
Gregory Ashton committed
203
204
205
206
        """ Generate the shift matrix

        Parameters
        ----------
207
        n : int
Gregory Ashton's avatar
Gregory Ashton committed
208
            The dimension of the shift-matrix to generate
209
        dT : float
Gregory Ashton's avatar
Gregory Ashton committed
210
211
212
213
            The time delta of the shift matrix

        Returns
        -------
214
215
        m : ndarray, shape (n,)
            The shift matrix.
Gregory Ashton's avatar
Gregory Ashton committed
216

217
        """
Gregory Ashton's avatar
Gregory Ashton committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
        m = np.zeros((n, n))
        factorial = np.math.factorial
        for i in range(n):
            for j in range(n):
                if i == j:
                    m[i, j] = 1.0
                elif i > j:
                    m[i, j] = 0.0
                else:
                    if i == 0:
                        m[i, j] = 2*np.pi*float(dT)**(j-i) / factorial(j-i)
                    else:
                        m[i, j] = float(dT)**(j-i) / factorial(j-i)
        return m

233
    def _shift_coefficients(self, theta, dT):
Gregory Ashton's avatar
Gregory Ashton committed
234
235
236
237
        """ Shift a set of coefficients by dT

        Parameters
        ----------
238
239
        theta : array-like, shape (n,)
            Vector of the expansion coefficients to transform starting from the
Gregory Ashton's avatar
Gregory Ashton committed
240
            lowest degree e.g [phi, F0, F1,...].
241
242
        dT : float
            Difference between the two reference times as tref_new - tref_old.
Gregory Ashton's avatar
Gregory Ashton committed
243
244
245

        Returns
        -------
246
247
        theta_new : ndarray, shape (n,)
            Vector of the coefficients as evaluated as the new reference time.
Gregory Ashton's avatar
Gregory Ashton committed
248
249
        """
        n = len(theta)
250
        m = self._shift_matrix(n, dT)
Gregory Ashton's avatar
Gregory Ashton committed
251
252
        return np.dot(m, theta)

253
    def _calculate_thetas(self, theta, delta_thetas, tbounds, theta0_idx=0):
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
        """ Calculates the set of thetas given delta_thetas, the jumps

        This is used when generating data containing glitches or timing noise.
        Specifically, the source parameters of the signal are not constant in
        time, but jump by `delta_theta` at `tbounds`.

        Parameters
        ----------
        theta : array_like
            The source parameters of size (n,).
        delta_thetas : array_like
            The jumps in the source parameters of size (m, n) where m is the
            number of jumps.
        tbounds : array_like
            Time boundaries of the jumps of size (m+2,).
        theta0_idx : int
            Index of the segment for which the theta are defined.

        Returns
        -------
        ndarray
            The set of thetas, shape (m+1, n).

        """
Gregory Ashton's avatar
Gregory Ashton committed
278
279
280
        thetas = [theta]
        for i, dt in enumerate(delta_thetas):
            if i < theta0_idx:
281
                pre_theta_at_ith_glitch = self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
282
283
                    thetas[0], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch - dt
284
                thetas.insert(0, self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
285
286
287
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))

            elif i >= theta0_idx:
288
                pre_theta_at_ith_glitch = self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
289
290
                    thetas[i], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch + dt
291
                thetas.append(self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
292
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))
293
        self.thetas_at_tref = thetas
Gregory Ashton's avatar
Gregory Ashton committed
294
295
        return thetas

296
    def _get_list_of_matching_sfts(self):
297
        """ Returns a list of sfts matching the attribute sftfilepattern """
298
299
        sftfilepatternlist = np.atleast_1d(self.sftfilepattern.split(';'))
        matches = [glob.glob(p) for p in sftfilepatternlist]
300
        matches = [item for sublist in matches for item in sublist]
301
302
303
304
        if len(matches) > 0:
            return matches
        else:
            raise IOError('No sfts found matching {}'.format(
305
                self.sftfilepattern))
306

307
308
    def set_ephemeris_files(self, earth_ephem=None, sun_ephem=None):
        """ Set the ephemeris files to use for the Earth and Sun
Gregory Ashton's avatar
Gregory Ashton committed
309

310
311
312
313
314
        Parameters
        ----------
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
Gregory Ashton's avatar
Gregory Ashton committed
315

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
        Note: If not manually set, default values in ~/.pyfstat are used

        """

        earth_ephem_default, sun_ephem_default = (
                helper_functions.get_ephemeris_files())

        if earth_ephem is None:
            self.earth_ephem = earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = sun_ephem_default


class ComputeFstat(BaseSearchClass):
    """ Base class providing interface to `lalpulsar.ComputeFstat` """
Gregory Ashton's avatar
Gregory Ashton committed
331
332

    @helper_functions.initializer
333
    def __init__(self, tref, sftfilepattern=None, minStartTime=None,
David Keitel's avatar
David Keitel committed
334
335
                 maxStartTime=None, binary=False, BSGL=False,
                 transientWindowType=None, t0Band=None, tauBand=None,
336
                 dt0=None, dtau=None,
337
                 detectors=None, minCoverFreq=None, maxCoverFreq=None,
338
                 injectSources=None, injectSqrtSX=None, assumeSqrtSX=None,
339
                 SSBprec=None,
340
                 tCWFstatMapVersion='lal', cudaDeviceName=None):
Gregory Ashton's avatar
Gregory Ashton committed
341
342
343
        """
        Parameters
        ----------
344
        tref : int
Gregory Ashton's avatar
Gregory Ashton committed
345
            GPS seconds of the reference time.
346
        sftfilepattern : str
347
348
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
349
        minStartTime, maxStartTime : float GPStime
Gregory Ashton's avatar
Gregory Ashton committed
350
351
            Only use SFTs with timestemps starting from (including, excluding)
            this epoch
352
        binary : bool
Gregory Ashton's avatar
Gregory Ashton committed
353
            If true, search of binary parameters.
Gregory Ashton's avatar
Gregory Ashton committed
354
355
        BSGL : bool
            If true, compute the BSGL rather than the twoF value.
David Keitel's avatar
David Keitel committed
356
357
358
        transientWindowType: str
            If 'rect' or 'exp',
            allow for the Fstat to be computed over a transient range.
Gregory Ashton's avatar
Gregory Ashton committed
359
360
            ('none' instead of None explicitly calls the transient-window
            function, but with the full range, for debugging)
361
362
363
364
365
        t0Band, tauBand: int
            if >0, search t0 in (minStartTime,minStartTime+t0Band)
                   and tau in (2*Tsft,2*Tsft+tauBand).
            if =0, only compute CW Fstat with t0=minStartTime,
                   tau=maxStartTime-minStartTime.
366
367
368
        dt0, dtau: int
            grid resolutions in transient start-time and duration,
            both default to Tsft
369
        detectors : str
Gregory Ashton's avatar
Gregory Ashton committed
370
            Two character reference to the data to use, specify None for no
371
            contraint. If multiple-separate by comma.
372
        minCoverFreq, maxCoverFreq : float
Gregory Ashton's avatar
Gregory Ashton committed
373
374
375
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
376
        injectSources : dict or str
377
378
            Either a dictionary of the values to inject, or a string pointing
            to the .cff file to inject
379
        injectSqrtSX :
380
            Not yet implemented
381
        assumeSqrtSX : float
382
383
384
            Don't estimate noise-floors but assume (stationary) per-IFO
            sqrt{SX} (if single value: use for all IFOs). If signal only,
            set sqrtSX=1
385
        SSBprec : int
386
387
            Flag to set the SSB calculation: 0=Newtonian, 1=relativistic,
            2=relativisitic optimised, 3=DMoff, 4=NO_SPIN
388
389
390
        tCWFstatMapVersion: str
            Choose between standard 'lal' implementation,
            'pycuda' for gpu, and some others for devel/debug.
391
392
        cudaDeviceName: str
            GPU name to be matched against drv.Device output.
Gregory Ashton's avatar
Gregory Ashton committed
393
394
395

        """

396
        self.set_ephemeris_files()
Gregory Ashton's avatar
Gregory Ashton committed
397
398
        self.init_computefstatistic_single_point()

399
400
401
402
403
404
405
406
407
408
409
    def _get_SFTCatalog(self):
        """ Load the SFTCatalog

        If sftfilepattern is specified, load the data. If not, attempt to
        create data on the fly.

        Returns
        -------
        SFTCatalog: lalpulsar.SFTCatalog

        """
Gregory Ashton's avatar
Gregory Ashton committed
410
411
        if hasattr(self, 'SFTCatalog'):
            return
412
        if self.sftfilepattern is None:
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
            for k in ['minStartTime', 'maxStartTime', 'detectors']:
                if getattr(self, k) is None:
                    raise ValueError('You must provide "{}" to injectSources'
                                     .format(k))
            C1 = getattr(self, 'injectSources', None) is None
            C2 = getattr(self, 'injectSqrtSX', None) is None
            if C1 and C2:
                raise ValueError('You must specify either one of injectSources'
                                 ' or injectSqrtSX')
            SFTCatalog = lalpulsar.SFTCatalog()
            Tsft = 1800
            Toverlap = 0
            Tspan = self.maxStartTime - self.minStartTime
            detNames = lal.CreateStringVector(
                *[d for d in self.detectors.split(',')])
            multiTimestamps = lalpulsar.MakeMultiTimestamps(
                self.minStartTime, Tspan, Tsft, Toverlap, detNames.length)
            SFTCatalog = lalpulsar.MultiAddToFakeSFTCatalog(
                SFTCatalog, detNames, multiTimestamps)
            return SFTCatalog

Gregory Ashton's avatar
Gregory Ashton committed
434
435
        logging.info('Initialising SFTCatalog')
        constraints = lalpulsar.SFTConstraints()
436
        if self.detectors:
437
            if ',' in self.detectors:
438
439
                logging.warning('Multiple detector selection not available,'
                                ' using all available data')
440
441
            else:
                constraints.detector = self.detectors
Gregory Ashton's avatar
Gregory Ashton committed
442
443
444
445
446
        if self.minStartTime:
            constraints.minStartTime = lal.LIGOTimeGPS(self.minStartTime)
        if self.maxStartTime:
            constraints.maxStartTime = lal.LIGOTimeGPS(self.maxStartTime)
        logging.info('Loading data matching pattern {}'.format(
447
448
                     self.sftfilepattern))
        SFTCatalog = lalpulsar.SFTdataFind(self.sftfilepattern, constraints)
449

Gregory Ashton's avatar
Gregory Ashton committed
450
        SFT_timestamps = [d.header.epoch for d in SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
451
        self.SFT_timestamps = [float(s) for s in SFT_timestamps]
452
453
        if len(SFT_timestamps) == 0:
            raise ValueError('Failed to load any data')
Gregory Ashton's avatar
Gregory Ashton committed
454
455
456
457
458
        if args.quite is False and args.no_interactive is False:
            try:
                from bashplotlib.histogram import plot_hist
                print('Data timestamps histogram:')
                plot_hist(SFT_timestamps, height=5, bincount=50)
Gregory Ashton's avatar
Gregory Ashton committed
459
            except ImportError:
Gregory Ashton's avatar
Gregory Ashton committed
460
                pass
461

462
        cl_tconv1 = 'lalapps_tconvert {}'.format(int(SFT_timestamps[0]))
463
464
        output = helper_functions.run_commandline(cl_tconv1,
                                                  log_level=logging.DEBUG)
465
466
        tconvert1 = output.rstrip('\n')
        cl_tconv2 = 'lalapps_tconvert {}'.format(int(SFT_timestamps[-1]))
467
468
        output = helper_functions.run_commandline(cl_tconv2,
                                                  log_level=logging.DEBUG)
469
        tconvert2 = output.rstrip('\n')
Gregory Ashton's avatar
Gregory Ashton committed
470
471
        logging.info('Data spans from {} ({}) to {} ({})'.format(
            int(SFT_timestamps[0]),
472
            tconvert1,
Gregory Ashton's avatar
Gregory Ashton committed
473
            int(SFT_timestamps[-1]),
474
            tconvert2))
475
476
477
478
479
480
481
482
483
484
485
486
487

        if self.minStartTime is None:
            self.minStartTime = int(SFT_timestamps[0])
        if self.maxStartTime is None:
            self.maxStartTime = int(SFT_timestamps[-1])

        detector_names = list(set([d.header.name for d in SFTCatalog.data]))
        self.detector_names = detector_names
        if len(detector_names) == 0:
            raise ValueError('No data loaded.')
        logging.info('Loaded {} data files from detectors {}'.format(
            len(SFT_timestamps), detector_names))

488
        return SFTCatalog
Gregory Ashton's avatar
Gregory Ashton committed
489
490
491
492

    def init_computefstatistic_single_point(self):
        """ Initilisation step of run_computefstatistic for a single point """

493
        SFTCatalog = self._get_SFTCatalog()
Gregory Ashton's avatar
Gregory Ashton committed
494
495
496
497
498
499

        logging.info('Initialising ephems')
        ephems = lalpulsar.InitBarycenter(self.earth_ephem, self.sun_ephem)

        logging.info('Initialising FstatInput')
        dFreq = 0
David Keitel's avatar
David Keitel committed
500
        if self.transientWindowType:
Gregory Ashton's avatar
Gregory Ashton committed
501
502
503
504
505
506
            self.whatToCompute = lalpulsar.FSTATQ_ATOMS_PER_DET
        else:
            self.whatToCompute = lalpulsar.FSTATQ_2F

        FstatOAs = lalpulsar.FstatOptionalArgs()
        FstatOAs.randSeed = lalpulsar.FstatOptionalArgsDefaults.randSeed
507
508
509
510
511
        if self.SSBprec:
            logging.info('Using SSBprec={}'.format(self.SSBprec))
            FstatOAs.SSBprec = self.SSBprec
        else:
            FstatOAs.SSBprec = lalpulsar.FstatOptionalArgsDefaults.SSBprec
Gregory Ashton's avatar
Gregory Ashton committed
512
513
514
        FstatOAs.Dterms = lalpulsar.FstatOptionalArgsDefaults.Dterms
        FstatOAs.runningMedianWindow = lalpulsar.FstatOptionalArgsDefaults.runningMedianWindow
        FstatOAs.FstatMethod = lalpulsar.FstatOptionalArgsDefaults.FstatMethod
515
516
517
518
519
520
521
522
        if self.assumeSqrtSX is None:
            FstatOAs.assumeSqrtSX = lalpulsar.FstatOptionalArgsDefaults.assumeSqrtSX
        else:
            mnf = lalpulsar.MultiNoiseFloor()
            assumeSqrtSX = np.atleast_1d(self.assumeSqrtSX)
            mnf.sqrtSn[:len(assumeSqrtSX)] = assumeSqrtSX
            mnf.length = len(assumeSqrtSX)
            FstatOAs.assumeSqrtSX = mnf
Gregory Ashton's avatar
Gregory Ashton committed
523
524
525
        FstatOAs.prevInput = lalpulsar.FstatOptionalArgsDefaults.prevInput
        FstatOAs.collectTiming = lalpulsar.FstatOptionalArgsDefaults.collectTiming

Gregory Ashton's avatar
Gregory Ashton committed
526
        if hasattr(self, 'injectSources') and type(self.injectSources) == dict:
Gregory Ashton's avatar
Gregory Ashton committed
527
528
529
530
531
532
533
534
535
536
            logging.info('Injecting source with params: {}'.format(
                self.injectSources))
            PPV = lalpulsar.CreatePulsarParamsVector(1)
            PP = PPV.data[0]
            PP.Amp.h0 = self.injectSources['h0']
            PP.Amp.cosi = self.injectSources['cosi']
            PP.Amp.phi0 = self.injectSources['phi0']
            PP.Amp.psi = self.injectSources['psi']
            PP.Doppler.Alpha = self.injectSources['Alpha']
            PP.Doppler.Delta = self.injectSources['Delta']
Gregory Ashton's avatar
Gregory Ashton committed
537
538
539
540
541
542
            if 'fkdot' in self.injectSources:
                PP.Doppler.fkdot = np.array(self.injectSources['fkdot'])
            else:
                PP.Doppler.fkdot = np.zeros(lalpulsar.PULSAR_MAX_SPINS)
                for i, key in enumerate(['F0', 'F1', 'F2']):
                    PP.Doppler.fkdot[i] = self.injectSources[key]
Gregory Ashton's avatar
Gregory Ashton committed
543
544
545
546
            PP.Doppler.refTime = self.tref
            if 't0' not in self.injectSources:
                PP.Transient.type = lalpulsar.TRANSIENT_NONE
            FstatOAs.injectSources = PPV
Gregory Ashton's avatar
Gregory Ashton committed
547
        elif hasattr(self, 'injectSources') and type(self.injectSources) == str:
548
549
550
551
            logging.info('Injecting source from param file: {}'.format(
                self.injectSources))
            PPV = lalpulsar.PulsarParamsFromFile(self.injectSources, self.tref)
            FstatOAs.injectSources = PPV
Gregory Ashton's avatar
Gregory Ashton committed
552
553
        else:
            FstatOAs.injectSources = lalpulsar.FstatOptionalArgsDefaults.injectSources
554
555
556
557
        if hasattr(self, 'injectSqrtSX') and self.injectSqrtSX is not None:
            raise ValueError('injectSqrtSX not implemented')
        else:
            FstatOAs.InjectSqrtSX = lalpulsar.FstatOptionalArgsDefaults.injectSqrtSX
Gregory Ashton's avatar
Gregory Ashton committed
558
        if self.minCoverFreq is None or self.maxCoverFreq is None:
559
            fAs = [d.header.f0 for d in SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
560
            fBs = [d.header.f0 + (d.numBins-1)*d.header.deltaF
561
                   for d in SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
562
563
564
565
566
567
            self.minCoverFreq = np.min(fAs) + 0.5
            self.maxCoverFreq = np.max(fBs) - 0.5
            logging.info('Min/max cover freqs not provided, using '
                         '{} and {}, est. from SFTs'.format(
                             self.minCoverFreq, self.maxCoverFreq))

568
        self.FstatInput = lalpulsar.CreateFstatInput(SFTCatalog,
Gregory Ashton's avatar
Gregory Ashton committed
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
                                                     self.minCoverFreq,
                                                     self.maxCoverFreq,
                                                     dFreq,
                                                     ephems,
                                                     FstatOAs
                                                     )

        logging.info('Initialising PulsarDoplerParams')
        PulsarDopplerParams = lalpulsar.PulsarDopplerParams()
        PulsarDopplerParams.refTime = self.tref
        PulsarDopplerParams.Alpha = 1
        PulsarDopplerParams.Delta = 1
        PulsarDopplerParams.fkdot = np.array([0, 0, 0, 0, 0, 0, 0])
        self.PulsarDopplerParams = PulsarDopplerParams

        logging.info('Initialising FstatResults')
        self.FstatResults = lalpulsar.FstatResults()

        if self.BSGL:
            if len(self.detector_names) < 2:
589
                raise ValueError("Can't use BSGL with single detectors data")
Gregory Ashton's avatar
Gregory Ashton committed
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
            else:
                logging.info('Initialising BSGL')

            # Tuning parameters - to be reviewed
            numDetectors = 2
            if hasattr(self, 'nsegs'):
                p_val_threshold = 1e-6
                Fstar0s = np.linspace(0, 1000, 10000)
                p_vals = scipy.special.gammaincc(2*self.nsegs, Fstar0s)
                Fstar0 = Fstar0s[np.argmin(np.abs(p_vals - p_val_threshold))]
                if Fstar0 == Fstar0s[-1]:
                    raise ValueError('Max Fstar0 exceeded')
            else:
                Fstar0 = 15.
            logging.info('Using Fstar0 of {:1.2f}'.format(Fstar0))
            oLGX = np.zeros(10)
            oLGX[:numDetectors] = 1./numDetectors
            self.BSGLSetup = lalpulsar.CreateBSGLSetup(numDetectors,
                                                       Fstar0,
                                                       oLGX,
                                                       True,
                                                       1)
            self.twoFX = np.zeros(10)
            self.whatToCompute = (self.whatToCompute +
                                  lalpulsar.FSTATQ_2F_PER_DET)

David Keitel's avatar
David Keitel committed
616
        if self.transientWindowType:
Gregory Ashton's avatar
Gregory Ashton committed
617
618
            logging.info('Initialising transient parameters')
            self.windowRange = lalpulsar.transientWindowRange_t()
David Keitel's avatar
David Keitel committed
619
620
621
622
623
624
            transientWindowTypes = {'none': lalpulsar.TRANSIENT_NONE,
                                    'rect': lalpulsar.TRANSIENT_RECTANGULAR,
                                    'exp':  lalpulsar.TRANSIENT_EXPONENTIAL}
            if self.transientWindowType in transientWindowTypes:
                self.windowRange.type = transientWindowTypes[self.transientWindowType]
            else:
Gregory Ashton's avatar
Gregory Ashton committed
625
626
627
628
                raise ValueError(
                    'Unknown window-type ({}) passed as input, [{}] allows.'
                    .format(self.transientWindowType,
                            ', '.join(transientWindowTypes)))
David Keitel's avatar
David Keitel committed
629

630
            # default spacing
David Keitel's avatar
David Keitel committed
631
            self.Tsft = int(1.0/SFTCatalog.data[0].header.deltaF)
632
633
634
            self.windowRange.dt0 = self.Tsft
            self.windowRange.dtau = self.Tsft

David Keitel's avatar
David Keitel committed
635
636
            # special treatment of window_type = none
            # ==> replace by rectangular window spanning all the data
637
638
            if self.windowRange.type == lalpulsar.TRANSIENT_NONE:
                self.windowRange.t0 = int(self.minStartTime)
Gregory Ashton's avatar
Gregory Ashton committed
639
                self.windowRange.t0Band = 0
640
                self.windowRange.tau = int(self.maxStartTime-self.minStartTime)
David Keitel's avatar
David Keitel committed
641
                self.windowRange.tauBand = 0
Gregory Ashton's avatar
Gregory Ashton committed
642
            else:  # user-set bands and spacings
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
                if self.t0Band is None:
                    self.windowRange.t0Band = 0
                else:
                    if not isinstance(self.t0Band, int):
                        logging.warn('Casting non-integer t0Band={} to int...'
                                     .format(self.t0Band))
                        self.t0Band = int(self.t0Band)
                    self.windowRange.t0Band = self.t0Band
                    if self.dt0:
                        self.windowRange.dt0 = self.dt0
                if self.tauBand is None:
                    self.windowRange.tauBand = 0
                else:
                    if not isinstance(self.tauBand, int):
                        logging.warn('Casting non-integer tauBand={} to int...'
                                     .format(self.tauBand))
                        self.tauBand = int(self.tauBand)
                    self.windowRange.tauBand = self.tauBand
                    if self.dtau:
                        self.windowRange.dtau = self.dtau
Gregory Ashton's avatar
Gregory Ashton committed
663

David Keitel's avatar
David Keitel committed
664
            logging.info('Initialising transient FstatMap features...')
Gregory Ashton's avatar
Gregory Ashton committed
665
666
667
            self.tCWFstatMapFeatures, self.gpu_context = (
                tcw.init_transient_fstat_map_features(
                    self.tCWFstatMapVersion == 'pycuda', self.cudaDeviceName))
668

669
670
671
    def get_fullycoherent_twoF(self, tstart, tend, F0, F1, F2, Alpha, Delta,
                               asini=None, period=None, ecc=None, tp=None,
                               argp=None):
Gregory Ashton's avatar
Gregory Ashton committed
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
        """ Returns twoF or ln(BSGL) fully-coherently at a single point """
        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
                               1,
                               self.whatToCompute
                               )

David Keitel's avatar
David Keitel committed
690
        if not self.transientWindowType:
Gregory Ashton's avatar
Gregory Ashton committed
691
692
693
694
695
696
697
698
699
700
701
            if self.BSGL is False:
                return self.FstatResults.twoF[0]

            twoF = np.float(self.FstatResults.twoF[0])
            self.twoFX[0] = self.FstatResults.twoFPerDet(0)
            self.twoFX[1] = self.FstatResults.twoFPerDet(1)
            log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
                                               self.BSGLSetup)
            return log10_BSGL/np.log10(np.exp(1))

        self.windowRange.t0 = int(tstart)  # TYPE UINT4
David Keitel's avatar
David Keitel committed
702
703
704
705
706
        if self.windowRange.tauBand == 0:
            # true single-template search also in transient params:
            # actual (t0,tau) window was set with tstart, tend before
            self.windowRange.tau = int(tend - tstart)  # TYPE UINT4
        else:
Gregory Ashton's avatar
Gregory Ashton committed
707
708
            # grid search: start at minimum tau required for nondegenerate
            # F-stat computation
David Keitel's avatar
David Keitel committed
709
            self.windowRange.tau = int(2*self.Tsft)
Gregory Ashton's avatar
Gregory Ashton committed
710

Gregory Ashton's avatar
Gregory Ashton committed
711
712
713
        self.FstatMap = tcw.call_compute_transient_fstat_map(
            self.tCWFstatMapVersion, self.tCWFstatMapFeatures,
            self.FstatResults.multiFatoms[0], self.windowRange)
714
715
716
717
718
        if self.tCWFstatMapVersion == 'lal':
            F_mn = self.FstatMap.F_mn.data
        else:
            F_mn = self.FstatMap.F_mn

719
        twoF = 2*np.max(F_mn)
Gregory Ashton's avatar
Gregory Ashton committed
720
        if self.BSGL is False:
721
722
723
724
            if np.isnan(twoF):
                return 0
            else:
                return twoF
Gregory Ashton's avatar
Gregory Ashton committed
725
726
727
728
729
730
731
732
733
734

        FstatResults_single = copy.copy(self.FstatResults)
        FstatResults_single.lenth = 1
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
        FS0 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
        FS1 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)

735
736
737
738
739
        # for now, use the Doppler parameter with
        # multi-detector F maximised over t0,tau
        # to return BSGL
        # FIXME: should we instead compute BSGL over the whole F_mn
        # and return the maximum of that?
740
        idx_maxTwoF = np.argmax(F_mn)
741
742
743

        self.twoFX[0] = 2*FS0.F_mn.data[idx_maxTwoF]
        self.twoFX[1] = 2*FS1.F_mn.data[idx_maxTwoF]
Gregory Ashton's avatar
Gregory Ashton committed
744
        log10_BSGL = lalpulsar.ComputeBSGL(
745
                twoF, self.twoFX, self.BSGLSetup)
Gregory Ashton's avatar
Gregory Ashton committed
746
747
748
749
750
751

        return log10_BSGL/np.log10(np.exp(1))

    def calculate_twoF_cumulative(self, F0, F1, F2, Alpha, Delta, asini=None,
                                  period=None, ecc=None, tp=None, argp=None,
                                  tstart=None, tend=None, npoints=1000,
752
753
                                  ):
        """ Calculate the cumulative twoF along the obseration span
754
755
756

        Parameters
        ----------
757
758
        F0, F1, F2, Alpha, Delta: float
            Parameters at which to compute the cumulative twoF
759
760
        asini, period, ecc, tp, argp: float, optional
            Binary parameters at which to compute the cumulative 2F
761
762
763
764
765
766
        tstart, tend: int
            GPS times to restrict the range of data used - automatically
            truncated to the span of data available
        npoints: int
            Number of points to compute twoF along the span

767
768
769
        Notes
        -----
        The minimum cumulatibe twoF is hard-coded to be computed over
770
771
772
773
774
775
        the first 6 hours from either the first timestampe in the data (if
        tstart is smaller than it) or tstart.

        """
        SFTminStartTime = self.SFT_timestamps[0]
        SFTmaxStartTime = self.SFT_timestamps[-1]
Gregory Ashton's avatar
Gregory Ashton committed
776
        tstart = np.max([SFTminStartTime, tstart])
777
778
779
        min_tau = np.max([SFTminStartTime - tstart, 0]) + 3600*6
        max_tau = SFTmaxStartTime - tstart
        taus = np.linspace(min_tau, max_tau, npoints)
Gregory Ashton's avatar
Gregory Ashton committed
780
        twoFs = []
David Keitel's avatar
David Keitel committed
781
782
783
        if not self.transientWindowType:
            # still call the transient-Fstat-map function, but using the full range
            self.transientWindowType = 'none'
Gregory Ashton's avatar
Gregory Ashton committed
784
785
            self.init_computefstatistic_single_point()
        for tau in taus:
786
            detstat = self.get_fullycoherent_twoF(
Gregory Ashton's avatar
Gregory Ashton committed
787
788
                tstart=tstart, tend=tstart+tau, F0=F0, F1=F1, F2=F2,
                Alpha=Alpha, Delta=Delta, asini=asini, period=period, ecc=ecc,
789
790
                tp=tp, argp=argp)
            twoFs.append(detstat)
Gregory Ashton's avatar
Gregory Ashton committed
791
792
793

        return taus, np.array(twoFs)

794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
    def _calculate_predict_fstat_cumulative(self, N, label=None, outdir=None,
                                            IFO=None, pfs_input=None):
        """ Calculates the predicted 2F and standard deviation cumulatively

        Parameters
        ----------
        N : int
            Number of timesteps to use between minStartTime and maxStartTime.
        label, outdir : str, optional
            The label and directory to read in the .loudest file from
        IFO : str
        pfs_input : dict, optional
            Input kwargs to predict_fstat (alternative to giving label and
            outdir).

        Returns
        -------
        times, pfs, pfs_sigma : ndarray, size (N,)

        """
Gregory Ashton's avatar
Gregory Ashton committed
814
815
816
817
818

        if pfs_input is None:
            if os.path.isfile('{}/{}.loudest'.format(outdir, label)) is False:
                raise ValueError(
                    'Need a loudest file to add the predicted Fstat')
819
            loudest = read_par(label=label, outdir=outdir, suffix='loudest')
Gregory Ashton's avatar
Gregory Ashton committed
820
821
            pfs_input = {key: loudest[key] for key in
                         ['h0', 'cosi', 'psi', 'Alpha', 'Delta', 'Freq']}
822
823
824
        times = np.linspace(self.minStartTime, self.maxStartTime, N+1)[1:]
        times = np.insert(times, 0, self.minStartTime + 86400/2.)
        out = [predict_fstat(minStartTime=self.minStartTime, maxStartTime=t,
825
                             sftfilepattern=self.sftfilepattern, IFO=IFO,
826
827
828
829
                             **pfs_input) for t in times]
        pfs, pfs_sigma = np.array(out).T
        return times, pfs, pfs_sigma

830
831
    def plot_twoF_cumulative(self, label, outdir, add_pfs=False, N=15,
                             injectSources=None, ax=None, c='k', savefig=True,
832
                             title=None, plt_label=None, **kwargs):
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
        """ Plot the twoF value cumulatively

        Parameters
        ----------
        label, outdir : str
        add_pfs : bool
            If true, plot the predicted 2F and standard deviation
        N : int
            Number of points to use
        injectSources : dict
            See `ComputeFstat`
        ax : matplotlib.axes._subplots_AxesSubplot, optional
            Axis to add the plot to.
        c : str
            Colour
        savefig : bool
            If true, save the figure in outdir
850
851
        title, plt_label: str
            Figure title and label
852
853
854
855
856
857
858
859
860

        Returns
        -------
        tauS, tauF : ndarray shape (N,)
            If savefig, the times and twoF (cumulative) values
        ax : matplotlib.axes._subplots_AxesSubplot, optional
            If savefig is False

        """
Gregory Ashton's avatar
Gregory Ashton committed
861
862
        if ax is None:
            fig, ax = plt.subplots()
Gregory Ashton's avatar
Gregory Ashton committed
863
864
865
866
867
868
869
        if injectSources:
            pfs_input = dict(
                h0=injectSources['h0'], cosi=injectSources['cosi'],
                psi=injectSources['psi'], Alpha=injectSources['Alpha'],
                Delta=injectSources['Delta'], Freq=injectSources['fkdot'][0])
        else:
            pfs_input = None
870
871

        taus, twoFs = self.calculate_twoF_cumulative(**kwargs)
872
        ax.plot(taus/86400., twoFs, label=plt_label, color=c)
873
        if len(self.detector_names) > 1:
874
875
            detector_names = self.detector_names
            detectors = self.detectors
876
877
878
879
            for d in self.detector_names:
                self.detectors = d
                self.init_computefstatistic_single_point()
                taus, twoFs = self.calculate_twoF_cumulative(**kwargs)
880
881
882
883
884
885
                ax.plot(taus/86400., twoFs, label='{}'.format(d),
                        color=detector_colors[d.lower()])
            self.detectors = detectors
            self.detector_names = detector_names

        if add_pfs:
886
887
            times, pfs, pfs_sigma = self._calculate_predict_fstat_cumulative(
                N=N, label=label, outdir=outdir, pfs_input=pfs_input)
888
889
            ax.fill_between(
                (times-self.minStartTime)/86400., pfs-pfs_sigma, pfs+pfs_sigma,
Gregory Ashton's avatar
Gregory Ashton committed
890
                color=c,
891
892
                label=(r'Predicted $\langle 2\mathcal{F} '
                       r'\rangle\pm $ 1-$\sigma$ band'),
893
894
895
                zorder=-10, alpha=0.2)
            if len(self.detector_names) > 1:
                for d in self.detector_names:
896
897
898
899
                    out = self._calculate_predict_fstat_cumulative(
                        N=N, label=label, outdir=outdir, IFO=d.upper(),
                        pfs_input=pfs_input)
                    times, pfs, pfs_sigma = out
900
901
902
903
904
905
906
907
                    ax.fill_between(
                        (times-self.minStartTime)/86400., pfs-pfs_sigma,
                        pfs+pfs_sigma, color=detector_colors[d.lower()],
                        alpha=0.5,
                        label=(
                            'Predicted $2\mathcal{{F}}$ 1-$\sigma$ band ({})'
                            .format(d.upper())),
                        zorder=-10)
908

Gregory Ashton's avatar
Gregory Ashton committed
909
910
911
912
913
914
915
        ax.set_xlabel(r'Days from $t_{{\rm start}}={:.0f}$'.format(
            kwargs['tstart']))
        if self.BSGL:
            ax.set_ylabel(r'$\log_{10}(\mathrm{BSGL})_{\rm cumulative}$')
        else:
            ax.set_ylabel(r'$\widetilde{2\mathcal{F}}_{\rm cumulative}$')
        ax.set_xlim(0, taus[-1]/86400)
916
917
        if plt_label:
            ax.legend(frameon=False, loc=2, fontsize=6)
Gregory Ashton's avatar
Gregory Ashton committed
918
919
920
921
922
923
924
925
926
        if title:
            ax.set_title(title)
        if savefig:
            plt.tight_layout()
            plt.savefig('{}/{}_twoFcumulative.png'.format(outdir, label))
            return taus, twoFs
        else:
            return ax

927
928
929
930
931
932
933
934
935
936
937
938
    def write_atoms_to_file(self, fnamebase=''):
        multiFatoms = getattr(self.FstatResults, 'multiFatoms', None)
        if multiFatoms and multiFatoms[0]:
            dopplerName = lalpulsar.PulsarDopplerParams2String ( self.PulsarDopplerParams )
            #fnameAtoms = os.path.join(self.outdir,'Fstatatoms_%s.dat' % dopplerName)
            fnameAtoms = fnamebase + '_Fstatatoms_%s.dat' % dopplerName
            fo = lal.FileOpen(fnameAtoms, 'w')
            lalpulsar.write_MultiFstatAtoms_to_fp ( fo, multiFatoms[0] )
            del fo # instead of lal.FileClose() which is not SWIG-exported
        else:
            raise RuntimeError('Cannot print atoms vector to file: no FstatResults.multiFatoms, or it is None!')

Gregory Ashton's avatar
Gregory Ashton committed
939

940
941
942
943
944
945
946
947
948
    def __del__(self):
        """
        In pyCuda case without autoinit,
        we need to make sure the context is removed at the end
        """
        if hasattr(self,'gpu_context') and self.gpu_context:
            self.gpu_context.detach()


949
class SemiCoherentSearch(ComputeFstat):
Gregory Ashton's avatar
Gregory Ashton committed
950
951
952
    """ A semi-coherent search """

    @helper_functions.initializer
953
    def __init__(self, label, outdir, tref, nsegs=None, sftfilepattern=None,
Gregory Ashton's avatar
Gregory Ashton committed
954
955
                 binary=False, BSGL=False, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
956
957
                 detectors=None, injectSources=None, assumeSqrtSX=None,
                 SSBprec=None):
Gregory Ashton's avatar
Gregory Ashton committed
958
959
960
961
962
963
964
965
966
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, and start and end of the data.
        nsegs: int
            The (fixed) number of segments
967
968
969
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
970
971
972
973
974

        For all other parameters, see pyfstat.ComputeFStat.
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
975
        self.set_ephemeris_files()
David Keitel's avatar
David Keitel committed
976
977
978
        self.transientWindowType = 'rect'
        self.t0Band  = None
        self.tauBand = None
979
        self.tCWFstatMapVersion = 'lal'
980
        self.cudaDeviceName = None
Gregory Ashton's avatar
Gregory Ashton committed
981
982
983
984
985
986
987
        self.init_computefstatistic_single_point()
        self.init_semicoherent_parameters()

    def init_semicoherent_parameters(self):
        logging.info(('Initialising semicoherent parameters from {} to {} in'
                      ' {} segments').format(
            self.minStartTime, self.maxStartTime, self.nsegs))
David Keitel's avatar
David Keitel committed
988
        self.transientWindowType = 'rect'
Gregory Ashton's avatar
Gregory Ashton committed
989
990
991
        self.whatToCompute = lalpulsar.FSTATQ_2F+lalpulsar.FSTATQ_ATOMS_PER_DET
        self.tboundaries = np.linspace(self.minStartTime, self.maxStartTime,
                                       self.nsegs+1)
992
        self.Tcoh = self.tboundaries[1] - self.tboundaries[0]
Gregory Ashton's avatar
Gregory Ashton committed
993

994
995
996
997
998
999
1000
1001
1002
        if hasattr(self, 'SFT_timestamps'):
            if self.tboundaries[0] < self.SFT_timestamps[0]:
                logging.debug(
                    'Semi-coherent start time {} before first SFT timestamp {}'
                    .format(self.tboundaries[0], self.SFT_timestamps[0]))
            if self.tboundaries[-1] > self.SFT_timestamps[-1]:
                logging.debug(
                    'Semi-coherent end time {} after last SFT timestamp {}'
                    .format(self.tboundaries[-1], self.SFT_timestamps[-1]))
Gregory Ashton's avatar
Gregory Ashton committed
1003

1004
    def get_semicoherent_twoF(
1005
1006
1007
1008
1009
            self, F0, F1, F2, Alpha, Delta, asini=None,
            period=None, ecc=None, tp=None, argp=None,
            record_segments=False):
        """ Returns twoF or ln(BSGL) semi-coherently at a single point """

Gregory Ashton's avatar
Gregory Ashton committed
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
                               1,
                               self.whatToCompute
                               )

David Keitel's avatar
David Keitel committed
1027
        #if not self.transientWindowType:
1028
1029
1030
1031
1032
1033
1034
1035
        #    if self.BSGL is False:
        #        return self.FstatResults.twoF[0]
        #    twoF = np.float(self.FstatResults.twoF[0])
        #    self.twoFX[0] = self.FstatResults.twoFPerDet(0)
        #    self.twoFX[1] = self.FstatResults.twoFPerDet(1)
        #    log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
        #                                       self.BSGLSetup)
        #    return log10_BSGL/np.log10(np.exp(1))
Gregory Ashton's avatar
Gregory Ashton committed
1036
1037

        detStat = 0
1038
1039
        if record_segments:
            self.detStat_per_segment = []
Gregory Ashton's avatar
Gregory Ashton committed
1040

1041
1042
1043
        self.windowRange.tau = int(self.Tcoh)  # TYPE UINT4
        for tstart in self.tboundaries[:-1]:
            d_detStat = self._get_per_segment_det_stat(tstart)
1044
1045
1046
            detStat += d_detStat
            if record_segments:
                self.detStat_per_segment.append(d_detStat)
Gregory Ashton's avatar
Gregory Ashton committed
1047
1048
1049

        return detStat

1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
    def _get_per_segment_det_stat(self, tstart):
        self.windowRange.t0 = int(tstart)  # TYPE UINT4

        FS = lalpulsar.ComputeTransientFstatMap(
            self.FstatResults.multiFatoms[0], self.windowRange, False)

        if self.BSGL is False:
            d_detStat = 2*FS.F_mn.data[0][0]
        else:
            FstatResults_single = copy.copy(self.FstatResults)
            FstatResults_single.lenth = 1
            FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
            FS0 = lalpulsar.ComputeTransientFstatMap(
                FstatResults_single.multiFatoms[0], self.windowRange, False)
            FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
            FS1 = lalpulsar.ComputeTransientFstatMap(
                FstatResults_single.multiFatoms[0], self.windowRange, False)

            self.twoFX[0] = 2*FS0.F_mn.data[0][0]
            self.twoFX[1] = 2*FS1.F_mn.data[0][0]
            log10_BSGL = lalpulsar.ComputeBSGL(
                    2*FS.F_mn.data[0][0], self.twoFX, self.BSGLSetup)
            d_detStat = log10_BSGL/np.log10(np.exp(1))
        if np.isnan(d_detStat):
            logging.debug('NaNs in semi-coherent twoF treated as zero')
            d_detStat = 0

        return d_detStat

Gregory Ashton's avatar
Gregory Ashton committed
1079

1080
class SemiCoherentGlitchSearch(ComputeFstat):
Gregory Ashton's avatar
Gregory Ashton committed
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
    """ A semi-coherent glitch search

    This implements a basic `semi-coherent glitch F-stat in which the data
    is divided into segments either side of the proposed glitches and the
    fully-coherent F-stat in each segment is summed to give the semi-coherent
    F-stat
    """

    @helper_functions.initializer
    def __init__(self, label, outdir, tref, minStartTime, maxStartTime,
1091
                 nglitch=1, sftfilepattern=None, theta0_idx=0, BSGL=False,
1092
                 minCoverFreq=None, maxCoverFreq=None, assumeSqrtSX=None,
1093
                 detectors=None, SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, and start and end of the data.
        nglitch: int
            The (fixed) number of glitches; this can zero, but occasionally
            this causes issue (in which case just use ComputeFstat).
1104
1105
1106
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
1107
1108
1109
1110
1111
1112
1113
1114
1115
        theta0_idx, int
            Index (zero-based) of which segment the theta refers to - uyseful
            if providing a tight prior on theta to allow the signal to jump
            too theta (and not just from)

        For all other parameters, see pyfstat.ComputeFStat.
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
1116
        self.set_ephemeris_files()
David Keitel's avatar
David Keitel committed
1117
1118
1119
        self.transientWindowType = 'rect'
        self.t0Band  = None
        self.tauBand = None
1120
        self.tCWFstatMapVersion = 'lal'
1121
        self.cudaDeviceName = None
David Keitel's avatar
David Keitel committed
1122
        self.binary  = False
Gregory Ashton's avatar
Gregory Ashton committed
1123
1124
        self.init_computefstatistic_single_point()

1125
    def get_semicoherent_nglitch_twoF(self, F0, F1, F2, Alpha, Delta, *args):
Gregory Ashton's avatar
Gregory Ashton committed
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
        """ Returns the semi-coherent glitch summed twoF """

        args = list(args)
        tboundaries = ([self.minStartTime] + args[-self.nglitch:]
                       + [self.maxStartTime])
        delta_F0s = args[-3*self.nglitch:-2*self.nglitch]
        delta_F1s = args[-2*self.nglitch:-self.nglitch]
        delta_F2 = np.zeros(len(delta_F0s))
        delta_phi = np.zeros(len(delta_F0s))
        theta = [0, F0, F1, F2]
        delta_thetas = np.atleast_2d(
                np.array([delta_phi, delta_F0s, delta_F1s, delta_F2]).T)

1139
        thetas = self._calculate_thetas(theta, delta_thetas, tboundaries,
1140
                                        theta0_idx=self.theta0_idx)
Gregory Ashton's avatar
Gregory Ashton committed
1141
1142
1143
1144

        twoFSum = 0
        for i, theta_i_at_tref in enumerate(thetas):
            ts, te = tboundaries[i], tboundaries[i+1]
1145
            if te - ts > 1800:
1146
1147
1148
1149
                twoFVal = self.get_fullycoherent_twoF(
                    ts, te, theta_i_at_tref[1], theta_i_at_tref[2],
                    theta_i_at_tref[3], Alpha, Delta)
                twoFSum += twoFVal
Gregory Ashton's avatar
Gregory Ashton committed
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

        if np.isfinite(twoFSum):
            return twoFSum
        else:
            return -np.inf

    def compute_glitch_fstat_single(self, F0, F1, F2, Alpha, Delta, delta_F0,
                                    delta_F1, tglitch):
        """ Returns the semi-coherent glitch summed twoF for nglitch=1

        Note: OBSOLETE, used only for testing
        """

        theta = [F0, F1, F2]
        delta_theta = [delta_F0, delta_F1, 0]
        tref = self.tref

1167
        theta_at_glitch = self._shift_coefficients(theta, tglitch - tref)
Gregory Ashton's avatar
Gregory Ashton committed
1168
        theta_post_glitch_at_glitch = theta_at_glitch + delta_theta
1169
        theta_post_glitch = self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
1170
1171
            theta_post_glitch_at_glitch, tref - tglitch)

1172
        twoFsegA = self.get_fullycoherent_twoF(
Gregory Ashton's avatar
Gregory Ashton committed
1173
1174
1175
1176
1177
1178
            self.minStartTime, tglitch, theta[0], theta[1], theta[2], Alpha,
            Delta)

        if tglitch == self.maxStartTime:
            return twoFsegA

1179
        twoFsegB = self.get_fullycoherent_twoF(
Gregory Ashton's avatar
Gregory Ashton committed
1180
1181
1182
1183
1184
            tglitch, self.maxStartTime, theta_post_glitch[0],
            theta_post_glitch[1], theta_post_glitch[2], Alpha,
            Delta)

        return twoFsegA + twoFsegB