pyfstat.py 124 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
""" Classes for various types of searches using ComputeFstatistic """
import os
import sys
import itertools
import logging
import argparse
import copy
import glob
import inspect
from functools import wraps
11
import subprocess
12
from collections import OrderedDict
13
14
15

import numpy as np
import matplotlib
16
matplotlib.use('Agg')
17
import matplotlib.pyplot as plt
18
import scipy.special
19
import scipy.optimize
20
21
22
import emcee
import corner
import dill as pickle
23
import lal
24
25
import lalpulsar

26
27
28
try:
    from tqdm import tqdm
except ImportError:
29
    def tqdm(x, *args, **kwargs):
30
31
        return x

32
plt.rcParams['text.usetex'] = True
33
plt.rcParams['axes.formatter.useoffset'] = False
34

35
36
37
38
39
40
41
config_file = os.path.expanduser('~')+'/.pyfstat.conf'
if os.path.isfile(config_file):
    d = {}
    with open(config_file, 'r') as f:
        for line in f:
            k, v = line.split('=')
            k = k.replace(' ', '')
42
            v = v.replace(' ', '').replace("'", "").replace('"', '').replace('\n', '')
43
44
45
46
47
48
            d[k] = v
    earth_ephem = d['earth_ephem']
    sun_ephem = d['sun_ephem']
else:
    logging.warning('No ~/.pyfstat.conf file found please provide the paths '
                    'when initialising searches')
49
50
51
    earth_ephem = None
    sun_ephem = None

52
53
54
parser = argparse.ArgumentParser()
parser.add_argument("-q", "--quite", help="Decrease output verbosity",
                    action="store_true")
Gregory Ashton's avatar
Gregory Ashton committed
55
56
parser.add_argument("--no-interactive", help="Don't use interactive output",
                    action="store_true")
57
58
parser.add_argument("-c", "--clean", help="Don't use cached data",
                    action="store_true")
59
parser.add_argument("-u", "--use-old-data", action="store_true")
60
parser.add_argument('-s', "--setup-only", action="store_true")
61
parser.add_argument('-n', "--no-template-counting", action="store_true")
62
63
64
65
parser.add_argument('unittest_args', nargs='*')
args, unknown = parser.parse_known_args()
sys.argv[1:] = args.unittest_args

Gregory Ashton's avatar
Gregory Ashton committed
66
if args.quite or args.no_interactive:
67
68
69
    def tqdm(x, *args, **kwargs):
        return x

Gregory Ashton's avatar
Gregory Ashton committed
70
71
72
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
stream_handler = logging.StreamHandler()
73
if args.quite:
Gregory Ashton's avatar
Gregory Ashton committed
74
    stream_handler.setLevel(logging.WARNING)
75
else:
Gregory Ashton's avatar
Gregory Ashton committed
76
77
78
79
    stream_handler.setLevel(logging.DEBUG)
stream_handler.setFormatter(logging.Formatter(
    '%(asctime)s %(levelname)-8s: %(message)s', datefmt='%H:%M'))
logger.addHandler(stream_handler)
80

81

82
83
84
85
86
87
88
89
def round_to_n(x, n):
    if not x:
        return 0
    power = -int(np.floor(np.log10(abs(x)))) + (n - 1)
    factor = (10 ** power)
    return round(x * factor) / factor


90
def texify_float(x, d=2):
91
92
    if type(x) == str:
        return x
93
94
95
96
97
98
99
100
101
102
103
    x = round_to_n(x, d)
    if 0.01 < abs(x) < 100:
        return str(x)
    else:
        power = int(np.floor(np.log10(abs(x))))
        stem = np.round(x / 10**power, d)
        if d == 1:
            stem = int(stem)
        return r'${}{{\times}}10^{{{}}}$'.format(stem, power)


104
def initializer(func):
105
    """ Decorator function to automatically assign the parameters to self """
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    names, varargs, keywords, defaults = inspect.getargspec(func)

    @wraps(func)
    def wrapper(self, *args, **kargs):
        for name, arg in list(zip(names[1:], args)) + list(kargs.items()):
            setattr(self, name, arg)

        for name, default in zip(reversed(names), reversed(defaults)):
            if not hasattr(self, name):
                setattr(self, name, default)

        func(self, *args, **kargs)

    return wrapper


def read_par(label, outdir):
123
    """ Read in a .par file, returns a dictionary of the values """
124
125
126
127
    filename = '{}/{}.par'.format(outdir, label)
    d = {}
    with open(filename, 'r') as f:
        for line in f:
128
129
130
            if len(line.split('=')) > 1:
                key, val = line.rstrip('\n').split(' = ')
                key = key.strip()
131
                d[key] = np.float64(eval(val.rstrip('; ')))
132
133
134
    return d


135
def get_optimal_setup(
136
        R, Nsegs0, tref, minStartTime, maxStartTime, DeltaOmega,
137
        DeltaFs, fiducial_freq, detector_names, earth_ephem, sun_ephem):
138
139
    logging.info('Calculating optimal setup for R={}, Nsegs0={}'.format(
        R, Nsegs0))
140

141
142
    V_0 = get_V_estimate(
        Nsegs0, tref, minStartTime, maxStartTime, DeltaOmega, DeltaFs,
143
        fiducial_freq, detector_names, earth_ephem, sun_ephem)
144
    logging.info('Stage {}, nsegs={}, V={}'.format(0, Nsegs0, V_0))
145

146
147
    nsegs_vals = [Nsegs0]
    V_vals = [V_0]
148
149

    i = 0
150
151
    nsegs_i = Nsegs0
    while nsegs_i > 1:
152
        nsegs_i, V_i = get_nsegs_ip1(
153
            nsegs_i, R, tref, minStartTime, maxStartTime, DeltaOmega,
154
155
156
157
158
159
160
161
162
163
164
            DeltaFs, fiducial_freq, detector_names, earth_ephem, sun_ephem)
        nsegs_vals.append(nsegs_i)
        V_vals.append(V_i)
        i += 1
        logging.info(
            'Stage {}, nsegs={}, V={}'.format(i, nsegs_i, V_i))

    return nsegs_vals, V_vals


def get_nsegs_ip1(
165
        nsegs_i, R, tref, minStartTime, maxStartTime, DeltaOmega,
166
167
        DeltaFs, fiducial_freq, detector_names, earth_ephem, sun_ephem):

168
    log10R = np.log10(R)
169
170
171
172
173
    log10Vi = np.log10(get_V_estimate(
        nsegs_i, tref, minStartTime, maxStartTime, DeltaOmega, DeltaFs,
        fiducial_freq, detector_names, earth_ephem, sun_ephem))

    def f(nsegs_ip1):
174
175
176
        if nsegs_ip1[0] > nsegs_i:
            return 1e6
        if nsegs_ip1[0] < 0:
177
            return 1e6
178
179
180
        nsegs_ip1 = int(nsegs_ip1[0])
        if nsegs_ip1 == 0:
            nsegs_ip1 = 1
181
        Vip1 = get_V_estimate(
182
183
            nsegs_ip1, tref, minStartTime, maxStartTime, DeltaOmega,
            DeltaFs, fiducial_freq, detector_names, earth_ephem, sun_ephem)
184
185
186
187
        if Vip1[0] is None:
            return 1e6
        else:
            log10Vip1 = np.log10(Vip1)
188
189
190
191
192
193
            return np.abs(log10Vi[0] + log10R - log10Vip1[0])
    res = scipy.optimize.minimize(f, .5*nsegs_i, method='Powell', tol=0.1,
                                  options={'maxiter': 10})
    nsegs_ip1 = int(res.x)
    if nsegs_ip1 == 0:
        nsegs_ip1 = 1
194
    if res.success:
195
196
        return nsegs_ip1, get_V_estimate(
            nsegs_ip1, tref, minStartTime, maxStartTime, DeltaOmega, DeltaFs,
197
198
199
200
201
            fiducial_freq, detector_names, earth_ephem, sun_ephem)
    else:
        raise ValueError('Optimisation unsuccesful')


202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
def get_V_estimate(
        nsegs, tref, minStartTime, maxStartTime, DeltaOmega, DeltaFs,
        fiducial_freq, detector_names, earth_ephem, sun_ephem):
    """ Returns V, Vsky, Vpe estimated from the super-sky metric

    Parameters
    ----------
    nsegs: int
        Number of semi-coherent segments
    tref: int
        Reference time in GPS seconds
    minStartTime, maxStartTime: int
        Minimum and maximum SFT timestamps
    DeltaOmega: float
        Solid angle of the sky-patch
    DeltaFs: array
        Array of [DeltaF0, DeltaF1, ...], length determines the number of
        spin-down terms.
    fiducial_freq: float
        Fidicual frequency
    detector_names: array
        Array of detectors to average over
    earth_ephem, sun_ephem: st
        Paths to the ephemeris files

    """
    spindowns = len(DeltaFs) - 1
    tboundaries = np.linspace(minStartTime, maxStartTime, nsegs+1)

    ref_time = lal.LIGOTimeGPS(tref)
    segments = lal.SegListCreate()
    for j in range(len(tboundaries)-1):
        seg = lal.SegCreate(lal.LIGOTimeGPS(tboundaries[j]),
                            lal.LIGOTimeGPS(tboundaries[j+1]),
                            j)
        lal.SegListAppend(segments, seg)
    detNames = lal.CreateStringVector(*detector_names)
    detectors = lalpulsar.MultiLALDetector()
    lalpulsar.ParseMultiLALDetector(detectors, detNames)
    detector_weights = None
    detector_motion = (lalpulsar.DETMOTION_SPIN
                       + lalpulsar.DETMOTION_ORBIT)
    ephemeris = lalpulsar.InitBarycenter(earth_ephem, sun_ephem)
    try:
        SSkyMetric = lalpulsar.ComputeSuperskyMetrics(
            spindowns, ref_time, segments, fiducial_freq, detectors,
            detector_weights, detector_motion, ephemeris)
    except RuntimeError as e:
        logging.debug('Encountered run-time error {}'.format(e))
        return None, None, None

    sqrtdetG_SKY = np.sqrt(np.linalg.det(
        SSkyMetric.semi_rssky_metric.data[:2, :2]))
    sqrtdetG_PE = np.sqrt(np.linalg.det(
        SSkyMetric.semi_rssky_metric.data[2:, 2:]))

    Vsky = .5*sqrtdetG_SKY*DeltaOmega
    Vpe = sqrtdetG_PE * np.prod(DeltaFs)
    if Vsky == 0:
        Vsky = 1
    if Vpe == 0:
        Vpe = 1
    return (Vsky * Vpe, Vsky, Vpe)


267
class BaseSearchClass(object):
268
    """ The base search class, provides general functions """
269
270
271
272

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

273
    def add_log_file(self):
274
        """ Log output to a file, requires class to have outdir and label """
275
276
        logfilename = '{}/{}.log'.format(self.outdir, self.label)
        fh = logging.FileHandler(logfilename)
Gregory Ashton's avatar
Gregory Ashton committed
277
        fh.setLevel(logging.INFO)
278
279
280
281
282
        fh.setFormatter(logging.Formatter(
            '%(asctime)s %(levelname)-8s: %(message)s',
            datefmt='%y-%m-%d %H:%M'))
        logging.getLogger().addHandler(fh)

283
    def shift_matrix(self, n, dT):
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        """ Generate the shift matrix

        Parameters
        ----------
        n: int
            The dimension of the shift-matrix to generate
        dT: float
            The time delta of the shift matrix

        Returns
        -------
        m: array (n, n)
            The shift matrix
        """

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
        m = np.zeros((n, n))
        factorial = np.math.factorial
        for i in range(n):
            for j in range(n):
                if i == j:
                    m[i, j] = 1.0
                elif i > j:
                    m[i, j] = 0.0
                else:
                    if i == 0:
                        m[i, j] = 2*np.pi*float(dT)**(j-i) / factorial(j-i)
                    else:
                        m[i, j] = float(dT)**(j-i) / factorial(j-i)
        return m

    def shift_coefficients(self, theta, dT):
        """ Shift a set of coefficients by dT

        Parameters
        ----------
        theta: array-like, shape (n,)
            vector of the expansion coefficients to transform starting from the
321
            lowest degree e.g [phi, F0, F1,...].
322
        dT: float
323
            difference between the two reference times as tref_new - tref_old.
324
325
326
327

        Returns
        -------
        theta_new: array-like shape (n,)
328
            vector of the coefficients as evaluate as the new reference time.
329
        """
330

331
332
333
334
        n = len(theta)
        m = self.shift_matrix(n, dT)
        return np.dot(m, theta)

335
    def calculate_thetas(self, theta, delta_thetas, tbounds, theta0_idx=0):
336
337
338
        """ Calculates the set of coefficients for the post-glitch signal """
        thetas = [theta]
        for i, dt in enumerate(delta_thetas):
339
340
341
342
343
344
345
346
347
348
349
350
351
            if i < theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[0], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch - dt
                thetas.insert(0, self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))

            elif i >= theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[i], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch + dt
                thetas.append(self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))
352
353
        return thetas

Gregory Ashton's avatar
Gregory Ashton committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    def generate_loudest(self):
        params = read_par(self.label, self.outdir)
        for key in ['Alpha', 'Delta', 'F0', 'F1']:
            if key not in params:
                params[key] = self.theta_prior[key]
        cmd = ('lalapps_ComputeFstatistic_v2 -a {} -d {} -f {} -s {} -D "{}"'
               ' --refTime={} --outputLoudest="{}/{}.loudest" '
               '--minStartTime={} --maxStartTime={}').format(
                    params['Alpha'], params['Delta'], params['F0'],
                    params['F1'], self.sftfilepath, params['tref'],
                    self.outdir, self.label, self.minStartTime,
                    self.maxStartTime)
        subprocess.call([cmd], shell=True)

368

Gregory Ashton's avatar
Gregory Ashton committed
369
class ComputeFstat(object):
370
    """ Base class providing interface to `lalpulsar.ComputeFstat` """
Gregory Ashton's avatar
Gregory Ashton committed
371
372
373
374
375

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

    @initializer
376
377
    def __init__(self, tref, sftfilepath=None, minStartTime=None,
                 maxStartTime=None, binary=False, transient=True, BSGL=False,
378
                 detector=None, minCoverFreq=None, maxCoverFreq=None,
379
                 earth_ephem=None, sun_ephem=None, injectSources=None
380
                 ):
381
382
383
384
385
        """
        Parameters
        ----------
        tref: int
            GPS seconds of the reference time.
386
387
        sftfilepath: str
            File patern to match SFTs
388
389
390
391
392
393
394
395
396
397
398
399
        minStartTime, maxStartTime: float GPStime
            Only use SFTs with timestemps starting from (including, excluding)
            this epoch
        binary: bool
            If true, search of binary parameters.
        transient: bool
            If true, allow for the Fstat to be computed over a transient range.
        BSGL: bool
            If true, compute the BSGL rather than the twoF value.
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
400
401
402
403
404
405
406
407
408
409
        minCoverFreq, maxCoverFreq: float
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput.
            If None defaults defined in BaseSearchClass will be used.

        """
Gregory Ashton's avatar
Gregory Ashton committed
410
411
412
413
414
415
416
417

        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        self.init_computefstatistic_single_point()

Gregory Ashton's avatar
Gregory Ashton committed
418
419
420
    def get_SFTCatalog(self):
        if hasattr(self, 'SFTCatalog'):
            return
Gregory Ashton's avatar
Gregory Ashton committed
421
422
423
424
        logging.info('Initialising SFTCatalog')
        constraints = lalpulsar.SFTConstraints()
        if self.detector:
            constraints.detector = self.detector
425
426
427
428
429
        if self.minStartTime:
            constraints.minStartTime = lal.LIGOTimeGPS(self.minStartTime)
        if self.maxStartTime:
            constraints.maxStartTime = lal.LIGOTimeGPS(self.maxStartTime)

430
        logging.info('Loading data matching pattern {}'.format(
431
432
                     self.sftfilepath))
        SFTCatalog = lalpulsar.SFTdataFind(self.sftfilepath, constraints)
433
434
        detector_names = list(set([d.header.name for d in SFTCatalog.data]))
        self.detector_names = detector_names
435
        SFT_timestamps = [d.header.epoch for d in SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
436
        if args.quite is False and args.no_interactive is False:
437
438
439
440
441
442
            try:
                from bashplotlib.histogram import plot_hist
                print('Data timestamps histogram:')
                plot_hist(SFT_timestamps, height=5, bincount=50)
            except IOError:
                pass
443
        if len(detector_names) == 0:
Gregory Ashton's avatar
Gregory Ashton committed
444
445
            raise ValueError('No data loaded.')
        logging.info('Loaded {} data files from detectors {}'.format(
446
            len(SFT_timestamps), detector_names))
Gregory Ashton's avatar
Gregory Ashton committed
447
448
449
450
451
452
        logging.info('Data spans from {} ({}) to {} ({})'.format(
            int(SFT_timestamps[0]),
            subprocess.check_output('lalapps_tconvert {}'.format(
                int(SFT_timestamps[0])), shell=True).rstrip('\n'),
            int(SFT_timestamps[-1]),
            subprocess.check_output('lalapps_tconvert {}'.format(
453
                int(SFT_timestamps[-1])), shell=True).rstrip('\n')))
Gregory Ashton's avatar
Gregory Ashton committed
454
455
456
457
458
459
        self.SFTCatalog = SFTCatalog

    def init_computefstatistic_single_point(self):
        """ Initilisation step of run_computefstatistic for a single point """

        self.get_SFTCatalog()
Gregory Ashton's avatar
Gregory Ashton committed
460
461
462
463
464
465

        logging.info('Initialising ephems')
        ephems = lalpulsar.InitBarycenter(self.earth_ephem, self.sun_ephem)

        logging.info('Initialising FstatInput')
        dFreq = 0
466
467
468
469
470
        if self.transient:
            self.whatToCompute = lalpulsar.FSTATQ_ATOMS_PER_DET
        else:
            self.whatToCompute = lalpulsar.FSTATQ_2F

471
472
473
474
475
476
477
478
479
480
481
        FstatOAs = lalpulsar.FstatOptionalArgs()
        FstatOAs.randSeed = lalpulsar.FstatOptionalArgsDefaults.randSeed
        FstatOAs.SSBprec = lalpulsar.FstatOptionalArgsDefaults.SSBprec
        FstatOAs.Dterms = lalpulsar.FstatOptionalArgsDefaults.Dterms
        FstatOAs.runningMedianWindow = lalpulsar.FstatOptionalArgsDefaults.runningMedianWindow
        FstatOAs.FstatMethod = lalpulsar.FstatOptionalArgsDefaults.FstatMethod
        FstatOAs.InjectSqrtSX = lalpulsar.FstatOptionalArgsDefaults.injectSqrtSX
        FstatOAs.assumeSqrtSX = lalpulsar.FstatOptionalArgsDefaults.assumeSqrtSX
        FstatOAs.prevInput = lalpulsar.FstatOptionalArgsDefaults.prevInput
        FstatOAs.collectTiming = lalpulsar.FstatOptionalArgsDefaults.collectTiming

482
        if hasattr(self, 'injectSource') and type(self.injectSources) == dict:
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
            logging.info('Injecting source with params: {}'.format(
                self.injectSources))
            PPV = lalpulsar.CreatePulsarParamsVector(1)
            PP = PPV.data[0]
            PP.Amp.h0 = self.injectSources['h0']
            PP.Amp.cosi = self.injectSources['cosi']
            PP.Amp.phi0 = self.injectSources['phi0']
            PP.Amp.psi = self.injectSources['psi']
            PP.Doppler.Alpha = self.injectSources['Alpha']
            PP.Doppler.Delta = self.injectSources['Delta']
            PP.Doppler.fkdot = np.array(self.injectSources['fkdot'])
            PP.Doppler.refTime = self.tref
            if 't0' not in self.injectSources:
                PP.Transient.type = lalpulsar.TRANSIENT_NONE
            FstatOAs.injectSources = PPV
        else:
            FstatOAs.injectSources = lalpulsar.FstatOptionalArgsDefaults.injectSources
Gregory Ashton's avatar
Gregory Ashton committed
500
501

        if self.minCoverFreq is None or self.maxCoverFreq is None:
Gregory Ashton's avatar
Gregory Ashton committed
502
            fAs = [d.header.f0 for d in self.SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
503
            fBs = [d.header.f0 + (d.numBins-1)*d.header.deltaF
Gregory Ashton's avatar
Gregory Ashton committed
504
                   for d in self.SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
505
506
            self.minCoverFreq = np.min(fAs) + 0.5
            self.maxCoverFreq = np.max(fBs) - 0.5
507
508
509
            logging.info('Min/max cover freqs not provided, using '
                         '{} and {}, est. from SFTs'.format(
                             self.minCoverFreq, self.maxCoverFreq))
Gregory Ashton's avatar
Gregory Ashton committed
510

Gregory Ashton's avatar
Gregory Ashton committed
511
        self.FstatInput = lalpulsar.CreateFstatInput(self.SFTCatalog,
Gregory Ashton's avatar
Gregory Ashton committed
512
513
514
515
                                                     self.minCoverFreq,
                                                     self.maxCoverFreq,
                                                     dFreq,
                                                     ephems,
516
                                                     FstatOAs
Gregory Ashton's avatar
Gregory Ashton committed
517
518
519
520
521
522
523
524
525
526
527
528
529
                                                     )

        logging.info('Initialising PulsarDoplerParams')
        PulsarDopplerParams = lalpulsar.PulsarDopplerParams()
        PulsarDopplerParams.refTime = self.tref
        PulsarDopplerParams.Alpha = 1
        PulsarDopplerParams.Delta = 1
        PulsarDopplerParams.fkdot = np.array([0, 0, 0, 0, 0, 0, 0])
        self.PulsarDopplerParams = PulsarDopplerParams

        logging.info('Initialising FstatResults')
        self.FstatResults = lalpulsar.FstatResults()

530
        if self.BSGL:
531
            if len(self.detector_names) < 2:
Gregory Ashton's avatar
Gregory Ashton committed
532
                raise ValueError("Can't use BSGL with single detector data")
533
            else:
534
                logging.info('Initialising BSGL')
535

536
537
            # Tuning parameters - to be reviewed
            numDetectors = 2
538
539
540
541
542
543
544
545
546
547
            if hasattr(self, 'nsegs'):
                p_val_threshold = 1e-6
                Fstar0s = np.linspace(0, 1000, 10000)
                p_vals = scipy.special.gammaincc(2*self.nsegs, Fstar0s)
                Fstar0 = Fstar0s[np.argmin(np.abs(p_vals - p_val_threshold))]
                if Fstar0 == Fstar0s[-1]:
                    raise ValueError('Max Fstar0 exceeded')
            else:
                Fstar0 = 15.
            logging.info('Using Fstar0 of {:1.2f}'.format(Fstar0))
548
            oLGX = np.zeros(10)
Gregory Ashton's avatar
Gregory Ashton committed
549
            oLGX[:numDetectors] = 1./numDetectors
550
            self.BSGLSetup = lalpulsar.CreateBSGLSetup(numDetectors,
551
                                                       Fstar0,
552
                                                       oLGX,
553
                                                       True,
554
555
                                                       1)
            self.twoFX = np.zeros(10)
Gregory Ashton's avatar
Gregory Ashton committed
556
            self.whatToCompute = (self.whatToCompute +
557
558
                                  lalpulsar.FSTATQ_2F_PER_DET)

559
        if self.transient:
560
            logging.info('Initialising transient parameters')
561
562
563
564
565
566
            self.windowRange = lalpulsar.transientWindowRange_t()
            self.windowRange.type = lalpulsar.TRANSIENT_RECTANGULAR
            self.windowRange.t0Band = 0
            self.windowRange.dt0 = 1
            self.windowRange.tauBand = 0
            self.windowRange.dtau = 1
567

568
569
570
571
572
573
574
575
576
    def compute_fullycoherent_det_stat_single_point(
            self, F0, F1, F2, Alpha, Delta, asini=None, period=None, ecc=None,
            tp=None, argp=None):
        """ Compute the fully-coherent det. statistic at a single point """

        return self.run_computefstatistic_single_point(
            self.minStartTime, self.maxStartTime, F0, F1, F2, Alpha, Delta,
            asini, period, ecc, tp, argp)

Gregory Ashton's avatar
Gregory Ashton committed
577
    def run_computefstatistic_single_point(self, tstart, tend, F0, F1,
578
579
580
                                           F2, Alpha, Delta, asini=None,
                                           period=None, ecc=None, tp=None,
                                           argp=None):
581
        """ Returns twoF or ln(BSGL) fully-coherently at a single point """
Gregory Ashton's avatar
Gregory Ashton committed
582
583
584
585

        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
586
587
588
589
590
591
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp
Gregory Ashton's avatar
Gregory Ashton committed
592
593
594
595

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
596
                               1,
Gregory Ashton's avatar
Gregory Ashton committed
597
598
599
                               self.whatToCompute
                               )

600
        if self.transient is False:
601
602
603
604
605
606
            if self.BSGL is False:
                return self.FstatResults.twoF[0]

            twoF = np.float(self.FstatResults.twoF[0])
            self.twoFX[0] = self.FstatResults.twoFPerDet(0)
            self.twoFX[1] = self.FstatResults.twoFPerDet(1)
607
608
609
            log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
                                               self.BSGLSetup)
            return log10_BSGL/np.log10(np.exp(1))
610

611
612
        self.windowRange.t0 = int(tstart)  # TYPE UINT4
        self.windowRange.tau = int(tend - tstart)  # TYPE UINT4
613

Gregory Ashton's avatar
Gregory Ashton committed
614
        FS = lalpulsar.ComputeTransientFstatMap(
615
            self.FstatResults.multiFatoms[0], self.windowRange, False)
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

        if self.BSGL is False:
            return 2*FS.F_mn.data[0][0]

        FstatResults_single = copy.copy(self.FstatResults)
        FstatResults_single.lenth = 1
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
        FS0 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
        FS1 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)

        self.twoFX[0] = 2*FS0.F_mn.data[0][0]
        self.twoFX[1] = 2*FS1.F_mn.data[0][0]
631
632
        log10_BSGL = lalpulsar.ComputeBSGL(
                2*FS.F_mn.data[0][0], self.twoFX, self.BSGLSetup)
633

634
        return log10_BSGL/np.log10(np.exp(1))
Gregory Ashton's avatar
Gregory Ashton committed
635

636
637
    def calculate_twoF_cumulative(self, F0, F1, F2, Alpha, Delta, asini=None,
                                  period=None, ecc=None, tp=None, argp=None,
638
639
                                  tstart=None, tend=None, npoints=1000,
                                  minfraction=0.01, maxfraction=1):
640
641
        """ Calculate the cumulative twoF along the obseration span """
        duration = tend - tstart
642
643
        tstart = tstart + minfraction*duration
        taus = np.linspace(minfraction*duration, maxfraction*duration, npoints)
644
        twoFs = []
Gregory Ashton's avatar
Gregory Ashton committed
645
646
647
        if self.transient is False:
            self.transient = True
            self.init_computefstatistic_single_point()
648
649
650
651
652
653
654
655
656
        for tau in taus:
            twoFs.append(self.run_computefstatistic_single_point(
                tstart=tstart, tend=tstart+tau, F0=F0, F1=F1, F2=F2,
                Alpha=Alpha, Delta=Delta, asini=asini, period=period, ecc=ecc,
                tp=tp, argp=argp))

        return taus, np.array(twoFs)

    def plot_twoF_cumulative(self, label, outdir, ax=None, c='k', savefig=True,
657
                             title=None, **kwargs):
658

659
660
661
662
663
664
        taus, twoFs = self.calculate_twoF_cumulative(**kwargs)
        if ax is None:
            fig, ax = plt.subplots()
        ax.plot(taus/86400., twoFs, label=label, color=c)
        ax.set_xlabel(r'Days from $t_{{\rm start}}={:.0f}$'.format(
            kwargs['tstart']))
Gregory Ashton's avatar
Gregory Ashton committed
665
666
667
668
        if self.BSGL:
            ax.set_ylabel(r'$\log_{10}(\mathrm{BSGL})_{\rm cumulative}$')
        else:
            ax.set_ylabel(r'$\widetilde{2\mathcal{F}}_{\rm cumulative}$')
669
        ax.set_xlim(0, taus[-1]/86400)
670
671
        if title:
            ax.set_title(title)
672
        if savefig:
673
            plt.tight_layout()
674
            plt.savefig('{}/{}_twoFcumulative.png'.format(outdir, label))
Gregory Ashton's avatar
Gregory Ashton committed
675
            return taus, twoFs
676
677
678
        else:
            return ax

Gregory Ashton's avatar
Gregory Ashton committed
679

680
681
682
683
684
685
686
class SemiCoherentSearch(BaseSearchClass, ComputeFstat):
    """ A semi-coherent search """

    @initializer
    def __init__(self, label, outdir, tref, nsegs=None, sftfilepath=None,
                 binary=False, BSGL=False, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
687
688
                 detector=None, earth_ephem=None, sun_ephem=None,
                 injectSources=None):
689
690
691
692
693
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to.
694
        tref, minStartTime, maxStartTime: int
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
            GPS seconds of the reference time, and start and end of the data.
        nsegs: int
            The (fixed) number of segments
        sftfilepath: str
            File patern to match SFTs

        For all other parameters, see pyfstat.ComputeFStat.
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
        if self.earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if self.sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default
        self.transient = True
        self.init_computefstatistic_single_point()
        self.init_semicoherent_parameters()

    def init_semicoherent_parameters(self):
714
715
716
        logging.info(('Initialising semicoherent parameters from {} to {} in'
                      ' {} segments').format(
            self.minStartTime, self.maxStartTime, self.nsegs))
717
718
        self.transient = True
        self.whatToCompute = lalpulsar.FSTATQ_2F+lalpulsar.FSTATQ_ATOMS_PER_DET
719
720
721
        self.tboundaries = np.linspace(self.minStartTime, self.maxStartTime,
                                       self.nsegs+1)

Gregory Ashton's avatar
Gregory Ashton committed
722
723
724
725
    def run_semi_coherent_computefstatistic_single_point(
            self, F0, F1, F2, Alpha, Delta, asini=None,
            period=None, ecc=None, tp=None, argp=None):
        """ Returns twoF or ln(BSGL) semi-coherently at a single point """
726

Gregory Ashton's avatar
Gregory Ashton committed
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
                               1,
                               self.whatToCompute
                               )

        if self.transient is False:
            if self.BSGL is False:
                return self.FstatResults.twoF[0]

            twoF = np.float(self.FstatResults.twoF[0])
            self.twoFX[0] = self.FstatResults.twoFPerDet(0)
            self.twoFX[1] = self.FstatResults.twoFPerDet(1)
            log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
                                               self.BSGLSetup)
            return log10_BSGL/np.log10(np.exp(1))

        detStat = 0
        for tstart, tend in zip(self.tboundaries[:-1], self.tboundaries[1:]):
            self.windowRange.t0 = int(tstart)  # TYPE UINT4
            self.windowRange.tau = int(tend - tstart)  # TYPE UINT4

            FS = lalpulsar.ComputeTransientFstatMap(
                self.FstatResults.multiFatoms[0], self.windowRange, False)

            if self.BSGL is False:
                detStat += 2*FS.F_mn.data[0][0]
                continue
766

Gregory Ashton's avatar
Gregory Ashton committed
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
            FstatResults_single = copy.copy(self.FstatResults)
            FstatResults_single.lenth = 1
            FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
            FS0 = lalpulsar.ComputeTransientFstatMap(
                FstatResults_single.multiFatoms[0], self.windowRange, False)
            FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
            FS1 = lalpulsar.ComputeTransientFstatMap(
                FstatResults_single.multiFatoms[0], self.windowRange, False)

            self.twoFX[0] = 2*FS0.F_mn.data[0][0]
            self.twoFX[1] = 2*FS1.F_mn.data[0][0]
            log10_BSGL = lalpulsar.ComputeBSGL(
                    2*FS.F_mn.data[0][0], self.twoFX, self.BSGLSetup)

            detStat += log10_BSGL/np.log10(np.exp(1))

        return detStat
784
785


Gregory Ashton's avatar
Gregory Ashton committed
786
class SemiCoherentGlitchSearch(BaseSearchClass, ComputeFstat):
787
788
789
    """ A semi-coherent glitch search

    This implements a basic `semi-coherent glitch F-stat in which the data
790
791
    is divided into segments either side of the proposed glitches and the
    fully-coherent F-stat in each segment is summed to give the semi-coherent
792
793
794
795
    F-stat
    """

    @initializer
796
797
798
    def __init__(self, label, outdir, tref, minStartTime, maxStartTime,
                 nglitch=0, sftfilepath=None, theta0_idx=0, BSGL=False,
                 minCoverFreq=None, maxCoverFreq=None,
799
                 detector=None, earth_ephem=None, sun_ephem=None):
800
801
802
803
        """
        Parameters
        ----------
        label, outdir: str
804
            A label and directory to read/write data from/to.
805
        tref, minStartTime, maxStartTime: int
806
807
808
809
            GPS seconds of the reference time, and start and end of the data.
        nglitch: int
            The (fixed) number of glitches; this can zero, but occasionally
            this causes issue (in which case just use ComputeFstat).
810
811
        sftfilepath: str
            File patern to match SFTs
812
813
814
815
        theta0_idx, int
            Index (zero-based) of which segment the theta refers to - uyseful
            if providing a tight prior on theta to allow the signal to jump
            too theta (and not just from)
816
817

        For all other parameters, see pyfstat.ComputeFStat.
818
819
820
821
822
823
824
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
        if self.earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if self.sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default
825
826
        self.transient = True
        self.binary = False
827
828
829
        self.init_computefstatistic_single_point()

    def compute_nglitch_fstat(self, F0, F1, F2, Alpha, Delta, *args):
830
        """ Returns the semi-coherent glitch summed twoF """
831
832

        args = list(args)
833
834
        tboundaries = ([self.minStartTime] + args[-self.nglitch:]
                       + [self.maxStartTime])
835
836
837
838
839
840
841
842
        delta_F0s = args[-3*self.nglitch:-2*self.nglitch]
        delta_F1s = args[-2*self.nglitch:-self.nglitch]
        delta_F2 = np.zeros(len(delta_F0s))
        delta_phi = np.zeros(len(delta_F0s))
        theta = [0, F0, F1, F2]
        delta_thetas = np.atleast_2d(
                np.array([delta_phi, delta_F0s, delta_F1s, delta_F2]).T)

843
844
        thetas = self.calculate_thetas(theta, delta_thetas, tboundaries,
                                       theta0_idx=self.theta0_idx)
845
846

        twoFSum = 0
847
        for i, theta_i_at_tref in enumerate(thetas):
848
849
850
            ts, te = tboundaries[i], tboundaries[i+1]

            twoFVal = self.run_computefstatistic_single_point(
851
852
                ts, te, theta_i_at_tref[1], theta_i_at_tref[2],
                theta_i_at_tref[3], Alpha, Delta)
853
854
            twoFSum += twoFVal

855
856
857
        if np.isfinite(twoFSum):
            return twoFSum
        else:
858
            return -np.inf
859
860
861

    def compute_glitch_fstat_single(self, F0, F1, F2, Alpha, Delta, delta_F0,
                                    delta_F1, tglitch):
862
863
        """ Returns the semi-coherent glitch summed twoF for nglitch=1

864
        Note: OBSOLETE, used only for testing
865
        """
866
867
868
869
870
871
872
873
874
875
876

        theta = [F0, F1, F2]
        delta_theta = [delta_F0, delta_F1, 0]
        tref = self.tref

        theta_at_glitch = self.shift_coefficients(theta, tglitch - tref)
        theta_post_glitch_at_glitch = theta_at_glitch + delta_theta
        theta_post_glitch = self.shift_coefficients(
            theta_post_glitch_at_glitch, tref - tglitch)

        twoFsegA = self.run_computefstatistic_single_point(
877
            self.minStartTime, tglitch, theta[0], theta[1], theta[2], Alpha,
878
879
            Delta)

880
        if tglitch == self.maxStartTime:
881
882
883
            return twoFsegA

        twoFsegB = self.run_computefstatistic_single_point(
884
            tglitch, self.maxStartTime, theta_post_glitch[0],
885
886
887
888
889
890
            theta_post_glitch[1], theta_post_glitch[2], Alpha,
            Delta)

        return twoFsegA + twoFsegB


Gregory Ashton's avatar
Gregory Ashton committed
891
892
class MCMCSearch(BaseSearchClass):
    """ MCMC search using ComputeFstat"""
893
    @initializer
894
    def __init__(self, label, outdir, sftfilepath, theta_prior, tref,
Gregory Ashton's avatar
Gregory Ashton committed
895
                 minStartTime, maxStartTime, nsteps=[100, 100],
896
897
                 nwalkers=100, ntemps=1, log10temperature_min=-5,
                 theta_initial=None, scatter_val=1e-10,
898
899
                 binary=False, BSGL=False, minCoverFreq=None,
                 maxCoverFreq=None, detector=None, earth_ephem=None,
900
                 sun_ephem=None, injectSources=None):
901
902
903
904
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
905
906
        sftfilepath: str
            File patern to match SFTs
907
        theta_prior: dict
908
909
910
911
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
912
913
914
915
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
916
        tref, minStartTime, maxStartTime: int
917
918
919
920
921
922
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
923
924
925
926
927
928
929
930
931
932
933
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
        binary: Bool
            If true, search over binary parameters
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
934
935
936
937
938
939
940
941
942
943
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

Gregory Ashton's avatar
Gregory Ashton committed
944
945
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
946
        self.add_log_file()
Gregory Ashton's avatar
Gregory Ashton committed
947
948
        logging.info(
            'Set-up MCMC search for model {} on data {}'.format(
949
                self.label, self.sftfilepath))
950
951
952
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
        self.unpack_input_theta()
        self.ndim = len(self.theta_keys)
953
954
955
956
        if self.log10temperature_min:
            self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
        else:
            self.betas = None
957

958
959
960
961
962
963
964
965
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

966
967
968
        self.log_input()

    def log_input(self):
969
        logging.info('theta_prior = {}'.format(self.theta_prior))
970
        logging.info('nwalkers={}'.format(self.nwalkers))
971
972
973
974
        logging.info('scatter_val = {}'.format(self.scatter_val))
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
        logging.info('log10temperature_min = {}'.format(
975
            self.log10temperature_min))
976
977
978

    def inititate_search_object(self):
        logging.info('Setting up search object')
Gregory Ashton's avatar
Gregory Ashton committed
979
        self.search = ComputeFstat(
980
981
982
983
            tref=self.tref, sftfilepath=self.sftfilepath,
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
            detector=self.detector, BSGL=self.BSGL, transient=False,
984
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
985
            binary=self.binary, injectSources=self.injectSources)
986
987

    def logp(self, theta_vals, theta_prior, theta_keys, search):
Gregory Ashton's avatar
Gregory Ashton committed
988
        H = [self.generic_lnprior(**theta_prior[key])(p) for p, key in
989
990
991
992
993
994
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
995
996
        FS = search.compute_fullycoherent_det_stat_single_point(
            *self.fixed_theta)
997
998
999
        return FS

    def unpack_input_theta(self):
1000
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']
1001
1002
1003
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
1004
1005
        full_theta_keys_copy = copy.copy(full_theta_keys)

1006
1007
        full_theta_symbols = ['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                              r'$\delta$']
1008
1009
1010
1011
        if self.binary:
            full_theta_symbols += [
                'asini', 'period', 'period', 'ecc', 'tp', 'argp']

1012
1013
        self.theta_keys = []
        fixed_theta_dict = {}
1014
        for key, val in self.theta_prior.iteritems():
1015
1016
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
1017
                self.theta_keys.append(key)
1018
1019
1020
1021
1022
1023
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
1024
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

    def check_initial_points(self, p0):
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

                p0 = self.generate_new_p0_to_fix_initial_points(
                    p0, nt, initial_priors)

    def generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
1077

Gregory Ashton's avatar
Gregory Ashton committed
1078
    def run_sampler_with_progress_bar(self, sampler, ns, p0):
1079
1080
        for result in tqdm(sampler.sample(p0, iterations=ns), total=ns):
            pass
Gregory Ashton's avatar
Gregory Ashton committed
1081
1082
        return sampler

1083
    def run(self, proposal_scale_factor=2, create_plots=True, **kwargs):
1084

Gregory Ashton's avatar
Gregory Ashton committed
1085
        self.old_data_is_okay_to_use = self.check_old_data_is_okay_to_use()
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
            d = self.get_saved_data()
            self.sampler = d['sampler']
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
            return

        self.inititate_search_object()

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
1101
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
1102

Gregory Ashton's avatar
Gregory Ashton committed
1103
1104
        p0 = self.generate_initial_p0()
        p0 = self.apply_corrections_to_p0(p0)
1105
1106
1107
1108
1109
        self.check_initial_points(p0)

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
Gregory Ashton's avatar
Gregory Ashton committed
1110
                j, ninit_steps, n))
Gregory Ashton's avatar
Gregory Ashton committed
1111
            sampler = self.run_sampler_with_progress_bar(sampler, n, p0)
1112
1113
            logging.info("Mean acceptance fraction: {}"
                         .format(np.mean(sampler.acceptance_fraction, axis=1)))
1114
1115
1116
            if self.ntemps > 1:
                logging.info("Tswap acceptance fraction: {}"
                             .format(sampler.tswap_acceptance_fraction))
1117
1118
1119
1120
1121
1122
1123
            if create_plots:
                fig, axes = self.plot_walkers(sampler,
                                              symbols=self.theta_symbols,
                                              **kwargs)
                fig.tight_layout()
                fig.savefig('{}/{}_init_{}_walkers.png'.format(
                    self.outdir, self.label, j), dpi=200)
1124

1125
            p0 = self.get_new_p0(sampler)
Gregory Ashton's avatar
Gregory Ashton committed
1126
            p0 = self.apply_corrections_to_p0(p0)
1127
1128
1129
            self.check_initial_points(p0)
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
1130
1131
1132
1133
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
1134
1135
1136
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
Gregory Ashton's avatar
Gregory Ashton committed
1137
        sampler = self.run_sampler_with_progress_bar(sampler, nburn+nprod, p0)
1138
1139
        logging.info("Mean acceptance fraction: {}"
                     .format(np.mean(sampler.acceptance_fraction, axis=1)))
1140
1141
1142
        if self.ntemps > 1:
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
1143

1144
1145
1146
1147
1148
1149
        if create_plots:
            fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols,
                                          burnin_idx=nburn, **kwargs)
            fig.tight_layout()
            fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label),
                        dpi=200)
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
        self.sampler = sampler
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
        self.save_data(sampler, samples, lnprobs, lnlikes)

1160
    def plot_corner(self, figsize=(7, 7),  tglitch_ratio=False,
1161
1162
1163
                    add_prior=False, nstds=None, label_offset=0.4,
                    dpi=300, rc_context={}, **kwargs):

Gregory Ashton's avatar
Gregory Ashton committed
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
        if self.ndim < 2:
            with plt.rc_context(rc_context):
                fig, ax = plt.subplots(figsize=figsize)
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

1174
1175
1176
1177
1178
1179
        with plt.rc_context(rc_context):
            fig, axes = plt.subplots(self.ndim, self.ndim,
                                     figsize=figsize)

            samples_plt = copy.copy(self.samples)
            theta_symbols_plt = copy.copy(self.theta_symbols)
1180
1181
            theta_symbols_plt = [s.replace('_{glitch}', r'_\textrm{glitch}')
                                 for s in theta_symbols_plt]
1182
1183
1184
1185
1186

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
1187
1188
1189
                        samples_plt[:, j] = (
                            s - self.minStartTime)/(
                                self.maxStartTime - self.minStartTime)
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
                        theta_symbols_plt[j] = r'$R_{\textrm{glitch}}$'

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
            else:
                _range = None

            fig_triangle = corner.corner(samples_plt,
                                         labels=theta_symbols_plt,
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
                self.add_prior_to_corner(axes, samples_plt)

            fig_triangle.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
1232
1233
1234
1235
1236
1237

    def add_prior_to_corner(self, axes, samples):
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            xlim = ax.get_xlim()
            s = samples[:, i]
Gregory Ashton's avatar
Gregory Ashton committed
1238
            prior = self.