mcmc_based_searches.py 93.4 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" Searches using MCMC-based methods """
2
from __future__ import division, absolute_import, print_function
Gregory Ashton's avatar
Gregory Ashton committed
3

4
import sys
Gregory Ashton's avatar
Gregory Ashton committed
5
import os
6
import copy
Gregory Ashton's avatar
Gregory Ashton committed
7
import logging
8
from collections import OrderedDict
9
import subprocess
10
11
12
13

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
Gregory Ashton's avatar
Gregory Ashton committed
14
from ptemcee import Sampler as PTSampler
15
16
17
import corner
import dill as pickle

18
import pyfstat.core as core
19
20
from pyfstat.core import tqdm, args, read_par
import pyfstat.optimal_setup_functions as optimal_setup_functions
21
import pyfstat.helper_functions as helper_functions
22
23


24
class MCMCSearch(core.BaseSearchClass):
Gregory Ashton's avatar
Gregory Ashton committed
25
    """MCMC search using ComputeFstat
26
27
28
29
30
31
32
33
34

    Parameters
    ----------
    theta_prior: dict
        Dictionary of priors and fixed values for the search parameters.
        For each parameters (key of the dict), if it is to be held fixed
        the value should be the constant float, if it is be searched, the
        value should be a dictionary of the prior.
    tref, minStartTime, maxStartTime: int
35
36
37
38
39
40
41
        GPS seconds of the reference time, start time and end time. While tref
        is requirede, minStartTime and maxStartTime default to None in which
        case all available data is used.
    label, outdir: str
        A label and output directory (optional, defaults is `'data'`) to
        name files
    sftfilepattern: str, optional
Gregory Ashton's avatar
Gregory Ashton committed
42
43
        Pattern to match SFTs using wildcards (*?) and ranges [0-9];
        mutiple patterns can be given separated by colons.
44
    detectors: str, optional
Gregory Ashton's avatar
Gregory Ashton committed
45
46
        Two character reference to the detectors to use, specify None for no
        contraint and comma separate for multiple references.
47
    nsteps: list (2,), optional
48
49
50
        Number of burn-in and production steps to take, [nburn, nprod]. See
        `pyfstat.MCMCSearch.setup_initialisation()` for details on adding
        initialisation steps.
51
    nwalkers, ntemps: int, optional
52
53
        The number of walkers and temperates to use in the parallel
        tempered PTSampler.
54
    log10beta_min float < 0, optional
55
56
        The  log_10(beta) value, if given the set of betas passed to PTSampler
        are generated from `np.logspace(0, log10beta_min, ntemps)` (given
Gregory Ashton's avatar
Gregory Ashton committed
57
        in descending order to ptemcee).
58
    theta_initial: dict, array, optional
59
60
        A dictionary of distribution about which to distribute the
        initial walkers about
61
    rhohatmax: float, optional
62
63
64
        Upper bound for the SNR scale parameter (required to normalise the
        Bayes factor) - this needs to be carefully set when using the
        evidence.
65
    binary: bool, optional
66
        If true, search over binary parameters
67
    BSGL: bool, optional
Gregory Ashton's avatar
Gregory Ashton committed
68
        If true, use the BSGL statistic
69
    SSBPrec: int, optional
Gregory Ashton's avatar
Gregory Ashton committed
70
        SSBPrec (SSB precision) to use when calling ComputeFstat
71
    minCoverFreq, maxCoverFreq: float, optional
72
73
        Minimum and maximum instantaneous frequency which will be covered
        over the SFT time span as passed to CreateFstatInput
74
    injectSources: dict, optional
Gregory Ashton's avatar
Gregory Ashton committed
75
76
        If given, inject these properties into the SFT files before running
        the search
77
    assumeSqrtSX: float, optional
Gregory Ashton's avatar
Gregory Ashton committed
78
        Don't estimate noise-floors, but assume (stationary) per-IFO sqrt{SX}
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

    Attributes
    ----------
    symbol_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), to Latex math
        symbols for plots
    unit_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), and the
        units (i.e. `Hz`)
    transform_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), where the key is
        itself a dictionary which can item `multiplier`, `subtractor`, or
        `unit` by which to transform by and update the units.

    """
94
95

    symbol_dictionary = dict(
96
        F0='$f$', F1='$\dot{f}$', F2='$\ddot{f}$', Alpha=r'$\alpha$',
97
98
        Delta='$\delta$', asini='asini', period='P', ecc='ecc', tp='tp',
        argp='argp')
99
    unit_dictionary = dict(
100
101
        F0='Hz', F1='Hz/s', F2='Hz/s$^2$', Alpha=r'rad', Delta='rad',
        asini='', period='s', ecc='', tp='', argp='')
102
    transform_dictionary = {}
103

Gregory Ashton's avatar
Gregory Ashton committed
104
    @helper_functions.initializer
105
106
107
    def __init__(self, theta_prior, tref, label, outdir='data',
                 minStartTime=None, maxStartTime=None, sftfilepattern=None,
                 detectors=None, nsteps=[100, 100], nwalkers=100, ntemps=1,
108
                 log10beta_min=-5, theta_initial=None,
109
                 rhohatmax=1000, binary=False, BSGL=False,
Gregory Ashton's avatar
Gregory Ashton committed
110
                 SSBprec=None, minCoverFreq=None, maxCoverFreq=None,
111
                 injectSources=None, assumeSqrtSX=None):
112

Gregory Ashton's avatar
Gregory Ashton committed
113
114
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
115
        self._add_log_file()
116
        logging.info('Set-up MCMC search for model {}'.format(self.label))
117
118
        if sftfilepattern:
            logging.info('Using data {}'.format(self.sftfilepattern))
119
        else:
120
            logging.info('No sftfilepattern given')
121
122
        if injectSources:
            logging.info('Inject sources: {}'.format(injectSources))
123
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
124
        self._unpack_input_theta()
125
        self.ndim = len(self.theta_keys)
126
127
        if self.log10beta_min:
            self.betas = np.logspace(0, self.log10beta_min, self.ntemps)
128
129
        else:
            self.betas = None
130

131
132
133
        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

134
        self._set_likelihoodcoef()
135
        self._log_input()
136
137
138

    def _set_likelihoodcoef(self):
        self.likelihoodcoef = np.log(70./self.rhohatmax**4)
139

140
    def _log_input(self):
141
        logging.info('theta_prior = {}'.format(self.theta_prior))
142
        logging.info('nwalkers={}'.format(self.nwalkers))
143
144
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
145
146
        logging.info('log10beta_min = {}'.format(
            self.log10beta_min))
147

148
    def _initiate_search_object(self):
149
        logging.info('Setting up search object')
150
        self.search = core.ComputeFstat(
151
            tref=self.tref, sftfilepattern=self.sftfilepattern,
152
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
153
            detectors=self.detectors, BSGL=self.BSGL, transient=False,
154
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
155
            binary=self.binary, injectSources=self.injectSources,
156
            assumeSqrtSX=self.assumeSqrtSX, SSBprec=self.SSBprec)
157
158
159
160
        if self.minStartTime is None:
            self.minStartTime = self.search.minStartTime
        if self.maxStartTime is None:
            self.maxStartTime = self.search.maxStartTime
161
162

    def logp(self, theta_vals, theta_prior, theta_keys, search):
163
        H = [self._generic_lnprior(**theta_prior[key])(p) for p, key in
164
165
166
167
168
169
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
170
171
172
        twoF = search.get_fullycoherent_twoF(
            self.minStartTime, self.maxStartTime, *self.fixed_theta)
        return twoF/2.0 + self.likelihoodcoef
173

174
    def _unpack_input_theta(self):
175
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']
176
177
178
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
179
180
        full_theta_keys_copy = copy.copy(full_theta_keys)

181
182
        full_theta_symbols = ['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                              r'$\delta$']
183
184
        if self.binary:
            full_theta_symbols += [
185
                'asini', 'period', 'ecc', 'tp', 'argp']
186

187
188
        self.theta_keys = []
        fixed_theta_dict = {}
189
        for key, val in self.theta_prior.iteritems():
190
191
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
192
                self.theta_keys.append(key)
193
194
195
196
197
198
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
199
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

215
    def _check_initial_points(self, p0):
216
217
218
219
220
221
222
223
224
225
226
227
228
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

229
                p0 = self._generate_new_p0_to_fix_initial_points(
230
231
                    p0, nt, initial_priors)

232
    def _generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
252

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    def setup_initialisation(self, nburn0, scatter_val=1e-10):
        """ Add an initialisation step to the MCMC run

        If called prior to `run()`, adds an intial step in which the MCMC
        simulation is run for `nburn0` steps. After this, the MCMC simulation
        continues in the usual manner (i.e. for nburn and nprod steps), but the
        walkers are reset scattered around the maximum likelihood position
        of the initialisation step.

        Parameters
        ----------
        nburn0: int
            Number of initialisation steps to take
        scatter_val: float
            Relative number to scatter walkers around the maximum likelihood
            position after the initialisation step

        """

        logging.info('Setting up initialisation with nburn0={}, scatter_val={}'
                     .format(nburn0, scatter_val))
        self.nsteps = [nburn0] + self.nsteps
        self.scatter_val = scatter_val

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
#    def setup_burnin_convergence_testing(
#            self, n=10, test_type='autocorr', windowed=False, **kwargs):
#        """ Set up convergence testing during the MCMC simulation
#
#        Parameters
#        ----------
#        n: int
#            Number of steps after which to test convergence
#        test_type: str ['autocorr', 'GR']
#            If 'autocorr' use the exponential autocorrelation time (kwargs
#            passed to `get_autocorr_convergence`). If 'GR' use the Gelman-Rubin
#            statistic (kwargs passed to `get_GR_convergence`)
#        windowed: bool
#            If True, only calculate the convergence test in a window of length
#            `n`
#        **kwargs:
#            Passed to either `_test_autocorr_convergence()` or
#            `_test_GR_convergence()` depending on `test_type`.
#
#        """
#        logging.info('Setting up convergence testing')
#        self.convergence_n = n
#        self.convergence_windowed = windowed
#        self.convergence_test_type = test_type
#        self.convergence_kwargs = kwargs
#        self.convergence_diagnostic = []
#        self.convergence_diagnosticx = []
#        if test_type in ['autocorr']:
#            self._get_convergence_test = self._test_autocorr_convergence
#        elif test_type in ['GR']:
#            self._get_convergence_test = self._test_GR_convergence
#        else:
#            raise ValueError('test_type {} not understood'.format(test_type))
#
#
#    def _test_autocorr_convergence(self, i, sampler, test=True, n_cut=5):
#        try:
#            acors = np.zeros((self.ntemps, self.ndim))
#            for temp in range(self.ntemps):
#                if self.convergence_windowed:
#                    j = i-self.convergence_n
#                else:
#                    j = 0
#                x = np.mean(sampler.chain[temp, :, j:i, :], axis=0)
#                acors[temp, :] = emcee.autocorr.exponential_time(x)
#            c = np.max(acors, axis=0)
#        except emcee.autocorr.AutocorrError:
#            logging.info('Failed to calculate exponential autocorrelation')
#            c = np.zeros(self.ndim) + np.nan
#        except AttributeError:
#            logging.info('Unable to calculate exponential autocorrelation')
#            c = np.zeros(self.ndim) + np.nan
#
#        self.convergence_diagnosticx.append(i - self.convergence_n/2.)
#        self.convergence_diagnostic.append(list(c))
#
#        if test:
#            return i > n_cut * np.max(c)
#
#    def _test_GR_convergence(self, i, sampler, test=True, R=1.1):
#        if self.convergence_windowed:
#            s = sampler.chain[0, :, i-self.convergence_n+1:i+1, :]
#        else:
#            s = sampler.chain[0, :, :i+1, :]
#        N = float(self.convergence_n)
#        M = float(self.nwalkers)
#        W = np.mean(np.var(s, axis=1), axis=0)
#        per_walker_mean = np.mean(s, axis=1)
#        mean = np.mean(per_walker_mean, axis=0)
#        B = N / (M-1.) * np.sum((per_walker_mean-mean)**2, axis=0)
#        Vhat = (N-1)/N * W + (M+1)/(M*N) * B
#        c = np.sqrt(Vhat/W)
#        self.convergence_diagnostic.append(c)
#        self.convergence_diagnosticx.append(i - self.convergence_n/2.)
#
#        if test and np.max(c) < R:
#            return True
#        else:
#            return False
#
#    def _test_convergence(self, i, sampler, **kwargs):
#        if np.mod(i+1, self.convergence_n) == 0:
#            return self._get_convergence_test(i, sampler, **kwargs)
#        else:
#            return False
#
#    def _run_sampler_with_conv_test(self, sampler, p0, nprod=0, nburn=0):
#        logging.info('Running {} burn-in steps with convergence testing'
#                     .format(nburn))
#        iterator = tqdm(sampler.sample(p0, iterations=nburn), total=nburn)
#        for i, output in enumerate(iterator):
#            if self._test_convergence(i, sampler, test=True,
#                                      **self.convergence_kwargs):
#                logging.info(
#                    'Converged at {} before max number {} of steps reached'
#                    .format(i, nburn))
#                self.convergence_idx = i
#                break
#        iterator.close()
#        logging.info('Running {} production steps'.format(nprod))
#        j = nburn
#        iterator = tqdm(sampler.sample(output[0], iterations=nprod),
#                        total=nprod)
#        for result in iterator:
#            self._test_convergence(j, sampler, test=False,
#                                   **self.convergence_kwargs)
#            j += 1
#        return sampler

    def _run_sampler(self, sampler, p0, nprod=0, nburn=0, window=50):
        for result in tqdm(sampler.sample(p0, iterations=nburn+nprod),
                           total=nburn+nprod):
            pass
390

391
392
        self.mean_acceptance_fraction = np.mean(
            sampler.acceptance_fraction, axis=1)
393
        logging.info("Mean acceptance fraction: {}"
394
                     .format(self.mean_acceptance_fraction))
395
        if self.ntemps > 1:
396
            self.tswap_acceptance_fraction = sampler.tswap_acceptance_fraction
397
398
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
Gregory Ashton's avatar
Gregory Ashton committed
399
400
401
        self.autocorr_time = sampler.get_autocorr_time(window=window)
        logging.info("Autocorrelation length: {}".format(
            self.autocorr_time))
402
403
404

        return sampler

405
    def _estimate_run_time(self):
406
407
408
409
410
411
412
413
414
415
416
417
418
419
        """ Print the estimated run time

        Uses timing coefficients based on a Lenovo T460p Intel(R)
        Core(TM) i5-6300HQ CPU @ 2.30GHz.

        """
        # Todo: add option to time on a machine, and move coefficients to
        # ~/.pyfstat.conf
        if (type(self.theta_prior['Alpha']) == dict or
                type(self.theta_prior['Delta']) == dict):
            tau0S = 7.3e-5
            tau0LD = 4.2e-7
        else:
            tau0LD = 6.2e-8
420
421
422
            tau0T = 1.5e-8
            tau0S = 5.0e-5
            tau0C = 5.6e-6
423
        Nsfts = (self.maxStartTime - self.minStartTime) / 1800.
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
        if hasattr(self, 'run_setup'):
            ts = []
            for row in self.run_setup:
                nsteps = row[0]
                nsegs = row[1]
                numb_evals = np.sum(nsteps)*self.nwalkers*self.ntemps
                t = (tau0S + tau0LD*Nsfts) * numb_evals
                if nsegs > 1:
                    t += (tau0C + tau0T*Nsfts)*nsegs*numb_evals
                ts.append(t)
            time = np.sum(ts)
        else:
            numb_evals = np.sum(self.nsteps)*self.nwalkers*self.ntemps
            time = (tau0S + tau0LD*Nsfts) * numb_evals
            if getattr(self, 'nsegs', 1) > 1:
                time += (tau0C + tau0T*Nsfts)*self.nsegs*numb_evals

441
        logging.info('Estimated run-time = {} s = {:1.0f}:{:1.0f} m'.format(
442
            time, *divmod(time, 60)))
443

Gregory Ashton's avatar
Gregory Ashton committed
444
445
    def run(self, proposal_scale_factor=2, create_plots=True, window=50,
            **kwargs):
446
447
448
449
450
451
452
453
454
455
456
        """ Run the MCMC simulatation

        Parameters
        ----------
        proposal_scale_factor: float
            The proposal scale factor used by the sampler, see Goodman & Weare
            (2010). If the acceptance fraction is too low, you can raise it by
            decreasing the a parameter; and if it is too high, you can reduce
            it by increasing the a parameter [Foreman-Mackay (2013)].
        create_plots: bool
            If true, save trace plots of the walkers
Gregory Ashton's avatar
Gregory Ashton committed
457
        window: int
458
459
            The minimum number of autocorrelation times needed to trust the
            result when estimating the autocorrelation time (see
Gregory Ashton's avatar
Gregory Ashton committed
460
            ptemcee.Sampler.get_autocorr_time for further details.
461
462
463
        **kwargs:
            Passed to _plot_walkers to control the figures

464
465
        Returns
        -------
Gregory Ashton's avatar
Gregory Ashton committed
466
467
        sampler: ptemcee.Sampler
            The ptemcee ptsampler object
468

469
        """
470

471
        self.old_data_is_okay_to_use = self._check_old_data_is_okay_to_use()
472
473
474
        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
475
            d = self.get_saved_data_dictionary()
476
477
478
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
479
            self.all_lnlikelihood = d['all_lnlikelihood']
480
481
            return

482
        self._initiate_search_object()
483
        self._estimate_run_time()
484

Gregory Ashton's avatar
Gregory Ashton committed
485
486
487
        sampler = PTSampler(
            ntemps=self.ntemps, nwalkers=self.nwalkers, dim=self.ndim,
            logl=self.logl, logp=self.logp,
488
            logpargs=(self.theta_prior, self.theta_keys, self.search),
489
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
490

491
492
493
        p0 = self._generate_initial_p0()
        p0 = self._apply_corrections_to_p0(p0)
        self._check_initial_points(p0)
494

495
        # Run initialisation steps if required
496
497
498
        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
Gregory Ashton's avatar
Gregory Ashton committed
499
                j, ninit_steps, n))
Gregory Ashton's avatar
Gregory Ashton committed
500
            sampler = self._run_sampler(sampler, p0, nburn=n, window=window)
501
            if create_plots:
502
                fig, axes = self._plot_walkers(sampler,
503
504
                                               symbols=self.theta_symbols,
                                               **kwargs)
505
506
                fig.tight_layout()
                fig.savefig('{}/{}_init_{}_walkers.png'.format(
Gregory Ashton's avatar
Gregory Ashton committed
507
                    self.outdir, self.label, j))
508

509
510
511
            p0 = self._get_new_p0(sampler)
            p0 = self._apply_corrections_to_p0(p0)
            self._check_initial_points(p0)
512
513
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
514
515
516
517
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
518
519
520
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
521
        sampler = self._run_sampler(sampler, p0, nburn=nburn, nprod=nprod)
522
        if create_plots:
523
            fig, axes = self._plot_walkers(sampler, symbols=self.theta_symbols,
524
                                           nprod=nprod, **kwargs)
525
526
            fig.tight_layout()
            fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label),
Gregory Ashton's avatar
Gregory Ashton committed
527
                        )
528
529

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
Gregory Ashton's avatar
Gregory Ashton committed
530
531
532
        lnprobs = sampler.logprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.loglikelihood[0, :, nburn:].reshape((-1))
        all_lnlikelihood = sampler.loglikelihood[:, :, nburn:]
533
534
535
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
536
537
        self.all_lnlikelihood = all_lnlikelihood
        self._save_data(sampler, samples, lnprobs, lnlikes, all_lnlikelihood)
Gregory Ashton's avatar
Gregory Ashton committed
538
        return sampler
539

540
    def _get_rescale_multiplier_for_key(self, key):
541
        """ Get the rescale multiplier from the transform_dictionary
542
543
544
545
546

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
547
        if key not in self.transform_dictionary:
548
549
            return 1

550
551
        if 'multiplier' in self.transform_dictionary[key]:
            val = self.transform_dictionary[key]['multiplier']
552
553
554
            if type(val) == str:
                if hasattr(self, val):
                    multiplier = getattr(
555
                        self, self.transform_dictionary[key]['multiplier'])
556
557
558
559
560
561
562
563
564
                else:
                    raise ValueError(
                        "multiplier {} not a class attribute".format(val))
            else:
                multiplier = val
        else:
            multiplier = 1
        return multiplier

565
    def _get_rescale_subtractor_for_key(self, key):
566
        """ Get the rescale subtractor from the transform_dictionary
567
568
569
570
571

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
572
        if key not in self.transform_dictionary:
573
574
            return 0

575
576
        if 'subtractor' in self.transform_dictionary[key]:
            val = self.transform_dictionary[key]['subtractor']
577
578
579
            if type(val) == str:
                if hasattr(self, val):
                    subtractor = getattr(
580
                        self, self.transform_dictionary[key]['subtractor'])
581
582
583
584
585
586
587
588
589
                else:
                    raise ValueError(
                        "subtractor {} not a class attribute".format(val))
            else:
                subtractor = val
        else:
            subtractor = 0
        return subtractor

590
    def _scale_samples(self, samples, theta_keys):
591
        """ Scale the samples using the transform_dictionary """
592
        for key in theta_keys:
593
            if key in self.transform_dictionary:
594
595
                idx = theta_keys.index(key)
                s = samples[:, idx]
596
                subtractor = self._get_rescale_subtractor_for_key(key)
597
                s = s - subtractor
598
                multiplier = self._get_rescale_multiplier_for_key(key)
599
                s *= multiplier
600
601
                samples[:, idx] = s

602
603
        return samples

604
    def _get_labels(self):
605
        """ Combine the units, symbols and rescaling to give labels """
606

607
608
609
610
611
612
        labels = []
        for key in self.theta_keys:
            label = None
            s = self.symbol_dictionary[key]
            s.replace('_{glitch}', r'_\textrm{glitch}')
            u = self.unit_dictionary[key]
613
614
615
616
617
618
619
            if key in self.transform_dictionary:
                if 'symbol' in self.transform_dictionary[key]:
                    s = self.transform_dictionary[key]['symbol']
                if 'label' in self.transform_dictionary[key]:
                    label = self.transform_dictionary[key]['label']
                if 'unit' in self.transform_dictionary[key]:
                    u = self.transform_dictionary[key]['unit']
620
621
622
623
            if label is None:
                label = '{} \n [{}]'.format(s, u)
            labels.append(label)
        return labels
624

625
626
    def plot_corner(self, figsize=(7, 7), add_prior=False, nstds=None,
                    label_offset=0.4, dpi=300, rc_context={},
627
                    tglitch_ratio=False, fig_and_axes=None, save_fig=True,
628
                    **kwargs):
629
630
631
632
633
634
635
636
637
        """ Generate a corner plot of the posterior

        Using the `corner` package (https://pypi.python.org/pypi/corner/),
        generate estimates of the posterior from the production samples.

        Parameters
        ----------
        figsize: tuple (7, 7)
            Figure size in inches (passed to plt.subplots)
638
639
640
        add_prior: bool, str
            If true, plot the prior as a red line. If 'full' then for uniform
            priors plot the full extent of the prior.
641
642
643
644
645
646
647
648
649
650
651
652
653
654
        nstds: float
            The number of standard deviations to plot centered on the mean
        label_offset: float
            Offset the labels from the plot: useful to precent overlapping the
            tick labels with the axis labels
        dpi: int
            Passed to plt.savefig
        rc_context: dict
            Dictionary of rc values to set while generating the figure (see
            matplotlib rc for more details)
        tglitch_ratio: bool
            If true, and tglitch is a parameter, plot posteriors as the
            fractional time at which the glitch occurs instead of the actual
            time
655
656
657
658
659
        fig_and_axes: tuple
            fig and axes to plot on, the axes must be of the right shape,
            namely (ndim, ndim)
        save_fig: bool
            If true, save the figure, else return the fig, axes
660
661
        **kwargs:
            Passed to corner.corner
662

663
664
665
666
        Returns
        -------
        fig, axes:
            The matplotlib figure and axes, only returned if save_fig = False
667
668

        """
669

670
671
672
673
        if 'truths' in kwargs and len(kwargs['truths']) != self.ndim:
            logging.warning('len(Truths) != ndim, Truths will be ignored')
            kwargs['truths'] = None

Gregory Ashton's avatar
Gregory Ashton committed
674
675
        if self.ndim < 2:
            with plt.rc_context(rc_context):
676
677
678
679
                if fig_and_axes is None:
                    fig, ax = plt.subplots(figsize=figsize)
                else:
                    fig, ax = fig_and_axes
Gregory Ashton's avatar
Gregory Ashton committed
680
681
682
683
684
685
686
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

687
        with plt.rc_context(rc_context):
688
689
690
691
692
            if fig_and_axes is None:
                fig, axes = plt.subplots(self.ndim, self.ndim,
                                         figsize=figsize)
            else:
                fig, axes = fig_and_axes
693
694

            samples_plt = copy.copy(self.samples)
695
            labels = self._get_labels()
696

697
            samples_plt = self._scale_samples(samples_plt, self.theta_keys)
698
699
700
701
702

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
703
704
705
                        samples_plt[:, j] = (
                            s - self.minStartTime)/(
                                self.maxStartTime - self.minStartTime)
706
                        labels[j] = r'$R_{\textrm{glitch}}$'
707
708
709
710
711
712
713

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
714
715
            elif 'range' in kwargs:
                _range = kwargs.pop('range')
716
717
718
            else:
                _range = None

719
720
721
722
            hist_kwargs = kwargs.pop('hist_kwargs', dict())
            if 'normed' not in hist_kwargs:
                hist_kwargs['normed'] = True

723
            fig_triangle = corner.corner(samples_plt,
724
                                         labels=labels,
725
726
727
728
729
730
731
732
733
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
734
                                         hist_kwargs=hist_kwargs,
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
751
                self._add_prior_to_corner(axes, self.samples, add_prior)
752

753
754
755
756
757
            if save_fig:
                fig_triangle.savefig('{}/{}_corner.png'.format(
                    self.outdir, self.label), dpi=dpi)
            else:
                return fig, axes
758

759
    def _add_prior_to_corner(self, axes, samples, add_prior):
760
761
762
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            s = samples[:, i]
763
764
765
766
767
768
769
770
771
772
            lnprior = self._generic_lnprior(**self.theta_prior[key])
            if add_prior == 'full' and self.theta_prior[key]['type'] == 'unif':
                lower = self.theta_prior[key]['lower']
                upper = self.theta_prior[key]['upper']
                r = upper-lower
                xlim = [lower-0.05*r, upper+0.05*r]
                x = np.linspace(xlim[0], xlim[1], 1000)
            else:
                xlim = ax.get_xlim()
                x = np.linspace(s.min(), s.max(), 1000)
773
774
            multiplier = self._get_rescale_multiplier_for_key(key)
            subtractor = self._get_rescale_subtractor_for_key(key)
775
776
777
778
779
780
781
782
            ax.plot((x-subtractor)*multiplier,
                    [np.exp(lnprior(xi)) for xi in x], '-C3',
                    label='prior')

            for j in range(i, self.ndim):
                axes[j][i].set_xlim(xlim[0], xlim[1])
            for k in range(0, i):
                axes[i][k].set_ylim(xlim[0], xlim[1])
783

784
785
786
787
788
789
790
791
    def plot_prior_posterior(self, normal_stds=2):
        """ Plot the posterior in the context of the prior """
        fig, axes = plt.subplots(nrows=self.ndim, figsize=(8, 4*self.ndim))
        N = 1000
        from scipy.stats import gaussian_kde

        for i, (ax, key) in enumerate(zip(axes, self.theta_keys)):
            prior_dict = self.theta_prior[key]
792
            prior_func = self._generic_lnprior(**prior_dict)
793
794
795
796
797
            if prior_dict['type'] == 'unif':
                x = np.linspace(prior_dict['lower'], prior_dict['upper'], N)
                prior = prior_func(x)
                prior[0] = 0
                prior[-1] = 0
Gregory Ashton's avatar
Gregory Ashton committed
798
799
800
801
802
            elif prior_dict['type'] == 'log10unif':
                upper = prior_dict['log10upper']
                lower = prior_dict['log10lower']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
803
804
805
806
807
            elif prior_dict['type'] == 'norm':
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = prior_func(x)
808
809
810
811
812
            elif prior_dict['type'] == 'halfnorm':
                lower = prior_dict['loc']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
Gregory Ashton's avatar
Gregory Ashton committed
813
814
815
816
817
            elif prior_dict['type'] == 'neghalfnorm':
                upper = prior_dict['loc']
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
818
819
820
            else:
                raise ValueError('Not implemented for prior type {}'.format(
                    prior_dict['type']))
821
            priorln = ax.plot(x, prior, 'C3', label='prior')
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
            ax.set_xlabel(self.theta_symbols[i])

            s = self.samples[:, i]
            while len(s) > 10**4:
                # random downsample to avoid slow calculation of kde
                s = np.random.choice(s, size=int(len(s)/2.))
            kde = gaussian_kde(s)
            ax2 = ax.twinx()
            postln = ax2.plot(x, kde.pdf(x), 'k', label='posterior')
            ax2.set_yticklabels([])
            ax.set_yticklabels([])

        lns = priorln + postln
        labs = [l.get_label() for l in lns]
        axes[0].legend(lns, labs, loc=1, framealpha=0.8)

        fig.savefig('{}/{}_prior_posterior.png'.format(
            self.outdir, self.label))

841
    def plot_cumulative_max(self, **kwargs):
842
843
844
845
        """ Plot the cumulative twoF for the maximum posterior estimate

        See the pyfstat.core.plot_twoF_cumulative function for further details
        """
Gregory Ashton's avatar
Gregory Ashton committed
846
847
848
849
        d, maxtwoF = self.get_max_twoF()
        for key, val in self.theta_prior.iteritems():
            if key not in d:
                d[key] = val
850

851
852
853
        if 'add_pfs' in kwargs:
            self.generate_loudest()

854
        if hasattr(self, 'search') is False:
855
            self._initiate_search_object()
856
857
858
        if self.binary is False:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
859
                Alpha=d['Alpha'], Delta=d['Delta'],
860
                tstart=self.minStartTime, tend=self.maxStartTime,
861
                **kwargs)
862
863
864
865
866
        else:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
                Alpha=d['Alpha'], Delta=d['Delta'], asini=d['asini'],
                period=d['period'], ecc=d['ecc'], argp=d['argp'], tp=d['argp'],
867
                tstart=self.minStartTime, tend=self.maxStartTime, **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
868

869
    def _generic_lnprior(self, **kwargs):
870
871
872
873
        """ Return a lambda function of the pdf

        Parameters
        ----------
874
        **kwargs:
875
876
877
878
            A dictionary containing 'type' of pdf and shape parameters

        """

Gregory Ashton's avatar
Gregory Ashton committed
879
        def log_of_unif(x, a, b):
880
881
882
883
884
885
886
887
888
889
890
891
892
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

Gregory Ashton's avatar
Gregory Ashton committed
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
        def log_of_log10unif(x, log10lower, log10upper):
            log10x = np.log10(x)
            above = log10x < log10upper
            below = log10x > log10lower
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(x*np.log(10)*(log10upper-log10lower))
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(x*np.log(10)*(log10upper-log10lower))
                return p

        def log_of_halfnorm(x, loc, scale):
909
            if x < loc:
910
911
912
913
914
915
916
917
918
919
920
921
922
923
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
Gregory Ashton's avatar
Gregory Ashton committed
924
925
926
927
            return lambda x: log_of_unif(x, kwargs['lower'], kwargs['upper'])
        if kwargs['type'] == 'log10unif':
            return lambda x: log_of_log10unif(
                x, kwargs['log10lower'], kwargs['log10upper'])
928
        elif kwargs['type'] == 'halfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
929
            return lambda x: log_of_halfnorm(x, kwargs['loc'], kwargs['scale'])
930
        elif kwargs['type'] == 'neghalfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
931
932
            return lambda x: log_of_halfnorm(
                -x, kwargs['loc'], kwargs['scale'])
933
934
935
936
937
938
939
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

940
    def _generate_rv(self, **kwargs):
941
942
943
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
Gregory Ashton's avatar
Gregory Ashton committed
944
945
946
        if dist_type == "log10unif":
            return 10**(np.random.uniform(low=kwargs['log10lower'],
                                          high=kwargs['log10upper']))
947
948
949
950
951
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
952
953
954
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
955
956
957
958
959
960
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

961
    def _plot_walkers(self, sampler, symbols=None, alpha=0.8, color="k",
962
963
                      temp=0, lw=0.1, nprod=0, add_det_stat_burnin=False,
                      fig=None, axes=None, xoffset=0, plot_det_stat=False,
964
                      context='ggplot', subtractions=None, labelpad=0.05):
965
966
        """ Plot all the chains from a sampler """

967
968
969
970
971
        if context not in plt.style.available:
            raise ValueError((
                'The requested context {} is not available; please select a'
                ' context from `plt.style.available`').format(context))

972
973
974
        if np.ndim(axes) > 1:
            axes = axes.flatten()

975
976
977
978
979
980
981
982
983
984
985
986
987
        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
            chain = sampler.chain[:, :, :]
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
            chain = sampler.chain[temp, :, :, :]

988
989
        if subtractions is None:
            subtractions = [0 for i in range(ndim)]
990
991
992
        else:
            if len(subtractions) != self.ndim:
                raise ValueError('subtractions must be of length ndim')
993

994
995
996
997
        if plot_det_stat:
            extra_subplots = 1
        else:
            extra_subplots = 0
998
        with plt.style.context((context)):
Gregory Ashton's avatar
Gregory Ashton committed
999
            plt.rcParams['text.usetex'] = True
Gregory Ashton's avatar
Gregory Ashton committed
1000
            if fig is None and axes is None:
1001
                fig = plt.figure(figsize=(4, 3.0*ndim))
1002
1003
                ax = fig.add_subplot(ndim+extra_subplots, 1, 1)
                axes = [ax] + [fig.add_subplot(ndim+extra_subplots, 1, i)
Gregory Ashton's avatar
Gregory Ashton committed
1004
                               for i in range(2, ndim+1)]
1005

Gregory Ashton's avatar
Gregory Ashton committed
1006
            idxs = np.arange(chain.shape[1])
1007
            burnin_idx = chain.shape[1] - nprod
1008
1009
1010
1011
            #if hasattr(self, 'convergence_idx'):
            #    last_idx = self.convergence_idx
            #else:
            last_idx = burnin_idx
1012
1013
            if ndim > 1:
                for i in range(ndim):
1014
                    axes[i].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
1015
                    cs = chain[:, :, i].T
1016
                    if burnin_idx > 0:
1017
1018
                        axes[i].plot(xoffset+idxs[:last_idx+1],
                                     cs[:last_idx+1]-subtractions[i],
1019
                                     color="C3", alpha=alpha,
Gregory Ashton's avatar
Gregory Ashton committed
1020
                                     lw=lw)
1021
                        axes[i].axvline(xoffset+last_idx,
1022
                                        color='k', ls='--', lw=0.5)
1023
1024
                    axes[i].plot(xoffset+idxs[burnin_idx:],
                                 cs[burnin_idx:]-subtractions[i],
Gregory Ashton's avatar
Gregory Ashton committed
1025
                                 color="k", alpha=alpha, lw=lw)
Gregory Ashton's avatar
Gregory Ashton committed
1026
1027

                    axes[i].set_xlim(0, xoffset+idxs[-1])
1028
                    if symbols:
1029
                        if subtractions[i] == 0:
1030
                            axes[i].set_ylabel(symbols[i], labelpad=labelpad)
1031
1032
                        else:
                            axes[i].set_ylabel(
1033
                                symbols[i]+'$-$'+symbols[i]+'$^\mathrm{s}$',
1034
                                labelpad=labelpad)
1035

1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
#                    if hasattr(self, 'convergence_diagnostic'):
#                        ax = axes[i].twinx()
#                        axes[i].set_zorder(ax.get_zorder()+1)
#                        axes[i].patch.set_visible(False)
#                        c_x = np.array(self.convergence_diagnosticx)
#                        c_y = np.array(self.convergence_diagnostic)
#                        break_idx = np.argmin(np.abs(c_x - burnin_idx))
#                        ax.plot(c_x[:break_idx], c_y[:break_idx, i], '-C0',
#                                zorder=-10)
#                        ax.plot(c_x[break_idx:], c_y[break_idx:, i], '-C0',
#                                zorder=-10)
#                        if self.convergence_test_type == 'autocorr':
#                            ax.set_ylabel(r'$\tau_\mathrm{exp}$')
#                        elif self.convergence_test_type == 'GR':
#                            ax.set_ylabel('PSRF')
#                        ax.ticklabel_format(useOffset=False)
1052
            else:
Gregory Ashton's avatar
Gregory Ashton committed
1053
                axes[0].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
1054
                cs = chain[:, :, temp].T
Gregory Ashton's avatar
Gregory Ashton committed
1055
1056
                if burnin_idx:
                    axes[0].plot(idxs[:burnin_idx], cs[:burnin_idx],
1057
                                 color="C3", alpha=alpha, lw=lw)
Gregory Ashton's avatar
Gregory Ashton committed
1058
1059
1060
                axes[0].plot(idxs[burnin_idx:], cs[burnin_idx:], color="k",
                             alpha=alpha, lw=lw)
                if symbols:
1061
                    axes[0].set_ylabel(symbols[0], labelpad=labelpad)
1062

Gregory Ashton's avatar
Gregory Ashton committed
1063
1064
            axes[-1].set_xlabel(r'$\textrm{Number of steps}$', labelpad=0.2)

1065
            if plot_det_stat:
1066
1067
1068
                if len(axes) == ndim:
                    axes.append(fig.add_subplot(ndim+1, 1, ndim+1))

Gregory Ashton's avatar
Gregory Ashton committed
1069
                lnl = sampler.loglikelihood[temp, :, :]
1070
1071
                if burnin_idx and add_det_stat_burnin:
                    burn_in_vals = lnl[:, :burnin_idx].flatten()
1072
                    try:
1073
1074
1075
1076
                        twoF_burnin = (burn_in_vals[~np.isnan(burn_in_vals)]
                                       - self.likelihoodcoef)
                        axes[-1].hist(twoF_burnin, bins=50, histtype='step',
                                      color='C3')
1077
1078
1079
1080
                    except ValueError:
                        logging.info('Det. Stat. hist failed, most likely all '
                                     'values where the same')
                        pass
1081
                else:
1082
                    twoF_burnin = []
1083
                prod_vals = lnl[:, burnin_idx:].flatten()
1084
                try:
1085
1086
                    twoF = prod_vals[~np.isnan(prod_vals)]-self.likelihoodcoef
                    axes[-1].hist(twoF, bins=50, histtype='step', color='k')
1087
1088
1089
1090
                except ValueError:
                    logging.info('Det. Stat. hist failed, most likely all '
                                 'values where the same')
                    pass
1091
1092
1093
1094
1095
                if self.BSGL:
                    axes[-1].set_xlabel(r'$\mathcal{B}_\mathrm{S/GL}$')
                else:
                    axes[-1].set_xlabel(r'$\widetilde{2\mathcal{F}}$')
                axes[-1].set_ylabel(r'$\textrm{Counts}$')
1096
                combined_vals = np.append(twoF_burnin, twoF)
1097
1098
1099
1100
1101
1102
                if len(combined_vals) > 0:
                    minv = np.min(combined_vals)
                    maxv = np.max(combined_vals)
                    Range = abs(maxv-minv)
                    axes[-1].set_xlim(minv-0.1*Range, maxv+0.1*Range)

1103
                xfmt = matplotlib.ticker.ScalarFormatter()
1104
                xfmt.set_powerlimits((-4, 4))
1105
1106
                axes[-1].xaxis.set_major_formatter(xfmt)

1107
1108
        return fig, axes

1109
    def _apply_corrections_to_p0(self, p0):
Gregory Ashton's avatar
Gregory Ashton committed
1110
1111
1112
        """ Apply any correction to the initial p0 values """
        return p0

1113
    def _generate_scatt