grid_based_searches.py 42.8 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" Searches using grid-based methods """
2
from __future__ import division, absolute_import, print_function
Gregory Ashton's avatar
Gregory Ashton committed
3
4
5
6
7

import os
import logging
import itertools
from collections import OrderedDict
Gregory Ashton's avatar
Gregory Ashton committed
8
9
10
import datetime
import getpass
import socket
Gregory Ashton's avatar
Gregory Ashton committed
11
12
13
14

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
15
from scipy.misc import logsumexp
Gregory Ashton's avatar
Gregory Ashton committed
16

17
18
19
import pyfstat.helper_functions as helper_functions
from pyfstat.core import (BaseSearchClass, ComputeFstat,
                          SemiCoherentGlitchSearch, SemiCoherentSearch, tqdm,
20
                          args, read_par)
Gregory Ashton's avatar
Gregory Ashton committed
21
22
import lalpulsar
import lal
Gregory Ashton's avatar
Gregory Ashton committed
23
24
25
26


class GridSearch(BaseSearchClass):
    """ Gridded search using ComputeFstat """
Gregory Ashton's avatar
Gregory Ashton committed
27
28
29
    tex_labels = {'F0': '$f$', 'F1': '$\dot{f}$', 'F2': '$\ddot{f}$',
                  'Alpha': r'$\alpha$', 'Delta': r'$\delta$'}
    tex_labels0 = {'F0': '$-f_0$', 'F1': '$-\dot{f}_0$', 'F2': '$-\ddot{f}_0$',
30
                   'Alpha': r'$-\alpha_0$', 'Delta': r'$-\delta_0$'}
Gregory Ashton's avatar
Gregory Ashton committed
31

Gregory Ashton's avatar
Gregory Ashton committed
32
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
33
34
35
36
    def __init__(self, label, outdir, sftfilepattern, F0s, F1s, F2s, Alphas,
                 Deltas, tref=None, minStartTime=None, maxStartTime=None,
                 nsegs=1, BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, SSBprec=None, injectSources=None,
37
                 input_arrays=False, assumeSqrtSX=None):
Gregory Ashton's avatar
Gregory Ashton committed
38
39
40
41
42
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
43
44
45
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
46
47
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
48
49
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
Gregory Ashton's avatar
Gregory Ashton committed
50
51
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
52
53
        input_arrays: bool
            if true, use the F0s, F1s, etc as is
Gregory Ashton's avatar
Gregory Ashton committed
54
55
56
57
58
59

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
60
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
61
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
62
63
64
        self.search_keys = [x+'s' for x in self.keys[2:]]
        for k in self.search_keys:
            setattr(self, k, np.atleast_1d(getattr(self, k)))
Gregory Ashton's avatar
Gregory Ashton committed
65
66
67

    def inititate_search_object(self):
        logging.info('Setting up search object')
68
69
        if self.nsegs == 1:
            self.search = ComputeFstat(
70
                tref=self.tref, sftfilepattern=self.sftfilepattern,
71
                minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
David Keitel's avatar
David Keitel committed
72
                detectors=self.detectors,
73
                minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
74
                BSGL=self.BSGL, SSBprec=self.SSBprec,
75
76
                injectSources=self.injectSources,
                assumeSqrtSX=self.assumeSqrtSX)
77
            self.search.get_det_stat = self.search.get_fullycoherent_twoF
78
79
80
        else:
            self.search = SemiCoherentSearch(
                label=self.label, outdir=self.outdir, tref=self.tref,
81
                nsegs=self.nsegs, sftfilepattern=self.sftfilepattern,
82
83
84
                BSGL=self.BSGL, minStartTime=self.minStartTime,
                maxStartTime=self.maxStartTime, minCoverFreq=self.minCoverFreq,
                maxCoverFreq=self.maxCoverFreq, detectors=self.detectors,
Gregory Ashton's avatar
Gregory Ashton committed
85
                injectSources=self.injectSources)
86
87

            def cut_out_tstart_tend(*vals):
88
                return self.search.get_semicoherent_twoF(*vals[2:])
89
            self.search.get_det_stat = cut_out_tstart_tend
Gregory Ashton's avatar
Gregory Ashton committed
90
91
92
93

    def get_array_from_tuple(self, x):
        if len(x) == 1:
            return np.array(x)
94
        elif len(x) == 3 and self.input_arrays is False:
Gregory Ashton's avatar
Gregory Ashton committed
95
            return np.arange(x[0], x[1], x[2])
Gregory Ashton's avatar
Gregory Ashton committed
96
        else:
Gregory Ashton's avatar
Gregory Ashton committed
97
98
            logging.info('Using tuple as is')
            return np.array(x)
Gregory Ashton's avatar
Gregory Ashton committed
99
100

    def get_input_data_array(self):
Gregory Ashton's avatar
Gregory Ashton committed
101
        logging.info("Generating input data array")
102
        coord_arrays = []
Gregory Ashton's avatar
Gregory Ashton committed
103
104
        for tup in ([self.minStartTime], [self.maxStartTime], self.F0s,
                    self.F1s, self.F2s, self.Alphas, self.Deltas):
105
            coord_arrays.append(self.get_array_from_tuple(tup))
Gregory Ashton's avatar
Gregory Ashton committed
106

107
108
109
110
        input_data = []
        for vals in itertools.product(*coord_arrays):
                input_data.append(vals)
        self.input_data = np.array(input_data)
111
        self.coord_arrays = coord_arrays
Gregory Ashton's avatar
Gregory Ashton committed
112
113
114
115
116

    def check_old_data_is_okay_to_use(self):
        if args.clean:
            return False
        if os.path.isfile(self.out_file) is False:
117
118
119
            logging.info(
                'No old data found in "{:s}", continuing with grid search'
                .format(self.out_file))
Gregory Ashton's avatar
Gregory Ashton committed
120
            return False
121
        if self.sftfilepattern is not None:
122
123
124
125
126
127
            oldest_sft = min([os.path.getmtime(f) for f in
                              self._get_list_of_matching_sfts()])
            if os.path.getmtime(self.out_file) < oldest_sft:
                logging.info('Search output data outdates sft files,'
                             + ' continuing with grid search')
                return False
128

129
        data = np.atleast_2d(np.genfromtxt(self.out_file, delimiter=' '))
130
131
        if np.all(data[:, 0: len(self.coord_arrays)] ==
                  self.input_data[:, 0:len(self.coord_arrays)]):
132
            logging.info(
133
134
                'Old data found in "{:s}" with matching input, no search '
                'performed'.format(self.out_file))
135
136
137
            return data
        else:
            logging.info(
138
139
                'Old data found in "{:s}", input differs, continuing with '
                'grid search'.format(self.out_file))
140
            return False
141
        return False
Gregory Ashton's avatar
Gregory Ashton committed
142
143
144
145
146
147
148
149

    def run(self, return_data=False):
        self.get_input_data_array()
        old_data = self.check_old_data_is_okay_to_use()
        if old_data is not False:
            self.data = old_data
            return

Gregory Ashton's avatar
Gregory Ashton committed
150
151
        if hasattr(self, 'search') is False:
            self.inititate_search_object()
Gregory Ashton's avatar
Gregory Ashton committed
152
153

        data = []
154
        for vals in tqdm(self.input_data):
155
            detstat = self.search.get_det_stat(*vals)
156
157
            thisCand = list(vals) + [detstat]
            data.append(thisCand)
Gregory Ashton's avatar
Gregory Ashton committed
158

159
        data = np.array(data, dtype=np.float)
Gregory Ashton's avatar
Gregory Ashton committed
160
161
162
        if return_data:
            return data
        else:
163
            self.save_array_to_disk(data)
Gregory Ashton's avatar
Gregory Ashton committed
164
165
            self.data = data

166
167
168
169
170
171
172
173
174
175
176
177
    def get_header(self):
        header = ';'.join(['date:{}'.format(str(datetime.datetime.now())),
                           'user:{}'.format(getpass.getuser()),
                           'hostname:{}'.format(socket.gethostname())])
        header += '\n' + ' '.join(self.keys)
        return header

    def save_array_to_disk(self, data):
        logging.info('Saving data to {}'.format(self.out_file))
        header = self.get_header()
        np.savetxt(self.out_file, data, delimiter=' ', header=header)

Gregory Ashton's avatar
Gregory Ashton committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    def convert_F0_to_mismatch(self, F0, F0hat, Tseg):
        DeltaF0 = F0[1] - F0[0]
        m_spacing = (np.pi*Tseg*DeltaF0)**2 / 12.
        N = len(F0)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def convert_F1_to_mismatch(self, F1, F1hat, Tseg):
        DeltaF1 = F1[1] - F1[0]
        m_spacing = (np.pi*Tseg**2*DeltaF1)**2 / 720.
        N = len(F1)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def add_mismatch_to_ax(self, ax, x, y, xkey, ykey, xhat, yhat, Tseg):
        axX = ax.twiny()
        axX.zorder = -10
        axY = ax.twinx()
        axY.zorder = -10

        if xkey == 'F0':
            m = self.convert_F0_to_mismatch(x, xhat, Tseg)
            axX.set_xlim(m[0], m[-1])

        if ykey == 'F1':
            m = self.convert_F1_to_mismatch(y, yhat, Tseg)
            axY.set_ylim(m[0], m[-1])

Gregory Ashton's avatar
Gregory Ashton committed
204
205
    def plot_1D(self, xkey, ax=None, x0=None, xrescale=1, savefig=True,
                xlabel=None, ylabel='$\widetilde{2\mathcal{F}}$'):
Gregory Ashton's avatar
Gregory Ashton committed
206
207
        if ax is None:
            fig, ax = plt.subplots()
Gregory Ashton's avatar
Gregory Ashton committed
208
209
        xidx = self.keys.index(xkey)
        x = np.unique(self.data[:, xidx])
210
211
        if x0:
            x = x - x0
Gregory Ashton's avatar
Gregory Ashton committed
212
        x = x * xrescale
Gregory Ashton's avatar
Gregory Ashton committed
213
        z = self.data[:, -1]
Gregory Ashton's avatar
Gregory Ashton committed
214
215
216
217
218
        ax.plot(x, z)
        if x0:
            ax.set_xlabel(self.tex_labels[xkey]+self.tex_labels0[xkey])
        else:
            ax.set_xlabel(self.tex_labels[xkey])
Gregory Ashton's avatar
Gregory Ashton committed
219
220
221
222
223

        if xlabel:
            ax.set_xlabel(xlabel)

        ax.set_ylabel(ylabel)
Gregory Ashton's avatar
Gregory Ashton committed
224
        if savefig:
Gregory Ashton's avatar
Gregory Ashton committed
225
            fig.tight_layout()
Gregory Ashton's avatar
Gregory Ashton committed
226
227
            fig.savefig('{}/{}_1D.png'.format(self.outdir, self.label))
        else:
228
            return ax
Gregory Ashton's avatar
Gregory Ashton committed
229
230
231

    def plot_2D(self, xkey, ykey, ax=None, save=True, vmin=None, vmax=None,
                add_mismatch=None, xN=None, yN=None, flat_keys=[],
Gregory Ashton's avatar
Gregory Ashton committed
232
                rel_flat_idxs=[], flatten_method=np.max, title=None,
Gregory Ashton's avatar
Gregory Ashton committed
233
234
                predicted_twoF=None, cm=None, cbarkwargs={}, x0=None, y0=None,
                colorbar=False):
Gregory Ashton's avatar
Gregory Ashton committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        """ Plots a 2D grid of 2F values

        Parameters
        ----------
        add_mismatch: tuple (xhat, yhat, Tseg)
            If not None, add a secondary axis with the metric mismatch from the
            point xhat, yhat with duration Tseg
        flatten_method: np.max
            Function to use in flattening the flat_keys
        """
        if ax is None:
            fig, ax = plt.subplots()
        xidx = self.keys.index(xkey)
        yidx = self.keys.index(ykey)
        flat_idxs = [self.keys.index(k) for k in flat_keys]

        x = np.unique(self.data[:, xidx])
252
253
        if x0:
            x = x-x0
Gregory Ashton's avatar
Gregory Ashton committed
254
        y = np.unique(self.data[:, yidx])
255
256
        if y0:
            y = y-y0
Gregory Ashton's avatar
Gregory Ashton committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        flat_vals = [np.unique(self.data[:, j]) for j in flat_idxs]
        z = self.data[:, -1]

        Y, X = np.meshgrid(y, x)
        shape = [len(x), len(y)] + [len(v) for v in flat_vals]
        Z = z.reshape(shape)

        if len(rel_flat_idxs) > 0:
            Z = flatten_method(Z, axis=tuple(rel_flat_idxs))

        if predicted_twoF:
            Z = (predicted_twoF - Z) / (predicted_twoF + 4)
            if cm is None:
                cm = plt.cm.viridis_r
        else:
            if cm is None:
                cm = plt.cm.viridis

        pax = ax.pcolormesh(X, Y, Z, cmap=cm, vmin=vmin, vmax=vmax)
Gregory Ashton's avatar
Gregory Ashton committed
276
277
278
        if colorbar:
            cb = plt.colorbar(pax, ax=ax, **cbarkwargs)
            cb.set_label('$2\mathcal{F}$')
Gregory Ashton's avatar
Gregory Ashton committed
279
280
281
282
283
284

        if add_mismatch:
            self.add_mismatch_to_ax(ax, x, y, xkey, ykey, *add_mismatch)

        ax.set_xlim(x[0], x[-1])
        ax.set_ylim(y[0], y[-1])
285
        if x0:
Gregory Ashton's avatar
Gregory Ashton committed
286
            ax.set_xlabel(self.tex_labels[xkey]+self.tex_labels0[xkey])
287
        else:
Gregory Ashton's avatar
Gregory Ashton committed
288
            ax.set_xlabel(self.tex_labels[xkey])
289
        if y0:
Gregory Ashton's avatar
Gregory Ashton committed
290
            ax.set_ylabel(self.tex_labels[ykey]+self.tex_labels0[ykey])
291
        else:
Gregory Ashton's avatar
Gregory Ashton committed
292
            ax.set_ylabel(self.tex_labels[ykey])
Gregory Ashton's avatar
Gregory Ashton committed
293

Gregory Ashton's avatar
Gregory Ashton committed
294
295
296
        if title:
            ax.set_title(title)

Gregory Ashton's avatar
Gregory Ashton committed
297
298
299
300
301
302
303
304
305
306
307
308
        if xN:
            ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(xN))
        if yN:
            ax.yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(yN))

        if save:
            fig.tight_layout()
            fig.savefig('{}/{}_2D.png'.format(self.outdir, self.label))
        else:
            return ax

    def get_max_twoF(self):
Gregory Ashton's avatar
Gregory Ashton committed
309
310
311
312
313
314
315
316
317
318
        """ Get the maximum twoF over the grid

        Returns
        -------
        d: dict
            Dictionary containing, 'minStartTime', 'maxStartTime', 'F0', 'F1',
            'F2', 'Alpha', 'Delta' and 'twoF' of maximum

        """

Gregory Ashton's avatar
Gregory Ashton committed
319
320
321
322
323
324
325
326
327
328
329
330
331
        twoF = self.data[:, -1]
        idx = np.argmax(twoF)
        v = self.data[idx, :]
        d = OrderedDict(minStartTime=v[0], maxStartTime=v[1], F0=v[2], F1=v[3],
                        F2=v[4], Alpha=v[5], Delta=v[6], twoF=v[7])
        return d

    def print_max_twoF(self):
        d = self.get_max_twoF()
        print('Max twoF values for {}:'.format(self.label))
        for k, v in d.iteritems():
            print('  {}={}'.format(k, v))

332
    def set_out_file(self, extra_label=None):
333
334
335
336
        if self.detectors:
            dets = self.detectors.replace(',', '')
        else:
            dets = 'NA'
337
338
339
340
341
342
343
344
        if extra_label:
            self.out_file = '{}/{}_{}_{}_{}.txt'.format(
                self.outdir, self.label, dets, type(self).__name__,
                extra_label)
        else:
            self.out_file = '{}/{}_{}_{}.txt'.format(
                self.outdir, self.label, dets, type(self).__name__)

Gregory Ashton's avatar
Gregory Ashton committed
345

346
347
348
349
350
351
352
353
354
355
class TransientGridSearch(GridSearch):
    """ Gridded transient-continous search using ComputeFstat """

    @helper_functions.initializer
    def __init__(self, label, outdir, sftfilepattern, F0s, F1s, F2s, Alphas,
                 Deltas, tref=None, minStartTime=None, maxStartTime=None,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, SSBprec=None, injectSources=None,
                 input_arrays=False, assumeSqrtSX=None,
                 transientWindowType=None, t0Band=None, tauBand=None,
356
                 dt0=None, dtau=None,
357
                 outputTransientFstatMap=False,
358
                 outputAtoms=False,
359
                 tCWFstatMapVersion='lal', cudaDeviceName=None):
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
        input_arrays: bool
            if true, use the F0s, F1s, etc as is
        transientWindowType: str
            If 'rect' or 'exp', compute atoms so that a transient (t0,tau) map
            can later be computed.  ('none' instead of None explicitly calls
            the transient-window function, but with the full range, for
            debugging). Currently only supported for nsegs=1.
        t0Band, tauBand: int
            if >0, search t0 in (minStartTime,minStartTime+t0Band)
                   and tau in (2*Tsft,2*Tsft+tauBand).
            if =0, only compute CW Fstat with t0=minStartTime,
                   tau=maxStartTime-minStartTime.
386
387
388
        dt0, dtau: int
            grid resolutions in transient start-time and duration,
            both default to Tsft
389
390
391
        outputTransientFstatMap: bool
            if true, write output files for (t0,tau) Fstat maps
            (one file for each doppler grid point!)
392
393
394
        tCWFstatMapVersion: str
            Choose between standard 'lal' implementation,
            'pycuda' for gpu, and some others for devel/debug.
395
396
        cudaDeviceName: str
            GPU name to be matched against drv.Device output.
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        self.nsegs = 1
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.set_out_file()
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
        self.search_keys = [x+'s' for x in self.keys[2:]]
        for k in self.search_keys:
            setattr(self, k, np.atleast_1d(getattr(self, k)))

    def inititate_search_object(self):
        logging.info('Setting up search object')
        self.search = ComputeFstat(
            tref=self.tref, sftfilepattern=self.sftfilepattern,
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            detectors=self.detectors,
            transientWindowType=self.transientWindowType,
            t0Band=self.t0Band, tauBand=self.tauBand,
418
            dt0=self.dt0, dtau=self.dtau,
419
420
421
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
            BSGL=self.BSGL, SSBprec=self.SSBprec,
            injectSources=self.injectSources,
422
            assumeSqrtSX=self.assumeSqrtSX,
423
424
            tCWFstatMapVersion=self.tCWFstatMapVersion,
            cudaDeviceName=self.cudaDeviceName)
425
426
427
428
429
430
431
432
433
434
435
436
437
        self.search.get_det_stat = self.search.get_fullycoherent_twoF

    def run(self, return_data=False):
        self.get_input_data_array()
        old_data = self.check_old_data_is_okay_to_use()
        if old_data is not False:
            self.data = old_data
            return

        if hasattr(self, 'search') is False:
            self.inititate_search_object()

        data = []
David Keitel's avatar
David Keitel committed
438
439
440
441
        if self.outputTransientFstatMap:
            tCWfilebase = os.path.splitext(self.out_file)[0] + '_tCW_'
            logging.info('Will save per-Doppler Fstatmap' \
                         ' results to {}*.dat'.format(tCWfilebase))
442
443
444
445
446
447
        for vals in tqdm(self.input_data):
            detstat = self.search.get_det_stat(*vals)
            windowRange = getattr(self.search, 'windowRange', None)
            FstatMap = getattr(self.search, 'FstatMap', None)
            thisCand = list(vals) + [detstat]
            if getattr(self, 'transientWindowType', None):
448
449
450
451
                if self.tCWFstatMapVersion == 'lal':
                    F_mn = FstatMap.F_mn.data
                else:
                    F_mn = FstatMap.F_mn
452
                if self.outputTransientFstatMap:
David Keitel's avatar
David Keitel committed
453
454
455
456
457
                    # per-Doppler filename convention:
                    # freq alpha delta f1dot f2dot
                    tCWfile = ( tCWfilebase
                                + '%.16f_%.16f_%.16f_%.16g_%.16g.dat' %
                                (vals[2],vals[5],vals[6],vals[3],vals[4]) )
458
459
                    if self.tCWFstatMapVersion == 'lal':
                        fo = lal.FileOpen(tCWfile, 'w')
David Keitel's avatar
David Keitel committed
460
461
462
463
464
                        lalpulsar.write_transientFstatMap_to_fp (
                            fo, FstatMap, windowRange, None )
                        # instead of lal.FileClose(),
                        # which is not SWIG-exported:
                        del fo
465
                    else:
466
                        self.write_F_mn ( tCWfile, F_mn, windowRange)
467
                maxidx = np.unravel_index(F_mn.argmax(), F_mn.shape)
468
469
470
                thisCand += [windowRange.t0+maxidx[0]*windowRange.dt0,
                             windowRange.tau+maxidx[1]*windowRange.dtau]
            data.append(thisCand)
471
472
            if self.outputAtoms:
                self.search.write_atoms_to_file(os.path.splitext(self.out_file)[0])
473
474
475
476
477
478
479
480

        data = np.array(data, dtype=np.float)
        if return_data:
            return data
        else:
            self.save_array_to_disk(data)
            self.data = data

481
482
483
484
485
486
487
488
489
    def write_F_mn (self, tCWfile, F_mn, windowRange ):
        with open(tCWfile, 'w') as tfp:
            tfp.write('# t0 [s]     tau [s]     2F\n')
            for m, F_m in enumerate(F_mn):
                this_t0 = windowRange.t0 + m * windowRange.dt0
                for n, this_F in enumerate(F_m):
                    this_tau = windowRange.tau + n * windowRange.dtau;
                    tfp.write('  %10d %10d %- 11.8g\n' % (this_t0, this_tau, 2.0*this_F))

490
491
492
493
    def __del__(self):
        if hasattr(self,'search'):
            self.search.__del__()

494

Gregory Ashton's avatar
Gregory Ashton committed
495
496
497
class SliceGridSearch(GridSearch):
    """ Slice gridded search using ComputeFstat """
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
498
499
500
501
502
    def __init__(self, label, outdir, sftfilepattern, F0s, F1s, F2s, Alphas,
                 Deltas, tref=None, minStartTime=None, maxStartTime=None,
                 nsegs=1, BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, SSBprec=None, injectSources=None,
                 input_arrays=False, assumeSqrtSX=None, Lambda0=None):
Gregory Ashton's avatar
Gregory Ashton committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
        input_arrays: bool
            if true, use the F0s, F1s, etc as is

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.set_out_file()
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
527
528
529
        self.ndim = 0
        self.thetas = [F0s, F1s, Alphas, Deltas]
        self.ndim = 4
Gregory Ashton's avatar
Gregory Ashton committed
530

Gregory Ashton's avatar
Gregory Ashton committed
531
        self.search_keys = ['F0', 'F1', 'Alpha', 'Delta']
532
533
        if self.Lambda0 is None:
            raise ValueError('Lambda0 undefined')
Gregory Ashton's avatar
Gregory Ashton committed
534
        if len(self.Lambda0) != len(self.search_keys):
Gregory Ashton's avatar
Gregory Ashton committed
535
            raise ValueError(
Gregory Ashton's avatar
Gregory Ashton committed
536
                'Lambda0 must be of length {}'.format(len(self.search_keys)))
537
        self.Lambda0 = np.array(Lambda0)
Gregory Ashton's avatar
Gregory Ashton committed
538

539
540
    def run(self, factor=2, max_n_ticks=4, whspace=0.07, save=True,
            **kwargs):
Gregory Ashton's avatar
Gregory Ashton committed
541
        lbdim = 0.5 * factor   # size of left/bottom margin
542
        trdim = 0.4 * factor   # size of top/right margin
Gregory Ashton's avatar
Gregory Ashton committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
        plotdim = factor * self.ndim + factor * (self.ndim - 1.) * whspace
        dim = lbdim + plotdim + trdim

        fig, axes = plt.subplots(self.ndim, self.ndim, figsize=(dim, dim))

        # Format the figure.
        lb = lbdim / dim
        tr = (lbdim + plotdim) / dim
        fig.subplots_adjust(left=lb, bottom=lb, right=tr, top=tr,
                            wspace=whspace, hspace=whspace)

        search = GridSearch(
            self.label, self.outdir, self.sftfilepattern,
            F0s=self.Lambda0[0], F1s=self.Lambda0[1], F2s=self.F2s[0],
557
558
            Alphas=self.Lambda0[2], Deltas=self.Lambda0[3], tref=self.tref,
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime)
Gregory Ashton's avatar
Gregory Ashton committed
559
560
561

        for i, ikey in enumerate(self.search_keys):
            setattr(search, ikey+'s', self.thetas[i])
562
563
            search.label = '{}_{}'.format(self.label, ikey)
            search.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
564
            search.run()
565
566
567
            axes[i, i] = search.plot_1D(ikey, ax=axes[i, i], savefig=False,
                                        x0=self.Lambda0[i]
                                        )
Gregory Ashton's avatar
Gregory Ashton committed
568
            setattr(search, ikey+'s', [self.Lambda0[i]])
569
570
571
            axes[i, i].yaxis.tick_right()
            axes[i, i].yaxis.set_label_position("right")
            axes[i, i].set_xlabel('')
Gregory Ashton's avatar
Gregory Ashton committed
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

            for j, jkey in enumerate(self.search_keys):
                ax = axes[i, j]

                if j > i:
                    ax.set_frame_on(False)
                    ax.set_xticks([])
                    ax.set_yticks([])
                    continue

                ax.get_shared_x_axes().join(axes[self.ndim-1, j], ax)
                if i < self.ndim - 1:
                    ax.set_xticklabels([])
                if j < i:
                    ax.get_shared_y_axes().join(axes[i, i-1], ax)
                    if j > 0:
                        ax.set_yticklabels([])
                if j == i:
                    continue

                ax.xaxis.set_major_locator(
                    matplotlib.ticker.MaxNLocator(max_n_ticks, prune="upper"))
                ax.yaxis.set_major_locator(
                    matplotlib.ticker.MaxNLocator(max_n_ticks, prune="upper"))

                setattr(search, ikey+'s', self.thetas[i])
                setattr(search, jkey+'s', self.thetas[j])
599
600
                search.label = '{}_{}'.format(self.label, ikey+jkey)
                search.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
601
                search.run()
602
                ax = search.plot_2D(jkey, ikey, ax=ax, save=False,
603
604
                                    y0=self.Lambda0[i], x0=self.Lambda0[j],
                                    **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
605
606
607
                setattr(search, ikey+'s', [self.Lambda0[i]])
                setattr(search, jkey+'s', [self.Lambda0[j]])

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
                ax.grid(lw=0.2, ls='--', zorder=10)
                ax.set_xlabel('')
                ax.set_ylabel('')

        for i, ikey in enumerate(self.search_keys):
            axes[-1, i].set_xlabel(
                self.tex_labels[ikey]+self.tex_labels0[ikey])
            if i > 0:
                axes[i, 0].set_ylabel(
                    self.tex_labels[ikey]+self.tex_labels0[ikey])
            axes[i, i].set_ylabel("$2\mathcal{F}$")

        if save:
            fig.savefig(
                '{}/{}_slice_projection.png'.format(self.outdir, self.label))
        else:
            return fig, axes
Gregory Ashton's avatar
Gregory Ashton committed
625
626


Gregory Ashton's avatar
Gregory Ashton committed
627
class GridUniformPriorSearch():
628
    @helper_functions.initializer
629
    def __init__(self, theta_prior, NF0, NF1, label, outdir, sftfilepattern,
630
                 tref, minStartTime, maxStartTime, minCoverFreq=None,
631
                 maxCoverFreq=None, BSGL=False, detectors=None, nsegs=1,
632
                 SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
633
634
635
636
        dF0 = (theta_prior['F0']['upper'] - theta_prior['F0']['lower'])/NF0
        dF1 = (theta_prior['F1']['upper'] - theta_prior['F1']['lower'])/NF1
        F0s = [theta_prior['F0']['lower'], theta_prior['F0']['upper'], dF0]
        F1s = [theta_prior['F1']['lower'], theta_prior['F1']['upper'], dF1]
637
        self.search = GridSearch(
638
            label, outdir, sftfilepattern, F0s=F0s, F1s=F1s, tref=tref,
Gregory Ashton's avatar
Gregory Ashton committed
639
640
            Alphas=[theta_prior['Alpha']], Deltas=[theta_prior['Delta']],
            minStartTime=minStartTime, maxStartTime=maxStartTime, BSGL=BSGL,
641
            detectors=detectors, minCoverFreq=minCoverFreq,
642
643
            injectSources=injectSources, maxCoverFreq=maxCoverFreq,
            nsegs=nsegs, SSBprec=SSBprec)
644

645
    def run(self):
646
        self.search.run()
647
648

    def get_2D_plot(self, **kwargs):
649
        return self.search.plot_2D('F0', 'F1', **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
650
651


Gregory Ashton's avatar
Gregory Ashton committed
652
653
654
class GridGlitchSearch(GridSearch):
    """ Grid search using the SemiCoherentGlitchSearch """
    @helper_functions.initializer
655
    def __init__(self, label, outdir='data', sftfilepattern=None, F0s=[0],
Gregory Ashton's avatar
Gregory Ashton committed
656
657
658
                 F1s=[0], F2s=[0], delta_F0s=[0], delta_F1s=[0], tglitchs=None,
                 Alphas=[0], Deltas=[0], tref=None, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
659
                 detectors=None):
Gregory Ashton's avatar
Gregory Ashton committed
660
        """
661
662
        Run a single-glitch grid search

Gregory Ashton's avatar
Gregory Ashton committed
663
664
665
666
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
667
668
669
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
670
671
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
672
673
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Note that
            tglitchs is referenced to zero at minStartTime.
Gregory Ashton's avatar
Gregory Ashton committed
674
675
676
677
678
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see pyfstat.ComputeFStat.
        """
679
680

        self.BSGL = False
681
        self.input_arrays = False
Gregory Ashton's avatar
Gregory Ashton committed
682
        if tglitchs is None:
683
            raise ValueError('You must specify `tglitchs`')
Gregory Ashton's avatar
Gregory Ashton committed
684
685

        self.search = SemiCoherentGlitchSearch(
686
            label=label, outdir=outdir, sftfilepattern=self.sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
687
688
689
            tref=tref, minStartTime=minStartTime, maxStartTime=maxStartTime,
            minCoverFreq=minCoverFreq, maxCoverFreq=maxCoverFreq,
            BSGL=self.BSGL)
690
        self.search.get_det_stat = self.search.get_semicoherent_nglitch_twoF
Gregory Ashton's avatar
Gregory Ashton committed
691
692
693

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
694
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
695
696
697
698
        self.keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta', 'delta_F0',
                     'delta_F1', 'tglitch']

    def get_input_data_array(self):
699
700
        logging.info("Generating input data array")
        coord_arrays = []
Gregory Ashton's avatar
Gregory Ashton committed
701
702
        for tup in (self.F0s, self.F1s, self.F2s, self.Alphas, self.Deltas,
                    self.delta_F0s, self.delta_F1s, self.tglitchs):
703
            coord_arrays.append(self.get_array_from_tuple(tup))
Gregory Ashton's avatar
Gregory Ashton committed
704
705

        input_data = []
706
        for vals in itertools.product(*coord_arrays):
Gregory Ashton's avatar
Gregory Ashton committed
707
708
            input_data.append(vals)
        self.input_data = np.array(input_data)
709
        self.coord_arrays = coord_arrays
Gregory Ashton's avatar
Gregory Ashton committed
710
711


Gregory Ashton's avatar
Gregory Ashton committed
712
713
714
class FrequencySlidingWindow(GridSearch):
    """ A sliding-window search over the Frequency """
    @helper_functions.initializer
715
    def __init__(self, label, outdir, sftfilepattern, F0s, F1, F2,
Gregory Ashton's avatar
Gregory Ashton committed
716
717
718
                 Alpha, Delta, tref, minStartTime=None,
                 maxStartTime=None, window_size=10*86400, window_delta=86400,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
719
                 detectors=None, SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
720
721
722
723
724
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
725
726
727
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
728
729
730
731
732
733
734
735
736
737
        F0s: array
            Frequency range
        F1, F2, Alpha, Delta: float
            Fixed values to compute twoF(F) over
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

738
739
740
741
        self.transientWindowType = None
        self.t0Band = None
        self.tauBand = None

Gregory Ashton's avatar
Gregory Ashton committed
742
743
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
744
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
745
746
747
748
749
        self.nsegs = 1
        self.F1s = [F1]
        self.F2s = [F2]
        self.Alphas = [Alpha]
        self.Deltas = [Delta]
750
        self.input_arrays = False
751
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
752

Gregory Ashton's avatar
Gregory Ashton committed
753
754
755
    def inititate_search_object(self):
        logging.info('Setting up search object')
        self.search = ComputeFstat(
756
            tref=self.tref, sftfilepattern=self.sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
757
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
David Keitel's avatar
David Keitel committed
758
            detectors=self.detectors, transientWindowType=self.transientWindowType,
Gregory Ashton's avatar
Gregory Ashton committed
759
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
Gregory Ashton's avatar
Gregory Ashton committed
760
761
            BSGL=self.BSGL, SSBprec=self.SSBprec,
            injectSources=self.injectSources)
Gregory Ashton's avatar
Gregory Ashton committed
762
        self.search.get_det_stat = (
763
            self.search.get_fullycoherent_twoF)
Gregory Ashton's avatar
Gregory Ashton committed
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786

    def get_input_data_array(self):
        arrays = []
        tstarts = [self.minStartTime]
        while tstarts[-1] + self.window_size < self.maxStartTime:
            tstarts.append(tstarts[-1]+self.window_delta)
        arrays = [tstarts]
        for tup in (self.F0s, self.F1s, self.F2s,
                    self.Alphas, self.Deltas):
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        input_data = np.array(input_data)
        input_data = np.insert(
            input_data, 1, input_data[:, 0] + self.window_size, axis=1)

        self.arrays = arrays
        self.input_data = np.array(input_data)

    def plot_sliding_window(self, F0=None, ax=None, savefig=True,
787
                            colorbar=True, timestamps=False):
Gregory Ashton's avatar
Gregory Ashton committed
788
789
790
791
792
793
794
795
796
797
798
        data = self.data
        if ax is None:
            ax = plt.subplot()
        tstarts = np.unique(data[:, 0])
        tends = np.unique(data[:, 1])
        frequencies = np.unique(data[:, 2])
        twoF = data[:, -1]
        tmids = (tstarts + tends) / 2.0
        dts = (tmids - self.minStartTime) / 86400.
        if F0:
            frequencies = frequencies - F0
799
            ax.set_ylabel('Frequency - $f_0$ [Hz] \n $f_0={:0.2f}$'.format(F0))
Gregory Ashton's avatar
Gregory Ashton committed
800
801
802
803
804
805
806
807
808
        else:
            ax.set_ylabel('Frequency [Hz]')
        twoF = twoF.reshape((len(tmids), len(frequencies)))
        Y, X = np.meshgrid(frequencies, dts)
        pax = ax.pcolormesh(X, Y, twoF)
        if colorbar:
            cb = plt.colorbar(pax, ax=ax)
            cb.set_label('$2\mathcal{F}$')
        ax.set_xlabel(
809
810
            r'Mid-point (days after $t_\mathrm{{start}}$={})'.format(
                self.minStartTime))
Gregory Ashton's avatar
Gregory Ashton committed
811
812
        ax.set_title(
            'Sliding window length = {} days in increments of {} days'
813
814
815
816
817
818
819
            .format(self.window_size/86400, self.window_delta/86400),
            )
        if timestamps:
            axT = ax.twiny()
            axT.set_xlim(tmids[0]*1e-9, tmids[-1]*1e-9)
            axT.set_xlabel('Mid-point timestamp [GPS $10^{9}$ s]')
            ax.set_title(ax.get_title(), y=1.18)
Gregory Ashton's avatar
Gregory Ashton committed
820
821
822
823
824
825
        if savefig:
            plt.tight_layout()
            plt.savefig(
                '{}/{}_sliding_window.png'.format(self.outdir, self.label))
        else:
            return ax
826
827


Gregory Ashton's avatar
Gregory Ashton committed
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
class EarthTest(GridSearch):
    """ """
    tex_labels = {'deltaRadius': '$\Delta R$ [m]',
                  'phaseOffset': 'phase-offset [rad]',
                  'deltaPspin': '$\Delta P_\mathrm{spin}$ [s]'}

    @helper_functions.initializer
    def __init__(self, label, outdir, sftfilepattern, deltaRadius,
                 phaseOffset, deltaPspin, F0, F1, F2, Alpha,
                 Delta, tref=None, minStartTime=None, maxStartTime=None,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, injectSources=None,
                 assumeSqrtSX=None):
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
        F0, F1, F2, Alpha, Delta: float
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """
855
856
857
858
        self.transientWindowType = None
        self.t0Band = None
        self.tauBand = None

859
860
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
Gregory Ashton's avatar
Gregory Ashton committed
861
862
863
864
865
866
        self.nsegs = 1
        self.F0s = [F0]
        self.F1s = [F1]
        self.F2s = [F2]
        self.Alphas = [Alpha]
        self.Deltas = [Delta]
867
        self.duration = maxStartTime - minStartTime
Gregory Ashton's avatar
Gregory Ashton committed
868
869
        self.deltaRadius = np.atleast_1d(deltaRadius)
        self.phaseOffset = np.atleast_1d(phaseOffset)
870
        self.phaseOffset = self.phaseOffset + 1e-12  # Hack to stop cached data being used
Gregory Ashton's avatar
Gregory Ashton committed
871
872
873
874
875
        self.deltaPspin = np.atleast_1d(deltaPspin)
        self.set_out_file()
        self.SSBprec = lalpulsar.SSBPREC_RELATIVISTIC
        self.keys = ['deltaRadius', 'phaseOffset', 'deltaPspin']

876
877
878
879
880
881
882
883
        self.prior_widths = [
            np.max(self.deltaRadius)-np.min(self.deltaRadius),
            np.max(self.phaseOffset)-np.min(self.phaseOffset),
            np.max(self.deltaPspin)-np.min(self.deltaPspin)]

        if hasattr(self, 'search') is False:
            self.inititate_search_object()

Gregory Ashton's avatar
Gregory Ashton committed
884
885
886
887
888
889
890
891
892
    def get_input_data_array(self):
        logging.info("Generating input data array")
        coord_arrays = [self.deltaRadius, self.phaseOffset, self.deltaPspin]
        input_data = []
        for vals in itertools.product(*coord_arrays):
                input_data.append(vals)
        self.input_data = np.array(input_data)
        self.coord_arrays = coord_arrays

893
894
895
896
897
898
899
900
901
902
903
904
    def run_special(self):
        vals = [self.minStartTime, self.maxStartTime, self.F0, self.F1,
                self.F2, self.Alpha, self.Delta]
        self.special_data = {'zero': [0, 0, 0]}
        for key, (dR, dphi, dP) in self.special_data.iteritems():
            rescaleRadius = (1 + dR / lal.REARTH_SI)
            rescalePeriod = (1 + dP / lal.DAYSID_SI)
            lalpulsar.BarycenterModifyEarthRotation(
                rescaleRadius, dphi, rescalePeriod, self.tref)
            FS = self.search.get_det_stat(*vals)
            self.special_data[key] = list([dR, dphi, dP]) + [FS]

Gregory Ashton's avatar
Gregory Ashton committed
905
    def run(self):
906
        self.run_special()
Gregory Ashton's avatar
Gregory Ashton committed
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
        self.get_input_data_array()
        old_data = self.check_old_data_is_okay_to_use()
        if old_data is not False:
            self.data = old_data
            return

        data = []
        vals = [self.minStartTime, self.maxStartTime, self.F0, self.F1,
                self.F2, self.Alpha, self.Delta]
        for (dR, dphi, dP) in tqdm(self.input_data):
            rescaleRadius = (1 + dR / lal.REARTH_SI)
            rescalePeriod = (1 + dP / lal.DAYSID_SI)
            lalpulsar.BarycenterModifyEarthRotation(
                rescaleRadius, dphi, rescalePeriod, self.tref)
            FS = self.search.get_det_stat(*vals)
            data.append(list([dR, dphi, dP]) + [FS])

        data = np.array(data, dtype=np.float)
        logging.info('Saving data to {}'.format(self.out_file))
        np.savetxt(self.out_file, data, delimiter=' ')
        self.data = data

929
930
931
932
    def marginalised_bayes_factor(self, prior_widths=None):
        if prior_widths is None:
            prior_widths = self.prior_widths

933
        ndims = self.data.shape[1] - 1
934
        params = np.array([np.unique(self.data[:, j]) for j in range(ndims)])
935
936
937
938
939
        twoF = self.data[:, -1].reshape(tuple([len(p) for p in params]))
        F = twoF / 2.0
        for i, x in enumerate(params[::-1]):
            if len(x) > 1:
                dx = x[1] - x[0]
940
                F = logsumexp(F, axis=-1)+np.log(dx)-np.log(prior_widths[-1-i])
941
942
            else:
                F = np.squeeze(F, axis=-1)
943
944
945
946
947
948
949
950
951
952
953
        marginalised_F = np.atleast_1d(F)[0]
        F_at_zero = self.special_data['zero'][-1]/2.0

        max_idx = np.argmax(self.data[:, -1])
        max_F = self.data[max_idx, -1]/2.0
        max_F_params = self.data[max_idx, :-1]
        logging.info('F at zero = {:.1f}, marginalised_F = {:.1f},'
                     ' max_F = {:.1f} ({})'.format(
                         F_at_zero, marginalised_F, max_F, max_F_params))
        return F_at_zero - marginalised_F, (F_at_zero - max_F) / F_at_zero

954
955
    def plot_corner(self, prior_widths=None, fig=None, axes=None,
                    projection='log_mean'):
956
957
958
959
960
961
962
963
964
965
966
967
        Bsa, FmaxMismatch = self.marginalised_bayes_factor(prior_widths)

        data = self.data[:, -1].reshape(
            (len(self.deltaRadius), len(self.phaseOffset),
             len(self.deltaPspin)))
        xyz = [self.deltaRadius/lal.REARTH_SI, self.phaseOffset/(np.pi),
               self.deltaPspin/60.]
        labels = [r'$\frac{\Delta R}{R_\mathrm{Earth}}$',
                  r'$\frac{\Delta \phi}{\pi}$',
                  r'$\Delta P_\mathrm{spin}$ [min]',
                  r'$2\mathcal{F}$']

968
969
970
971
972
973
        try:
            from gridcorner import gridcorner
        except ImportError:
            raise ImportError(
                "Python module 'gridcorner' not found, please install from "
                "https://gitlab.aei.uni-hannover.de/GregAshton/gridcorner")
974

975
976
        fig, axes = gridcorner(data, xyz, projection=projection, factor=1.6,
                               labels=labels)
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
        axes[-1][-1].axvline((lal.DAYJUL_SI - lal.DAYSID_SI)/60.0, color='C3')
        plt.suptitle(
            'T={:.1f} days, $f$={:.2f} Hz, $\log\mathcal{{B}}_{{S/A}}$={:.1f},'
            r' $\frac{{\mathcal{{F}}_0-\mathcal{{F}}_\mathrm{{max}}}}'
            r'{{\mathcal{{F}}_0}}={:.1e}$'
            .format(self.duration/86400, self.F0, Bsa, FmaxMismatch), y=0.99,
            size=14)
        fig.savefig('{}/{}_projection_matrix.png'.format(
            self.outdir, self.label))

    def plot(self, key, prior_widths=None):
        Bsa, FmaxMismatch = self.marginalised_bayes_factor(prior_widths)

        rescales_defaults = {'deltaRadius': 1/lal.REARTH_SI,
                             'phaseOffset': 1/np.pi,
                             'deltaPspin': 1}
        labels = {'deltaRadius': r'$\frac{\Delta R}{R_\mathrm{Earth}}$',
                  'phaseOffset': r'$\frac{\Delta \phi}{\pi}$',
                  'deltaPspin': r'$\Delta P_\mathrm{spin}$ [s]'
                  }

        fig, ax = self.plot_1D(key, xrescale=rescales_defaults[key],
                               xlabel=labels[key], savefig=False)
        ax.set_title(
            'T={} days, $f$={} Hz, $\log\mathcal{{B}}_{{S/A}}$={:.1f}'
            .format(self.duration/86400, self.F0, Bsa))
        fig.tight_layout()
        fig.savefig('{}/{}_1D.png'.format(self.outdir, self.label))
1005

Gregory Ashton's avatar
Gregory Ashton committed
1006

1007
1008
1009
class DMoff_NO_SPIN(GridSearch):
    """ DMoff test using SSBPREC_NO_SPIN """
    @helper_functions.initializer
1010
    def __init__(self, par, label, outdir, sftfilepattern, minStartTime=None,
1011
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
1012
                 detectors=None, injectSources=None, assumeSqrtSX=None):
1013
1014
1015
        """
        Parameters
        ----------
1016
1017
1018
        par: dict, str
            Either a par dictionary (containing 'F0', 'F1', 'Alpha', 'Delta'
            and 'tref') or a path to a .par file to read in the F0, F1 etc
1019
1020
        label, outdir: str
            A label and directory to read/write data from/to
1021
1022
1023
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
1024
1025
1026
1027
1028
1029
1030
1031
1032
        minStartTime, maxStartTime: int
            GPS seconds of the start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)

1033
1034
1035
1036
        if type(par) == dict:
            self.par = par
        elif type(par) == str and os.path.isfile(par):
            self.par = read_par(filename=par)
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
        else:
            raise ValueError('The .par file does not exist')

        self.nsegs = 1
        self.BSGL = False

        self.tref = self.par['tref']
        self.F1s = [self.par.get('F1', 0)]
        self.F2s = [self.par.get('F2', 0)]
        self.Alphas = [self.par['Alpha']]
        self.Deltas = [self.par['Delta']]
        self.Re = 6.371e6
        self.c = 2.998e8
1050
        a0 = self.Re/self.c  # *np.cos(self.par['Delta'])
1051
        self.m0 = np.max([4, int(np.ceil(2*np.pi*self.par['F0']*a0))])
1052
1053
        logging.info(
            'Setting up DMoff_NO_SPIN search with m0 = {}'.format(self.m0))
1054
1055
1056
1057
1058
1059
1060
1061
1062

    def get_results(self):
        """ Compute the three summed detection statistics

        Returns
        -------
            m0, twoF_SUM, twoFstar_SUM_SIDEREAL, twoFstar_SUM_TERRESTRIAL

        """
Gregory Ashton's avatar
Gregory Ashton committed
1063
1064
1065
        self.SSBprec = lalpulsar.SSBPREC_RELATIVISTIC
        self.set_out_file('SSBPREC_RELATIVISTIC')
        self.F0s = [self.par['F0']+j/lal.DAYSID_SI for j in range(-4, 5)]
1066
1067
1068
        self.run()
        twoF_SUM = np.sum(self.data[:, -1])

Gregory Ashton's avatar
Gregory Ashton committed
1069
1070
1071
        self.SSBprec = lalpulsar.SSBPREC_NO_SPIN
        self.set_out_file('SSBPREC_NO_SPIN')
        self.F0s = [self.par['F0']+j/lal.DAYSID_SI
1072
1073
1074
1075
                    for j in range(-self.m0, self.m0+1)]
        self.run()
        twoFstar_SUM = np.sum(self.data[:, -1])

Gregory Ashton's avatar
Gregory Ashton committed
1076
1077
        self.set_out_file('SSBPREC_NO_SPIN_TERRESTRIAL')
        self.F0s = [self.par['F0']+j/lal.DAYJUL_SI
1078
1079
1080
1081
1082
                    for j in range(-self.m0, self.m0+1)]
        self.run()
        twoFstar_SUM_terrestrial = np.sum(self.data[:, -1])

        return self.m0, twoF_SUM, twoFstar_SUM, twoFstar_SUM_terrestrial