grid_based_searches.py 46.8 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" Searches using grid-based methods """
2
from __future__ import division, absolute_import, print_function
Gregory Ashton's avatar
Gregory Ashton committed
3
4
5
6
7

import os
import logging
import itertools
from collections import OrderedDict
Gregory Ashton's avatar
Gregory Ashton committed
8
9
10
import datetime
import getpass
import socket
Gregory Ashton's avatar
Gregory Ashton committed
11
12
13
14

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
15
from scipy.misc import logsumexp
Gregory Ashton's avatar
Gregory Ashton committed
16

17
18
19
import pyfstat.helper_functions as helper_functions
from pyfstat.core import (BaseSearchClass, ComputeFstat,
                          SemiCoherentGlitchSearch, SemiCoherentSearch, tqdm,
20
                          args, read_par)
Gregory Ashton's avatar
Gregory Ashton committed
21
22
import lalpulsar
import lal
Gregory Ashton's avatar
Gregory Ashton committed
23
24
25
26


class GridSearch(BaseSearchClass):
    """ Gridded search using ComputeFstat """
Gregory Ashton's avatar
Gregory Ashton committed
27
28
29
    tex_labels = {'F0': '$f$', 'F1': '$\dot{f}$', 'F2': '$\ddot{f}$',
                  'Alpha': r'$\alpha$', 'Delta': r'$\delta$'}
    tex_labels0 = {'F0': '$-f_0$', 'F1': '$-\dot{f}_0$', 'F2': '$-\ddot{f}_0$',
30
                   'Alpha': r'$-\alpha_0$', 'Delta': r'$-\delta_0$'}
31
32
    search_labels = ['minStartTime', 'maxStartTime', 'F0s', 'F1s', 'F2s',
                     'Alphas', 'Deltas']
Gregory Ashton's avatar
Gregory Ashton committed
33

Gregory Ashton's avatar
Gregory Ashton committed
34
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
35
36
37
38
    def __init__(self, label, outdir, sftfilepattern, F0s, F1s, F2s, Alphas,
                 Deltas, tref=None, minStartTime=None, maxStartTime=None,
                 nsegs=1, BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, SSBprec=None, injectSources=None,
39
                 input_arrays=False, assumeSqrtSX=None):
Gregory Ashton's avatar
Gregory Ashton committed
40
41
42
43
44
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
45
46
47
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
48
49
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
50
51
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
Gregory Ashton's avatar
Gregory Ashton committed
52
53
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
54
55
        input_arrays: bool
            if true, use the F0s, F1s, etc as is
Gregory Ashton's avatar
Gregory Ashton committed
56
57

        For all other parameters, see `pyfstat.ComputeFStat` for details
58
59
60
61

        Note: if a large number of grid points are used, checks against cached
        data may be slow as the array is loaded into memory. To avoid this, run
        with the `clean` option which uses a generator instead.
Gregory Ashton's avatar
Gregory Ashton committed
62
63
64
65
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
66
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
67
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
68
69
70
        self.search_keys = [x+'s' for x in self.keys[2:]]
        for k in self.search_keys:
            setattr(self, k, np.atleast_1d(getattr(self, k)))
Gregory Ashton's avatar
Gregory Ashton committed
71
72
73

    def inititate_search_object(self):
        logging.info('Setting up search object')
74
75
        if self.nsegs == 1:
            self.search = ComputeFstat(
76
                tref=self.tref, sftfilepattern=self.sftfilepattern,
77
                minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
David Keitel's avatar
David Keitel committed
78
                detectors=self.detectors,
79
                minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
80
                BSGL=self.BSGL, SSBprec=self.SSBprec,
81
82
                injectSources=self.injectSources,
                assumeSqrtSX=self.assumeSqrtSX)
83
            self.search.get_det_stat = self.search.get_fullycoherent_twoF
84
85
86
        else:
            self.search = SemiCoherentSearch(
                label=self.label, outdir=self.outdir, tref=self.tref,
87
                nsegs=self.nsegs, sftfilepattern=self.sftfilepattern,
88
89
90
                BSGL=self.BSGL, minStartTime=self.minStartTime,
                maxStartTime=self.maxStartTime, minCoverFreq=self.minCoverFreq,
                maxCoverFreq=self.maxCoverFreq, detectors=self.detectors,
Gregory Ashton's avatar
Gregory Ashton committed
91
                injectSources=self.injectSources)
92
93

            def cut_out_tstart_tend(*vals):
94
                return self.search.get_semicoherent_twoF(*vals[2:])
95
            self.search.get_det_stat = cut_out_tstart_tend
Gregory Ashton's avatar
Gregory Ashton committed
96
97
98
99

    def get_array_from_tuple(self, x):
        if len(x) == 1:
            return np.array(x)
100
        elif len(x) == 3 and self.input_arrays is False:
Gregory Ashton's avatar
Gregory Ashton committed
101
            return np.arange(x[0], x[1], x[2])
Gregory Ashton's avatar
Gregory Ashton committed
102
        else:
Gregory Ashton's avatar
Gregory Ashton committed
103
104
            logging.info('Using tuple as is')
            return np.array(x)
Gregory Ashton's avatar
Gregory Ashton committed
105
106

    def get_input_data_array(self):
Gregory Ashton's avatar
Gregory Ashton committed
107
        logging.info("Generating input data array")
108
        coord_arrays = []
109
110
111
        for sl in self.search_labels:
            coord_arrays.append(
                self.get_array_from_tuple(np.atleast_1d(getattr(self, sl))))
112
        self.coord_arrays = coord_arrays
113
114
115
116
117
118
119
        self.total_iterations = np.prod([len(ca) for ca in coord_arrays])

        if args.clean is False:
            input_data = []
            for vals in itertools.product(*coord_arrays):
                    input_data.append(vals)
            self.input_data = np.array(input_data)
Gregory Ashton's avatar
Gregory Ashton committed
120
121
122
123
124

    def check_old_data_is_okay_to_use(self):
        if args.clean:
            return False
        if os.path.isfile(self.out_file) is False:
125
126
127
            logging.info(
                'No old data found in "{:s}", continuing with grid search'
                .format(self.out_file))
Gregory Ashton's avatar
Gregory Ashton committed
128
            return False
129
        if self.sftfilepattern is not None:
130
131
132
133
134
135
            oldest_sft = min([os.path.getmtime(f) for f in
                              self._get_list_of_matching_sfts()])
            if os.path.getmtime(self.out_file) < oldest_sft:
                logging.info('Search output data outdates sft files,'
                             + ' continuing with grid search')
                return False
136

137
        data = np.atleast_2d(np.genfromtxt(self.out_file, delimiter=' '))
138
139
        if np.all(data[:, 0: len(self.coord_arrays)] ==
                  self.input_data[:, 0:len(self.coord_arrays)]):
140
            logging.info(
141
142
                'Old data found in "{:s}" with matching input, no search '
                'performed'.format(self.out_file))
143
144
145
            return data
        else:
            logging.info(
146
147
                'Old data found in "{:s}", input differs, continuing with '
                'grid search'.format(self.out_file))
148
            return False
149
        return False
Gregory Ashton's avatar
Gregory Ashton committed
150
151
152

    def run(self, return_data=False):
        self.get_input_data_array()
153
154
155
156
157
158
159
160
161
162

        if args.clean:
            iterable = itertools.product(*self.coord_arrays)
        else:
            old_data = self.check_old_data_is_okay_to_use()
            iterable = self.input_data

            if old_data is not False:
                self.data = old_data
                return
Gregory Ashton's avatar
Gregory Ashton committed
163

Gregory Ashton's avatar
Gregory Ashton committed
164
165
        if hasattr(self, 'search') is False:
            self.inititate_search_object()
Gregory Ashton's avatar
Gregory Ashton committed
166
167

        data = []
168
169
        for vals in tqdm(iterable,
                         total=getattr(self, 'total_iterations', None)):
170
            detstat = self.search.get_det_stat(*vals)
171
172
            thisCand = list(vals) + [detstat]
            data.append(thisCand)
Gregory Ashton's avatar
Gregory Ashton committed
173

174
        data = np.array(data, dtype=np.float)
Gregory Ashton's avatar
Gregory Ashton committed
175
176
177
        if return_data:
            return data
        else:
178
            self.save_array_to_disk(data)
Gregory Ashton's avatar
Gregory Ashton committed
179
180
            self.data = data

181
182
183
184
185
186
187
188
189
190
191
192
    def get_header(self):
        header = ';'.join(['date:{}'.format(str(datetime.datetime.now())),
                           'user:{}'.format(getpass.getuser()),
                           'hostname:{}'.format(socket.gethostname())])
        header += '\n' + ' '.join(self.keys)
        return header

    def save_array_to_disk(self, data):
        logging.info('Saving data to {}'.format(self.out_file))
        header = self.get_header()
        np.savetxt(self.out_file, data, delimiter=' ', header=header)

Gregory Ashton's avatar
Gregory Ashton committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    def convert_F0_to_mismatch(self, F0, F0hat, Tseg):
        DeltaF0 = F0[1] - F0[0]
        m_spacing = (np.pi*Tseg*DeltaF0)**2 / 12.
        N = len(F0)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def convert_F1_to_mismatch(self, F1, F1hat, Tseg):
        DeltaF1 = F1[1] - F1[0]
        m_spacing = (np.pi*Tseg**2*DeltaF1)**2 / 720.
        N = len(F1)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def add_mismatch_to_ax(self, ax, x, y, xkey, ykey, xhat, yhat, Tseg):
        axX = ax.twiny()
        axX.zorder = -10
        axY = ax.twinx()
        axY.zorder = -10

        if xkey == 'F0':
            m = self.convert_F0_to_mismatch(x, xhat, Tseg)
            axX.set_xlim(m[0], m[-1])

        if ykey == 'F1':
            m = self.convert_F1_to_mismatch(y, yhat, Tseg)
            axY.set_ylim(m[0], m[-1])

Gregory Ashton's avatar
Gregory Ashton committed
219
220
    def plot_1D(self, xkey, ax=None, x0=None, xrescale=1, savefig=True,
                xlabel=None, ylabel='$\widetilde{2\mathcal{F}}$'):
Gregory Ashton's avatar
Gregory Ashton committed
221
222
        if ax is None:
            fig, ax = plt.subplots()
Gregory Ashton's avatar
Gregory Ashton committed
223
224
        xidx = self.keys.index(xkey)
        x = np.unique(self.data[:, xidx])
225
226
        if x0:
            x = x - x0
Gregory Ashton's avatar
Gregory Ashton committed
227
        x = x * xrescale
Gregory Ashton's avatar
Gregory Ashton committed
228
        z = self.data[:, -1]
Gregory Ashton's avatar
Gregory Ashton committed
229
230
231
232
233
        ax.plot(x, z)
        if x0:
            ax.set_xlabel(self.tex_labels[xkey]+self.tex_labels0[xkey])
        else:
            ax.set_xlabel(self.tex_labels[xkey])
Gregory Ashton's avatar
Gregory Ashton committed
234
235
236
237
238

        if xlabel:
            ax.set_xlabel(xlabel)

        ax.set_ylabel(ylabel)
Gregory Ashton's avatar
Gregory Ashton committed
239
        if savefig:
Gregory Ashton's avatar
Gregory Ashton committed
240
            fig.tight_layout()
Gregory Ashton's avatar
Gregory Ashton committed
241
242
            fig.savefig('{}/{}_1D.png'.format(self.outdir, self.label))
        else:
243
            return ax
Gregory Ashton's avatar
Gregory Ashton committed
244
245
246

    def plot_2D(self, xkey, ykey, ax=None, save=True, vmin=None, vmax=None,
                add_mismatch=None, xN=None, yN=None, flat_keys=[],
Gregory Ashton's avatar
Gregory Ashton committed
247
                rel_flat_idxs=[], flatten_method=np.max, title=None,
Gregory Ashton's avatar
Gregory Ashton committed
248
249
                predicted_twoF=None, cm=None, cbarkwargs={}, x0=None, y0=None,
                colorbar=False):
Gregory Ashton's avatar
Gregory Ashton committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        """ Plots a 2D grid of 2F values

        Parameters
        ----------
        add_mismatch: tuple (xhat, yhat, Tseg)
            If not None, add a secondary axis with the metric mismatch from the
            point xhat, yhat with duration Tseg
        flatten_method: np.max
            Function to use in flattening the flat_keys
        """
        if ax is None:
            fig, ax = plt.subplots()
        xidx = self.keys.index(xkey)
        yidx = self.keys.index(ykey)
        flat_idxs = [self.keys.index(k) for k in flat_keys]

        x = np.unique(self.data[:, xidx])
267
268
        if x0:
            x = x-x0
Gregory Ashton's avatar
Gregory Ashton committed
269
        y = np.unique(self.data[:, yidx])
270
271
        if y0:
            y = y-y0
Gregory Ashton's avatar
Gregory Ashton committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
        flat_vals = [np.unique(self.data[:, j]) for j in flat_idxs]
        z = self.data[:, -1]

        Y, X = np.meshgrid(y, x)
        shape = [len(x), len(y)] + [len(v) for v in flat_vals]
        Z = z.reshape(shape)

        if len(rel_flat_idxs) > 0:
            Z = flatten_method(Z, axis=tuple(rel_flat_idxs))

        if predicted_twoF:
            Z = (predicted_twoF - Z) / (predicted_twoF + 4)
            if cm is None:
                cm = plt.cm.viridis_r
        else:
            if cm is None:
                cm = plt.cm.viridis

        pax = ax.pcolormesh(X, Y, Z, cmap=cm, vmin=vmin, vmax=vmax)
Gregory Ashton's avatar
Gregory Ashton committed
291
292
293
        if colorbar:
            cb = plt.colorbar(pax, ax=ax, **cbarkwargs)
            cb.set_label('$2\mathcal{F}$')
Gregory Ashton's avatar
Gregory Ashton committed
294
295
296
297
298
299

        if add_mismatch:
            self.add_mismatch_to_ax(ax, x, y, xkey, ykey, *add_mismatch)

        ax.set_xlim(x[0], x[-1])
        ax.set_ylim(y[0], y[-1])
300
        if x0:
Gregory Ashton's avatar
Gregory Ashton committed
301
            ax.set_xlabel(self.tex_labels[xkey]+self.tex_labels0[xkey])
302
        else:
Gregory Ashton's avatar
Gregory Ashton committed
303
            ax.set_xlabel(self.tex_labels[xkey])
304
        if y0:
Gregory Ashton's avatar
Gregory Ashton committed
305
            ax.set_ylabel(self.tex_labels[ykey]+self.tex_labels0[ykey])
306
        else:
Gregory Ashton's avatar
Gregory Ashton committed
307
            ax.set_ylabel(self.tex_labels[ykey])
Gregory Ashton's avatar
Gregory Ashton committed
308

Gregory Ashton's avatar
Gregory Ashton committed
309
310
311
        if title:
            ax.set_title(title)

Gregory Ashton's avatar
Gregory Ashton committed
312
313
314
315
316
317
318
319
320
321
322
323
        if xN:
            ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(xN))
        if yN:
            ax.yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(yN))

        if save:
            fig.tight_layout()
            fig.savefig('{}/{}_2D.png'.format(self.outdir, self.label))
        else:
            return ax

    def get_max_twoF(self):
Gregory Ashton's avatar
Gregory Ashton committed
324
325
326
327
328
329
330
331
332
333
        """ Get the maximum twoF over the grid

        Returns
        -------
        d: dict
            Dictionary containing, 'minStartTime', 'maxStartTime', 'F0', 'F1',
            'F2', 'Alpha', 'Delta' and 'twoF' of maximum

        """

Gregory Ashton's avatar
Gregory Ashton committed
334
335
336
337
338
339
340
341
342
343
344
345
346
        twoF = self.data[:, -1]
        idx = np.argmax(twoF)
        v = self.data[idx, :]
        d = OrderedDict(minStartTime=v[0], maxStartTime=v[1], F0=v[2], F1=v[3],
                        F2=v[4], Alpha=v[5], Delta=v[6], twoF=v[7])
        return d

    def print_max_twoF(self):
        d = self.get_max_twoF()
        print('Max twoF values for {}:'.format(self.label))
        for k, v in d.iteritems():
            print('  {}={}'.format(k, v))

347
    def set_out_file(self, extra_label=None):
348
349
350
351
        if self.detectors:
            dets = self.detectors.replace(',', '')
        else:
            dets = 'NA'
352
353
354
355
356
357
358
359
        if extra_label:
            self.out_file = '{}/{}_{}_{}_{}.txt'.format(
                self.outdir, self.label, dets, type(self).__name__,
                extra_label)
        else:
            self.out_file = '{}/{}_{}_{}.txt'.format(
                self.outdir, self.label, dets, type(self).__name__)

Gregory Ashton's avatar
Gregory Ashton committed
360

361
362
363
364
365
366
367
368
369
370
class TransientGridSearch(GridSearch):
    """ Gridded transient-continous search using ComputeFstat """

    @helper_functions.initializer
    def __init__(self, label, outdir, sftfilepattern, F0s, F1s, F2s, Alphas,
                 Deltas, tref=None, minStartTime=None, maxStartTime=None,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, SSBprec=None, injectSources=None,
                 input_arrays=False, assumeSqrtSX=None,
                 transientWindowType=None, t0Band=None, tauBand=None,
371
                 dt0=None, dtau=None,
372
                 outputTransientFstatMap=False,
373
                 outputAtoms=False,
374
                 tCWFstatMapVersion='lal', cudaDeviceName=None):
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
        input_arrays: bool
            if true, use the F0s, F1s, etc as is
        transientWindowType: str
            If 'rect' or 'exp', compute atoms so that a transient (t0,tau) map
            can later be computed.  ('none' instead of None explicitly calls
            the transient-window function, but with the full range, for
            debugging). Currently only supported for nsegs=1.
        t0Band, tauBand: int
            if >0, search t0 in (minStartTime,minStartTime+t0Band)
                   and tau in (2*Tsft,2*Tsft+tauBand).
            if =0, only compute CW Fstat with t0=minStartTime,
                   tau=maxStartTime-minStartTime.
401
402
403
        dt0, dtau: int
            grid resolutions in transient start-time and duration,
            both default to Tsft
404
405
406
        outputTransientFstatMap: bool
            if true, write output files for (t0,tau) Fstat maps
            (one file for each doppler grid point!)
407
408
409
        tCWFstatMapVersion: str
            Choose between standard 'lal' implementation,
            'pycuda' for gpu, and some others for devel/debug.
410
411
        cudaDeviceName: str
            GPU name to be matched against drv.Device output.
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        self.nsegs = 1
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.set_out_file()
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
        self.search_keys = [x+'s' for x in self.keys[2:]]
        for k in self.search_keys:
            setattr(self, k, np.atleast_1d(getattr(self, k)))

    def inititate_search_object(self):
        logging.info('Setting up search object')
        self.search = ComputeFstat(
            tref=self.tref, sftfilepattern=self.sftfilepattern,
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            detectors=self.detectors,
            transientWindowType=self.transientWindowType,
            t0Band=self.t0Band, tauBand=self.tauBand,
433
            dt0=self.dt0, dtau=self.dtau,
434
435
436
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
            BSGL=self.BSGL, SSBprec=self.SSBprec,
            injectSources=self.injectSources,
437
            assumeSqrtSX=self.assumeSqrtSX,
438
439
            tCWFstatMapVersion=self.tCWFstatMapVersion,
            cudaDeviceName=self.cudaDeviceName)
440
441
442
443
444
445
446
447
448
449
450
451
452
        self.search.get_det_stat = self.search.get_fullycoherent_twoF

    def run(self, return_data=False):
        self.get_input_data_array()
        old_data = self.check_old_data_is_okay_to_use()
        if old_data is not False:
            self.data = old_data
            return

        if hasattr(self, 'search') is False:
            self.inititate_search_object()

        data = []
David Keitel's avatar
David Keitel committed
453
454
455
456
        if self.outputTransientFstatMap:
            tCWfilebase = os.path.splitext(self.out_file)[0] + '_tCW_'
            logging.info('Will save per-Doppler Fstatmap' \
                         ' results to {}*.dat'.format(tCWfilebase))
457
458
459
460
461
462
        for vals in tqdm(self.input_data):
            detstat = self.search.get_det_stat(*vals)
            windowRange = getattr(self.search, 'windowRange', None)
            FstatMap = getattr(self.search, 'FstatMap', None)
            thisCand = list(vals) + [detstat]
            if getattr(self, 'transientWindowType', None):
463
464
465
466
                if self.tCWFstatMapVersion == 'lal':
                    F_mn = FstatMap.F_mn.data
                else:
                    F_mn = FstatMap.F_mn
467
                if self.outputTransientFstatMap:
David Keitel's avatar
David Keitel committed
468
469
470
471
472
                    # per-Doppler filename convention:
                    # freq alpha delta f1dot f2dot
                    tCWfile = ( tCWfilebase
                                + '%.16f_%.16f_%.16f_%.16g_%.16g.dat' %
                                (vals[2],vals[5],vals[6],vals[3],vals[4]) )
473
474
                    if self.tCWFstatMapVersion == 'lal':
                        fo = lal.FileOpen(tCWfile, 'w')
David Keitel's avatar
David Keitel committed
475
476
477
478
479
                        lalpulsar.write_transientFstatMap_to_fp (
                            fo, FstatMap, windowRange, None )
                        # instead of lal.FileClose(),
                        # which is not SWIG-exported:
                        del fo
480
                    else:
481
                        self.write_F_mn ( tCWfile, F_mn, windowRange)
482
                maxidx = np.unravel_index(F_mn.argmax(), F_mn.shape)
483
484
485
                thisCand += [windowRange.t0+maxidx[0]*windowRange.dt0,
                             windowRange.tau+maxidx[1]*windowRange.dtau]
            data.append(thisCand)
486
487
            if self.outputAtoms:
                self.search.write_atoms_to_file(os.path.splitext(self.out_file)[0])
488
489
490
491
492
493
494
495

        data = np.array(data, dtype=np.float)
        if return_data:
            return data
        else:
            self.save_array_to_disk(data)
            self.data = data

496
497
498
499
500
501
502
503
504
    def write_F_mn (self, tCWfile, F_mn, windowRange ):
        with open(tCWfile, 'w') as tfp:
            tfp.write('# t0 [s]     tau [s]     2F\n')
            for m, F_m in enumerate(F_mn):
                this_t0 = windowRange.t0 + m * windowRange.dt0
                for n, this_F in enumerate(F_m):
                    this_tau = windowRange.tau + n * windowRange.dtau;
                    tfp.write('  %10d %10d %- 11.8g\n' % (this_t0, this_tau, 2.0*this_F))

505
506
507
508
    def __del__(self):
        if hasattr(self,'search'):
            self.search.__del__()

509

Gregory Ashton's avatar
Gregory Ashton committed
510
511
512
class SliceGridSearch(GridSearch):
    """ Slice gridded search using ComputeFstat """
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
513
514
515
516
517
    def __init__(self, label, outdir, sftfilepattern, F0s, F1s, F2s, Alphas,
                 Deltas, tref=None, minStartTime=None, maxStartTime=None,
                 nsegs=1, BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, SSBprec=None, injectSources=None,
                 input_arrays=False, assumeSqrtSX=None, Lambda0=None):
Gregory Ashton's avatar
Gregory Ashton committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
        input_arrays: bool
            if true, use the F0s, F1s, etc as is

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.set_out_file()
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
542
543
544
        self.ndim = 0
        self.thetas = [F0s, F1s, Alphas, Deltas]
        self.ndim = 4
Gregory Ashton's avatar
Gregory Ashton committed
545

Gregory Ashton's avatar
Gregory Ashton committed
546
        self.search_keys = ['F0', 'F1', 'Alpha', 'Delta']
547
548
        if self.Lambda0 is None:
            raise ValueError('Lambda0 undefined')
Gregory Ashton's avatar
Gregory Ashton committed
549
        if len(self.Lambda0) != len(self.search_keys):
Gregory Ashton's avatar
Gregory Ashton committed
550
            raise ValueError(
Gregory Ashton's avatar
Gregory Ashton committed
551
                'Lambda0 must be of length {}'.format(len(self.search_keys)))
552
        self.Lambda0 = np.array(Lambda0)
Gregory Ashton's avatar
Gregory Ashton committed
553

554
555
    def run(self, factor=2, max_n_ticks=4, whspace=0.07, save=True,
            **kwargs):
Gregory Ashton's avatar
Gregory Ashton committed
556
        lbdim = 0.5 * factor   # size of left/bottom margin
557
        trdim = 0.4 * factor   # size of top/right margin
Gregory Ashton's avatar
Gregory Ashton committed
558
559
560
561
562
563
564
565
566
567
568
569
570
571
        plotdim = factor * self.ndim + factor * (self.ndim - 1.) * whspace
        dim = lbdim + plotdim + trdim

        fig, axes = plt.subplots(self.ndim, self.ndim, figsize=(dim, dim))

        # Format the figure.
        lb = lbdim / dim
        tr = (lbdim + plotdim) / dim
        fig.subplots_adjust(left=lb, bottom=lb, right=tr, top=tr,
                            wspace=whspace, hspace=whspace)

        search = GridSearch(
            self.label, self.outdir, self.sftfilepattern,
            F0s=self.Lambda0[0], F1s=self.Lambda0[1], F2s=self.F2s[0],
572
573
            Alphas=self.Lambda0[2], Deltas=self.Lambda0[3], tref=self.tref,
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime)
Gregory Ashton's avatar
Gregory Ashton committed
574
575
576

        for i, ikey in enumerate(self.search_keys):
            setattr(search, ikey+'s', self.thetas[i])
577
578
            search.label = '{}_{}'.format(self.label, ikey)
            search.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
579
            search.run()
580
581
582
            axes[i, i] = search.plot_1D(ikey, ax=axes[i, i], savefig=False,
                                        x0=self.Lambda0[i]
                                        )
Gregory Ashton's avatar
Gregory Ashton committed
583
            setattr(search, ikey+'s', [self.Lambda0[i]])
584
585
586
            axes[i, i].yaxis.tick_right()
            axes[i, i].yaxis.set_label_position("right")
            axes[i, i].set_xlabel('')
Gregory Ashton's avatar
Gregory Ashton committed
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613

            for j, jkey in enumerate(self.search_keys):
                ax = axes[i, j]

                if j > i:
                    ax.set_frame_on(False)
                    ax.set_xticks([])
                    ax.set_yticks([])
                    continue

                ax.get_shared_x_axes().join(axes[self.ndim-1, j], ax)
                if i < self.ndim - 1:
                    ax.set_xticklabels([])
                if j < i:
                    ax.get_shared_y_axes().join(axes[i, i-1], ax)
                    if j > 0:
                        ax.set_yticklabels([])
                if j == i:
                    continue

                ax.xaxis.set_major_locator(
                    matplotlib.ticker.MaxNLocator(max_n_ticks, prune="upper"))
                ax.yaxis.set_major_locator(
                    matplotlib.ticker.MaxNLocator(max_n_ticks, prune="upper"))

                setattr(search, ikey+'s', self.thetas[i])
                setattr(search, jkey+'s', self.thetas[j])
614
615
                search.label = '{}_{}'.format(self.label, ikey+jkey)
                search.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
616
                search.run()
617
                ax = search.plot_2D(jkey, ikey, ax=ax, save=False,
618
619
                                    y0=self.Lambda0[i], x0=self.Lambda0[j],
                                    **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
620
621
622
                setattr(search, ikey+'s', [self.Lambda0[i]])
                setattr(search, jkey+'s', [self.Lambda0[j]])

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
                ax.grid(lw=0.2, ls='--', zorder=10)
                ax.set_xlabel('')
                ax.set_ylabel('')

        for i, ikey in enumerate(self.search_keys):
            axes[-1, i].set_xlabel(
                self.tex_labels[ikey]+self.tex_labels0[ikey])
            if i > 0:
                axes[i, 0].set_ylabel(
                    self.tex_labels[ikey]+self.tex_labels0[ikey])
            axes[i, i].set_ylabel("$2\mathcal{F}$")

        if save:
            fig.savefig(
                '{}/{}_slice_projection.png'.format(self.outdir, self.label))
        else:
            return fig, axes
Gregory Ashton's avatar
Gregory Ashton committed
640
641


Gregory Ashton's avatar
Gregory Ashton committed
642
class GridUniformPriorSearch():
643
    @helper_functions.initializer
644
    def __init__(self, theta_prior, NF0, NF1, label, outdir, sftfilepattern,
645
                 tref, minStartTime, maxStartTime, minCoverFreq=None,
646
                 maxCoverFreq=None, BSGL=False, detectors=None, nsegs=1,
647
                 SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
648
649
650
651
        dF0 = (theta_prior['F0']['upper'] - theta_prior['F0']['lower'])/NF0
        dF1 = (theta_prior['F1']['upper'] - theta_prior['F1']['lower'])/NF1
        F0s = [theta_prior['F0']['lower'], theta_prior['F0']['upper'], dF0]
        F1s = [theta_prior['F1']['lower'], theta_prior['F1']['upper'], dF1]
652
        self.search = GridSearch(
653
            label, outdir, sftfilepattern, F0s=F0s, F1s=F1s, tref=tref,
Gregory Ashton's avatar
Gregory Ashton committed
654
655
            Alphas=[theta_prior['Alpha']], Deltas=[theta_prior['Delta']],
            minStartTime=minStartTime, maxStartTime=maxStartTime, BSGL=BSGL,
656
            detectors=detectors, minCoverFreq=minCoverFreq,
657
658
            injectSources=injectSources, maxCoverFreq=maxCoverFreq,
            nsegs=nsegs, SSBprec=SSBprec)
659

660
    def run(self):
661
        self.search.run()
662
663

    def get_2D_plot(self, **kwargs):
664
        return self.search.plot_2D('F0', 'F1', **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
665
666


Gregory Ashton's avatar
Gregory Ashton committed
667
668
class GridGlitchSearch(GridSearch):
    """ Grid search using the SemiCoherentGlitchSearch """
669
670
671
    search_labels = ['F0s', 'F1s', 'F2s', 'Alphas', 'Deltas', 'delta_F0s',
                     'delta_F1s', 'tglitchs']

Gregory Ashton's avatar
Gregory Ashton committed
672
    @helper_functions.initializer
673
    def __init__(self, label, outdir='data', sftfilepattern=None, F0s=[0],
Gregory Ashton's avatar
Gregory Ashton committed
674
675
676
                 F1s=[0], F2s=[0], delta_F0s=[0], delta_F1s=[0], tglitchs=None,
                 Alphas=[0], Deltas=[0], tref=None, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
677
                 detectors=None):
Gregory Ashton's avatar
Gregory Ashton committed
678
        """
679
680
        Run a single-glitch grid search

Gregory Ashton's avatar
Gregory Ashton committed
681
682
683
684
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
685
686
687
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
688
689
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
690
691
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Note that
            tglitchs is referenced to zero at minStartTime.
Gregory Ashton's avatar
Gregory Ashton committed
692
693
694
695
696
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see pyfstat.ComputeFStat.
        """
697
698

        self.BSGL = False
699
        self.input_arrays = False
Gregory Ashton's avatar
Gregory Ashton committed
700
        if tglitchs is None:
701
            raise ValueError('You must specify `tglitchs`')
Gregory Ashton's avatar
Gregory Ashton committed
702
703

        self.search = SemiCoherentGlitchSearch(
704
            label=label, outdir=outdir, sftfilepattern=self.sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
705
706
707
            tref=tref, minStartTime=minStartTime, maxStartTime=maxStartTime,
            minCoverFreq=minCoverFreq, maxCoverFreq=maxCoverFreq,
            BSGL=self.BSGL)
708
        self.search.get_det_stat = self.search.get_semicoherent_nglitch_twoF
Gregory Ashton's avatar
Gregory Ashton committed
709
710
711

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
712
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
713
714
715
716
        self.keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta', 'delta_F0',
                     'delta_F1', 'tglitch']


717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
class SlidingWindow(GridSearch):
    @helper_functions.initializer
    def __init__(self, label, outdir, sftfilepattern, F0, F1, F2,
                 Alpha, Delta, tref, minStartTime=None,
                 maxStartTime=None, window_size=10*86400, window_delta=86400,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, SSBprec=None, injectSources=None):
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
        F0, F1, F2, Alpha, Delta: float
            Fixed values to compute output over
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.set_out_file()
        self.nsegs = 1

        self.tstarts = [self.minStartTime]
        while self.tstarts[-1] + self.window_size < self.maxStartTime:
            self.tstarts.append(self.tstarts[-1]+self.window_delta)
        self.tmids = np.array(self.tstarts) + .5 * self.window_size

    def inititate_search_object(self):
        logging.info('Setting up search object')
        self.search = ComputeFstat(
            tref=self.tref, sftfilepattern=self.sftfilepattern,
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            detectors=self.detectors, transient=True,
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
            BSGL=self.BSGL, SSBprec=self.SSBprec,
            injectSources=self.injectSources)

    def check_old_data_is_okay_to_use(self, out_file):
        if os.path.isfile(out_file):
            tmids, vals, errvals = np.loadtxt(out_file).T
            if len(tmids) == len(self.tmids) and (
                    tmids[0] == self.tmids[0]):
                self.vals = vals
                self.errvals = errvals
                return True
        return False

    def run(self, key='h0', errkey='dh0'):
        self.key = key
        self.errkey = errkey
        out_file = '{}/{}_{}-sliding-window.txt'.format(
            self.outdir, self.label, key)

        if self.check_old_data_is_okay_to_use(out_file) is False:
            self.inititate_search_object()
            vals = []
            errvals = []
            for ts in self.tstarts:
                loudest = self.search.get_full_CFSv2_output(
                        ts, ts+self.window_size, self.F0, self.F1, self.F2,
                        self.Alpha, self.Delta, self.tref)
                vals.append(loudest[key])
                errvals.append(loudest[errkey])

            np.savetxt(out_file, np.array([self.tmids, vals, errvals]).T)
            self.vals = np.array(vals)
            self.errvals = np.array(errvals)

    def plot_sliding_window(self, factor=1, fig=None, ax=None):
        if ax is None:
            fig, ax = plt.subplots()
        days = (self.tmids-self.minStartTime) / 86400
        ax.errorbar(days, self.vals*factor, yerr=self.errvals*factor)
        ax.set_ylabel(self.key)
        ax.set_xlabel(
            r'Mid-point (days after $t_\mathrm{{start}}$={})'.format(
                self.minStartTime))
        ax.set_title(
            'Sliding window of {} days in increments of {} days'
            .format(self.window_size/86400, self.window_delta/86400),
            )

        if fig:
            fig.savefig('{}/{}_{}-sliding-window.png'.format(
                self.outdir, self.label, self.key))
        else:
            return ax


Gregory Ashton's avatar
Gregory Ashton committed
812
813
814
class FrequencySlidingWindow(GridSearch):
    """ A sliding-window search over the Frequency """
    @helper_functions.initializer
815
    def __init__(self, label, outdir, sftfilepattern, F0s, F1, F2,
Gregory Ashton's avatar
Gregory Ashton committed
816
817
818
                 Alpha, Delta, tref, minStartTime=None,
                 maxStartTime=None, window_size=10*86400, window_delta=86400,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
819
                 detectors=None, SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
820
821
822
823
824
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
825
826
827
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
828
829
830
831
832
833
834
835
836
837
        F0s: array
            Frequency range
        F1, F2, Alpha, Delta: float
            Fixed values to compute twoF(F) over
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

Gregory Ashton's avatar
Gregory Ashton committed
838
839
        self.transientWindowType = 'rect'
        self.nsegs = 1
840
841
842
        self.t0Band = None
        self.tauBand = None

Gregory Ashton's avatar
Gregory Ashton committed
843
844
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
845
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
846
847
848
849
        self.F1s = [F1]
        self.F2s = [F2]
        self.Alphas = [Alpha]
        self.Deltas = [Delta]
850
        self.input_arrays = False
851
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
852

Gregory Ashton's avatar
Gregory Ashton committed
853
854
855
    def inititate_search_object(self):
        logging.info('Setting up search object')
        self.search = ComputeFstat(
856
            tref=self.tref, sftfilepattern=self.sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
857
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
David Keitel's avatar
David Keitel committed
858
            detectors=self.detectors, transientWindowType=self.transientWindowType,
Gregory Ashton's avatar
Gregory Ashton committed
859
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
Gregory Ashton's avatar
Gregory Ashton committed
860
861
            BSGL=self.BSGL, SSBprec=self.SSBprec,
            injectSources=self.injectSources)
Gregory Ashton's avatar
Gregory Ashton committed
862
        self.search.get_det_stat = (
863
            self.search.get_fullycoherent_twoF)
Gregory Ashton's avatar
Gregory Ashton committed
864
865

    def get_input_data_array(self):
Gregory Ashton's avatar
Gregory Ashton committed
866
        coord_arrays = []
Gregory Ashton's avatar
Gregory Ashton committed
867
868
869
        tstarts = [self.minStartTime]
        while tstarts[-1] + self.window_size < self.maxStartTime:
            tstarts.append(tstarts[-1]+self.window_delta)
Gregory Ashton's avatar
Gregory Ashton committed
870
        coord_arrays = [tstarts]
Gregory Ashton's avatar
Gregory Ashton committed
871
872
        for tup in (self.F0s, self.F1s, self.F2s,
                    self.Alphas, self.Deltas):
Gregory Ashton's avatar
Gregory Ashton committed
873
            coord_arrays.append(self.get_array_from_tuple(tup))
Gregory Ashton's avatar
Gregory Ashton committed
874
875

        input_data = []
Gregory Ashton's avatar
Gregory Ashton committed
876
        for vals in itertools.product(*coord_arrays):
Gregory Ashton's avatar
Gregory Ashton committed
877
878
879
880
881
882
            input_data.append(vals)

        input_data = np.array(input_data)
        input_data = np.insert(
            input_data, 1, input_data[:, 0] + self.window_size, axis=1)

Gregory Ashton's avatar
Gregory Ashton committed
883
        self.coord_arrays = coord_arrays
Gregory Ashton's avatar
Gregory Ashton committed
884
885
886
        self.input_data = np.array(input_data)

    def plot_sliding_window(self, F0=None, ax=None, savefig=True,
887
                            colorbar=True, timestamps=False):
Gregory Ashton's avatar
Gregory Ashton committed
888
889
890
891
892
893
894
895
896
897
898
        data = self.data
        if ax is None:
            ax = plt.subplot()
        tstarts = np.unique(data[:, 0])
        tends = np.unique(data[:, 1])
        frequencies = np.unique(data[:, 2])
        twoF = data[:, -1]
        tmids = (tstarts + tends) / 2.0
        dts = (tmids - self.minStartTime) / 86400.
        if F0:
            frequencies = frequencies - F0
899
            ax.set_ylabel('Frequency - $f_0$ [Hz] \n $f_0={:0.2f}$'.format(F0))
Gregory Ashton's avatar
Gregory Ashton committed
900
901
902
903
904
905
906
907
908
        else:
            ax.set_ylabel('Frequency [Hz]')
        twoF = twoF.reshape((len(tmids), len(frequencies)))
        Y, X = np.meshgrid(frequencies, dts)
        pax = ax.pcolormesh(X, Y, twoF)
        if colorbar:
            cb = plt.colorbar(pax, ax=ax)
            cb.set_label('$2\mathcal{F}$')
        ax.set_xlabel(
909
910
            r'Mid-point (days after $t_\mathrm{{start}}$={})'.format(
                self.minStartTime))
Gregory Ashton's avatar
Gregory Ashton committed
911
912
        ax.set_title(
            'Sliding window length = {} days in increments of {} days'
913
914
915
916
917
918
919
            .format(self.window_size/86400, self.window_delta/86400),
            )
        if timestamps:
            axT = ax.twiny()
            axT.set_xlim(tmids[0]*1e-9, tmids[-1]*1e-9)
            axT.set_xlabel('Mid-point timestamp [GPS $10^{9}$ s]')
            ax.set_title(ax.get_title(), y=1.18)
Gregory Ashton's avatar
Gregory Ashton committed
920
921
922
923
924
925
        if savefig:
            plt.tight_layout()
            plt.savefig(
                '{}/{}_sliding_window.png'.format(self.outdir, self.label))
        else:
            return ax
926
927


Gregory Ashton's avatar
Gregory Ashton committed
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
class EarthTest(GridSearch):
    """ """
    tex_labels = {'deltaRadius': '$\Delta R$ [m]',
                  'phaseOffset': 'phase-offset [rad]',
                  'deltaPspin': '$\Delta P_\mathrm{spin}$ [s]'}

    @helper_functions.initializer
    def __init__(self, label, outdir, sftfilepattern, deltaRadius,
                 phaseOffset, deltaPspin, F0, F1, F2, Alpha,
                 Delta, tref=None, minStartTime=None, maxStartTime=None,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, injectSources=None,
                 assumeSqrtSX=None):
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
        F0, F1, F2, Alpha, Delta: float
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """
955
956
957
958
        self.transientWindowType = None
        self.t0Band = None
        self.tauBand = None

959
960
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
Gregory Ashton's avatar
Gregory Ashton committed
961
962
963
964
965
966
        self.nsegs = 1
        self.F0s = [F0]
        self.F1s = [F1]
        self.F2s = [F2]
        self.Alphas = [Alpha]
        self.Deltas = [Delta]
967
        self.duration = maxStartTime - minStartTime
Gregory Ashton's avatar
Gregory Ashton committed
968
969
        self.deltaRadius = np.atleast_1d(deltaRadius)
        self.phaseOffset = np.atleast_1d(phaseOffset)
970
        self.phaseOffset = self.phaseOffset + 1e-12  # Hack to stop cached data being used
Gregory Ashton's avatar
Gregory Ashton committed
971
972
973
974
975
        self.deltaPspin = np.atleast_1d(deltaPspin)
        self.set_out_file()
        self.SSBprec = lalpulsar.SSBPREC_RELATIVISTIC
        self.keys = ['deltaRadius', 'phaseOffset', 'deltaPspin']

976
977
978
979
980
981
982
983
        self.prior_widths = [
            np.max(self.deltaRadius)-np.min(self.deltaRadius),
            np.max(self.phaseOffset)-np.min(self.phaseOffset),
            np.max(self.deltaPspin)-np.min(self.deltaPspin)]

        if hasattr(self, 'search') is False:
            self.inititate_search_object()

Gregory Ashton's avatar
Gregory Ashton committed
984
985
986
987
988
989
990
991
992
    def get_input_data_array(self):
        logging.info("Generating input data array")
        coord_arrays = [self.deltaRadius, self.phaseOffset, self.deltaPspin]
        input_data = []
        for vals in itertools.product(*coord_arrays):
                input_data.append(vals)
        self.input_data = np.array(input_data)
        self.coord_arrays = coord_arrays

993
994
995
996
997
998
999
1000
    def run_special(self):
        vals = [self.minStartTime, self.maxStartTime, self.F0, self.F1,
                self.F2, self.Alpha, self.Delta]
        self.special_data = {'zero': [0, 0, 0]}
        for key, (dR, dphi, dP) in self.special_data.iteritems():
            rescaleRadius = (1 + dR / lal.REARTH_SI)
            rescalePeriod = (1 + dP / lal.DAYSID_SI)
            lalpulsar.BarycenterModifyEarthRotation(