semi_coherent_glitch_search_using_MCMC.py 1.12 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import pyfstat

F0 = 30.0
F1 = -1e-10
F2 = 0
Alpha = 5e-3
Delta = 6e-2
tref = 362750407.0

tstart = 1000000000
duration = 100*86400
tend = tstart + duration

theta_prior = {'F0': {'type': 'norm', 'loc': F0, 'scale': abs(1e-6*F0)},
               'F1': {'type': 'norm', 'loc': F1, 'scale': abs(1e-6*F1)},
               'F2': F2,
               'Alpha': Alpha,
               'Delta': Delta,
               'delta_F0': {'type': 'halfnorm', 'loc': 0,
                            'scale': 1e-5*F0},
               'delta_F1': 0,
               'tglitch': {'type': 'unif',
                           'lower': tstart+0.1*duration,
                           'upper': tstart+0.9*duration},
               }

27
ntemps = 4
28
log10beta_min = -1
29
30
nwalkers = 100
nsteps = [5000, 1000, 1000]
31
32

mcmc = pyfstat.MCMCGlitchSearch(
33
    'semi_coherent_glitch_search_using_MCMC', 'data',
34
    sftfilepattern='data/*_glitch*sft', theta_prior=theta_prior, tref=tref,
35
36
    tstart=tstart, tend=tend, nsteps=nsteps, nwalkers=nwalkers,
    scatter_val=1e-10, nglitch=1, ntemps=ntemps,
37
    log10beta_min=log10beta_min)
38
39
40
41

mcmc.run()
mcmc.plot_corner(add_prior=True)
mcmc.print_summary()