mcmc_based_searches.py 97.1 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" Searches using MCMC-based methods """
2
from __future__ import division, absolute_import, print_function
Gregory Ashton's avatar
Gregory Ashton committed
3

4
import sys
Gregory Ashton's avatar
Gregory Ashton committed
5
import os
6
import copy
Gregory Ashton's avatar
Gregory Ashton committed
7
import logging
8
from collections import OrderedDict
9
import subprocess
10
11
12
13

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
Gregory Ashton's avatar
Gregory Ashton committed
14
from ptemcee import Sampler as PTSampler
15
16
17
import corner
import dill as pickle

18
import pyfstat.core as core
19
20
from pyfstat.core import tqdm, args, read_par
import pyfstat.optimal_setup_functions as optimal_setup_functions
21
import pyfstat.helper_functions as helper_functions
22
23


24
class MCMCSearch(core.BaseSearchClass):
Gregory Ashton's avatar
Gregory Ashton committed
25
    """MCMC search using ComputeFstat
26
27
28
29
30
31
32
33
34

    Parameters
    ----------
    theta_prior: dict
        Dictionary of priors and fixed values for the search parameters.
        For each parameters (key of the dict), if it is to be held fixed
        the value should be the constant float, if it is be searched, the
        value should be a dictionary of the prior.
    tref, minStartTime, maxStartTime: int
35
36
37
38
39
40
41
        GPS seconds of the reference time, start time and end time. While tref
        is requirede, minStartTime and maxStartTime default to None in which
        case all available data is used.
    label, outdir: str
        A label and output directory (optional, defaults is `'data'`) to
        name files
    sftfilepattern: str, optional
Gregory Ashton's avatar
Gregory Ashton committed
42
43
        Pattern to match SFTs using wildcards (*?) and ranges [0-9];
        mutiple patterns can be given separated by colons.
44
    detectors: str, optional
Gregory Ashton's avatar
Gregory Ashton committed
45
46
        Two character reference to the detectors to use, specify None for no
        contraint and comma separate for multiple references.
47
    nsteps: list (2,), optional
48
49
50
        Number of burn-in and production steps to take, [nburn, nprod]. See
        `pyfstat.MCMCSearch.setup_initialisation()` for details on adding
        initialisation steps.
51
    nwalkers, ntemps: int, optional
52
53
        The number of walkers and temperates to use in the parallel
        tempered PTSampler.
54
    log10beta_min float < 0, optional
55
56
        The  log_10(beta) value, if given the set of betas passed to PTSampler
        are generated from `np.logspace(0, log10beta_min, ntemps)` (given
Gregory Ashton's avatar
Gregory Ashton committed
57
        in descending order to ptemcee).
58
    theta_initial: dict, array, optional
59
60
        A dictionary of distribution about which to distribute the
        initial walkers about
61
    rhohatmax: float, optional
62
63
64
        Upper bound for the SNR scale parameter (required to normalise the
        Bayes factor) - this needs to be carefully set when using the
        evidence.
65
    binary: bool, optional
66
        If true, search over binary parameters
67
    BSGL: bool, optional
Gregory Ashton's avatar
Gregory Ashton committed
68
        If true, use the BSGL statistic
69
    SSBPrec: int, optional
Gregory Ashton's avatar
Gregory Ashton committed
70
        SSBPrec (SSB precision) to use when calling ComputeFstat
71
    minCoverFreq, maxCoverFreq: float, optional
72
73
        Minimum and maximum instantaneous frequency which will be covered
        over the SFT time span as passed to CreateFstatInput
74
    injectSources: dict, optional
Gregory Ashton's avatar
Gregory Ashton committed
75
76
        If given, inject these properties into the SFT files before running
        the search
77
    assumeSqrtSX: float, optional
Gregory Ashton's avatar
Gregory Ashton committed
78
        Don't estimate noise-floors, but assume (stationary) per-IFO sqrt{SX}
David Keitel's avatar
David Keitel committed
79
80
81
82
83
84
    transientWindowType: str
        If 'rect' or 'exp',
        compute atoms so that a transient (t0,tau) map can later be computed.
        ('none' instead of None explicitly calls the transient-window function,
        but with the full range, for debugging)
        Currently only supported for nsegs=1.
85
86
87
    tCWFstatMapVersion: str
        Choose between standard 'lal' implementation,
        'pycuda' for gpu, and some others for devel/debug.
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

    Attributes
    ----------
    symbol_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), to Latex math
        symbols for plots
    unit_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), and the
        units (i.e. `Hz`)
    transform_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), where the key is
        itself a dictionary which can item `multiplier`, `subtractor`, or
        `unit` by which to transform by and update the units.

    """
103
104

    symbol_dictionary = dict(
105
        F0='$f$', F1='$\dot{f}$', F2='$\ddot{f}$', Alpha=r'$\alpha$',
106
107
        Delta='$\delta$', asini='asini', period='P', ecc='ecc', tp='tp',
        argp='argp')
108
    unit_dictionary = dict(
109
110
        F0='Hz', F1='Hz/s', F2='Hz/s$^2$', Alpha=r'rad', Delta='rad',
        asini='', period='s', ecc='', tp='', argp='')
111
    transform_dictionary = {}
112

Gregory Ashton's avatar
Gregory Ashton committed
113
    @helper_functions.initializer
114
115
116
    def __init__(self, theta_prior, tref, label, outdir='data',
                 minStartTime=None, maxStartTime=None, sftfilepattern=None,
                 detectors=None, nsteps=[100, 100], nwalkers=100, ntemps=1,
117
                 log10beta_min=-5, theta_initial=None,
118
                 rhohatmax=1000, binary=False, BSGL=False,
Gregory Ashton's avatar
Gregory Ashton committed
119
                 SSBprec=None, minCoverFreq=None, maxCoverFreq=None,
David Keitel's avatar
David Keitel committed
120
                 injectSources=None, assumeSqrtSX=None,
121
                 transientWindowType=None, tCWFstatMapVersion='lal'):
122

Gregory Ashton's avatar
Gregory Ashton committed
123
124
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
125
        self._add_log_file()
126
        logging.info('Set-up MCMC search for model {}'.format(self.label))
127
128
        if sftfilepattern:
            logging.info('Using data {}'.format(self.sftfilepattern))
129
        else:
130
            logging.info('No sftfilepattern given')
131
132
        if injectSources:
            logging.info('Inject sources: {}'.format(injectSources))
133
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
134
        self._unpack_input_theta()
135
        self.ndim = len(self.theta_keys)
136
137
        if self.log10beta_min:
            self.betas = np.logspace(0, self.log10beta_min, self.ntemps)
138
139
        else:
            self.betas = None
140

141
142
143
        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

144
        self._set_likelihoodcoef()
145
        self._log_input()
146
147
148

    def _set_likelihoodcoef(self):
        self.likelihoodcoef = np.log(70./self.rhohatmax**4)
149

150
    def _log_input(self):
151
        logging.info('theta_prior = {}'.format(self.theta_prior))
152
        logging.info('nwalkers={}'.format(self.nwalkers))
153
154
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
155
156
        logging.info('log10beta_min = {}'.format(
            self.log10beta_min))
157

158
    def _initiate_search_object(self):
159
        logging.info('Setting up search object')
160
        self.search = core.ComputeFstat(
161
            tref=self.tref, sftfilepattern=self.sftfilepattern,
162
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
David Keitel's avatar
David Keitel committed
163
164
            detectors=self.detectors, BSGL=self.BSGL,
            transientWindowType=self.transientWindowType,
165
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
166
            binary=self.binary, injectSources=self.injectSources,
167
168
            assumeSqrtSX=self.assumeSqrtSX, SSBprec=self.SSBprec,
            tCWFstatMapVersion=self.tCWFstatMapVersion)
169
170
171
172
        if self.minStartTime is None:
            self.minStartTime = self.search.minStartTime
        if self.maxStartTime is None:
            self.maxStartTime = self.search.maxStartTime
173
174

    def logp(self, theta_vals, theta_prior, theta_keys, search):
175
        H = [self._generic_lnprior(**theta_prior[key])(p) for p, key in
176
177
178
179
180
181
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
182
183
184
        twoF = search.get_fullycoherent_twoF(
            self.minStartTime, self.maxStartTime, *self.fixed_theta)
        return twoF/2.0 + self.likelihoodcoef
185

186
    def _unpack_input_theta(self):
187
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']
188
189
190
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
191
192
        full_theta_keys_copy = copy.copy(full_theta_keys)

193
194
        full_theta_symbols = ['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                              r'$\delta$']
195
196
        if self.binary:
            full_theta_symbols += [
197
                'asini', 'period', 'ecc', 'tp', 'argp']
198

199
200
        self.theta_keys = []
        fixed_theta_dict = {}
201
        for key, val in self.theta_prior.iteritems():
202
203
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
204
                self.theta_keys.append(key)
205
206
207
208
209
210
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
211
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

227
228
229
230
231
232
233
234
235
    def _evaluate_logpost(self, p0vec):
        init_logp = np.array([
            self.logp(p, self.theta_prior, self.theta_keys, self.search)
            for p in p0vec])
        init_logl = np.array([
            self.logl(p, self.search)
            for p in p0vec])
        return init_logl + init_logp

236
    def _check_initial_points(self, p0):
237
238
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
239
240
            num = sum(self._evaluate_logpost(p0[nt]) == -np.inf)
            if num > 0:
241
242
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
243
                    .format(len(p0[0]), num))
244
                p0 = self._generate_new_p0_to_fix_initial_points(
245
                    p0, nt)
246

247
    def _generate_new_p0_to_fix_initial_points(self, p0, nt):
248
        logging.info('Attempting to correct intial values')
249
250
        init_logpost = self._evaluate_logpost(p0[nt])
        idxs = np.arange(self.nwalkers)[init_logpost == -np.inf]
251
        count = 0
252
        while sum(init_logpost == -np.inf) > 0 and count < 100:
253
254
255
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
256
            init_logpost = self._evaluate_logpost(p0[nt])
257
258
            count += 1

259
        if sum(init_logpost == -np.inf) > 0:
260
261
262
263
264
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
265

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    def setup_initialisation(self, nburn0, scatter_val=1e-10):
        """ Add an initialisation step to the MCMC run

        If called prior to `run()`, adds an intial step in which the MCMC
        simulation is run for `nburn0` steps. After this, the MCMC simulation
        continues in the usual manner (i.e. for nburn and nprod steps), but the
        walkers are reset scattered around the maximum likelihood position
        of the initialisation step.

        Parameters
        ----------
        nburn0: int
            Number of initialisation steps to take
        scatter_val: float
            Relative number to scatter walkers around the maximum likelihood
            position after the initialisation step

        """

        logging.info('Setting up initialisation with nburn0={}, scatter_val={}'
                     .format(nburn0, scatter_val))
        self.nsteps = [nburn0] + self.nsteps
        self.scatter_val = scatter_val

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
#    def setup_burnin_convergence_testing(
#            self, n=10, test_type='autocorr', windowed=False, **kwargs):
#        """ Set up convergence testing during the MCMC simulation
#
#        Parameters
#        ----------
#        n: int
#            Number of steps after which to test convergence
#        test_type: str ['autocorr', 'GR']
#            If 'autocorr' use the exponential autocorrelation time (kwargs
#            passed to `get_autocorr_convergence`). If 'GR' use the Gelman-Rubin
#            statistic (kwargs passed to `get_GR_convergence`)
#        windowed: bool
#            If True, only calculate the convergence test in a window of length
#            `n`
#        **kwargs:
#            Passed to either `_test_autocorr_convergence()` or
#            `_test_GR_convergence()` depending on `test_type`.
#
#        """
#        logging.info('Setting up convergence testing')
#        self.convergence_n = n
#        self.convergence_windowed = windowed
#        self.convergence_test_type = test_type
#        self.convergence_kwargs = kwargs
#        self.convergence_diagnostic = []
#        self.convergence_diagnosticx = []
#        if test_type in ['autocorr']:
#            self._get_convergence_test = self._test_autocorr_convergence
#        elif test_type in ['GR']:
#            self._get_convergence_test = self._test_GR_convergence
#        else:
#            raise ValueError('test_type {} not understood'.format(test_type))
#
#
#    def _test_autocorr_convergence(self, i, sampler, test=True, n_cut=5):
#        try:
#            acors = np.zeros((self.ntemps, self.ndim))
#            for temp in range(self.ntemps):
#                if self.convergence_windowed:
#                    j = i-self.convergence_n
#                else:
#                    j = 0
#                x = np.mean(sampler.chain[temp, :, j:i, :], axis=0)
#                acors[temp, :] = emcee.autocorr.exponential_time(x)
#            c = np.max(acors, axis=0)
#        except emcee.autocorr.AutocorrError:
#            logging.info('Failed to calculate exponential autocorrelation')
#            c = np.zeros(self.ndim) + np.nan
#        except AttributeError:
#            logging.info('Unable to calculate exponential autocorrelation')
#            c = np.zeros(self.ndim) + np.nan
#
#        self.convergence_diagnosticx.append(i - self.convergence_n/2.)
#        self.convergence_diagnostic.append(list(c))
#
#        if test:
#            return i > n_cut * np.max(c)
#
#    def _test_GR_convergence(self, i, sampler, test=True, R=1.1):
#        if self.convergence_windowed:
#            s = sampler.chain[0, :, i-self.convergence_n+1:i+1, :]
#        else:
#            s = sampler.chain[0, :, :i+1, :]
#        N = float(self.convergence_n)
#        M = float(self.nwalkers)
#        W = np.mean(np.var(s, axis=1), axis=0)
#        per_walker_mean = np.mean(s, axis=1)
#        mean = np.mean(per_walker_mean, axis=0)
#        B = N / (M-1.) * np.sum((per_walker_mean-mean)**2, axis=0)
#        Vhat = (N-1)/N * W + (M+1)/(M*N) * B
#        c = np.sqrt(Vhat/W)
#        self.convergence_diagnostic.append(c)
#        self.convergence_diagnosticx.append(i - self.convergence_n/2.)
#
#        if test and np.max(c) < R:
#            return True
#        else:
#            return False
#
#    def _test_convergence(self, i, sampler, **kwargs):
#        if np.mod(i+1, self.convergence_n) == 0:
#            return self._get_convergence_test(i, sampler, **kwargs)
#        else:
#            return False
#
#    def _run_sampler_with_conv_test(self, sampler, p0, nprod=0, nburn=0):
#        logging.info('Running {} burn-in steps with convergence testing'
#                     .format(nburn))
#        iterator = tqdm(sampler.sample(p0, iterations=nburn), total=nburn)
#        for i, output in enumerate(iterator):
#            if self._test_convergence(i, sampler, test=True,
#                                      **self.convergence_kwargs):
#                logging.info(
#                    'Converged at {} before max number {} of steps reached'
#                    .format(i, nburn))
#                self.convergence_idx = i
#                break
#        iterator.close()
#        logging.info('Running {} production steps'.format(nprod))
#        j = nburn
#        iterator = tqdm(sampler.sample(output[0], iterations=nprod),
#                        total=nprod)
#        for result in iterator:
#            self._test_convergence(j, sampler, test=False,
#                                   **self.convergence_kwargs)
#            j += 1
#        return sampler

    def _run_sampler(self, sampler, p0, nprod=0, nburn=0, window=50):
        for result in tqdm(sampler.sample(p0, iterations=nburn+nprod),
                           total=nburn+nprod):
            pass
403

404
405
        self.mean_acceptance_fraction = np.mean(
            sampler.acceptance_fraction, axis=1)
406
        logging.info("Mean acceptance fraction: {}"
407
                     .format(self.mean_acceptance_fraction))
408
        if self.ntemps > 1:
409
            self.tswap_acceptance_fraction = sampler.tswap_acceptance_fraction
410
411
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
Gregory Ashton's avatar
Gregory Ashton committed
412
413
414
        self.autocorr_time = sampler.get_autocorr_time(window=window)
        logging.info("Autocorrelation length: {}".format(
            self.autocorr_time))
415
416
417

        return sampler

418
    def _estimate_run_time(self):
419
420
421
422
423
424
425
426
427
428
        """ Print the estimated run time

        Uses timing coefficients based on a Lenovo T460p Intel(R)
        Core(TM) i5-6300HQ CPU @ 2.30GHz.

        """
        # Todo: add option to time on a machine, and move coefficients to
        # ~/.pyfstat.conf
        if (type(self.theta_prior['Alpha']) == dict or
                type(self.theta_prior['Delta']) == dict):
Gregory Ashton's avatar
Gregory Ashton committed
429
430
431
432
            tau0LD = 5.2e-7
            tau0T = 1.5e-8
            tau0S = 1.2e-4
            tau0C = 5.8e-6
433
        else:
Gregory Ashton's avatar
Gregory Ashton committed
434
            tau0LD = 1.3e-7
435
            tau0T = 1.5e-8
Gregory Ashton's avatar
Gregory Ashton committed
436
437
            tau0S = 9.1e-5
            tau0C = 5.5e-6
438
        Nsfts = (self.maxStartTime - self.minStartTime) / 1800.
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
        if hasattr(self, 'run_setup'):
            ts = []
            for row in self.run_setup:
                nsteps = row[0]
                nsegs = row[1]
                numb_evals = np.sum(nsteps)*self.nwalkers*self.ntemps
                t = (tau0S + tau0LD*Nsfts) * numb_evals
                if nsegs > 1:
                    t += (tau0C + tau0T*Nsfts)*nsegs*numb_evals
                ts.append(t)
            time = np.sum(ts)
        else:
            numb_evals = np.sum(self.nsteps)*self.nwalkers*self.ntemps
            time = (tau0S + tau0LD*Nsfts) * numb_evals
            if getattr(self, 'nsegs', 1) > 1:
                time += (tau0C + tau0T*Nsfts)*self.nsegs*numb_evals

456
        logging.info('Estimated run-time = {} s = {:1.0f}:{:1.0f} m'.format(
457
            time, *divmod(time, 60)))
458

Gregory Ashton's avatar
Gregory Ashton committed
459
460
    def run(self, proposal_scale_factor=2, create_plots=True, window=50,
            **kwargs):
461
462
463
464
465
466
467
468
469
470
471
        """ Run the MCMC simulatation

        Parameters
        ----------
        proposal_scale_factor: float
            The proposal scale factor used by the sampler, see Goodman & Weare
            (2010). If the acceptance fraction is too low, you can raise it by
            decreasing the a parameter; and if it is too high, you can reduce
            it by increasing the a parameter [Foreman-Mackay (2013)].
        create_plots: bool
            If true, save trace plots of the walkers
Gregory Ashton's avatar
Gregory Ashton committed
472
        window: int
473
474
            The minimum number of autocorrelation times needed to trust the
            result when estimating the autocorrelation time (see
Gregory Ashton's avatar
Gregory Ashton committed
475
            ptemcee.Sampler.get_autocorr_time for further details.
476
477
478
        **kwargs:
            Passed to _plot_walkers to control the figures

479
480
        Returns
        -------
Gregory Ashton's avatar
Gregory Ashton committed
481
482
        sampler: ptemcee.Sampler
            The ptemcee ptsampler object
483

484
        """
485

486
        self.old_data_is_okay_to_use = self._check_old_data_is_okay_to_use()
487
488
489
        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
490
            d = self.get_saved_data_dictionary()
491
492
493
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
494
            self.all_lnlikelihood = d['all_lnlikelihood']
495
            self.chain = d['chain']
496
497
            return

498
        self._initiate_search_object()
499
        self._estimate_run_time()
500

Gregory Ashton's avatar
Gregory Ashton committed
501
502
503
        sampler = PTSampler(
            ntemps=self.ntemps, nwalkers=self.nwalkers, dim=self.ndim,
            logl=self.logl, logp=self.logp,
504
            logpargs=(self.theta_prior, self.theta_keys, self.search),
505
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
506

507
508
509
        p0 = self._generate_initial_p0()
        p0 = self._apply_corrections_to_p0(p0)
        self._check_initial_points(p0)
510

511
        # Run initialisation steps if required
512
513
514
        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
Gregory Ashton's avatar
Gregory Ashton committed
515
                j, ninit_steps, n))
Gregory Ashton's avatar
Gregory Ashton committed
516
            sampler = self._run_sampler(sampler, p0, nburn=n, window=window)
517
            if create_plots:
518
                fig, axes = self._plot_walkers(sampler,
519
                                               **kwargs)
520
521
                fig.tight_layout()
                fig.savefig('{}/{}_init_{}_walkers.png'.format(
Gregory Ashton's avatar
Gregory Ashton committed
522
                    self.outdir, self.label, j))
523

524
525
526
            p0 = self._get_new_p0(sampler)
            p0 = self._apply_corrections_to_p0(p0)
            self._check_initial_points(p0)
527
528
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
529
530
531
532
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
533
534
535
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
536
        sampler = self._run_sampler(sampler, p0, nburn=nburn, nprod=nprod)
537

538
        if create_plots:
539
540
541
542
543
544
545
            try:
                fig, axes = self._plot_walkers(sampler, nprod=nprod, **kwargs)
                fig.tight_layout()
                fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label))
            except RuntimeError as e:
                logging.warning("Failed to save walker plots due to Erro {}"
                                .format(e))
546
547

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
Gregory Ashton's avatar
Gregory Ashton committed
548
549
550
        lnprobs = sampler.logprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.loglikelihood[0, :, nburn:].reshape((-1))
        all_lnlikelihood = sampler.loglikelihood[:, :, nburn:]
551
        self.samples = samples
552
        self.chain = sampler.chain
553
554
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
555
        self.all_lnlikelihood = all_lnlikelihood
556
557
        self._save_data(sampler, samples, lnprobs, lnlikes, all_lnlikelihood,
                        sampler.chain)
Gregory Ashton's avatar
Gregory Ashton committed
558
        return sampler
559

560
    def _get_rescale_multiplier_for_key(self, key):
561
        """ Get the rescale multiplier from the transform_dictionary
562
563
564
565
566

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
567
        if key not in self.transform_dictionary:
568
569
            return 1

570
571
        if 'multiplier' in self.transform_dictionary[key]:
            val = self.transform_dictionary[key]['multiplier']
572
573
574
            if type(val) == str:
                if hasattr(self, val):
                    multiplier = getattr(
575
                        self, self.transform_dictionary[key]['multiplier'])
576
577
578
579
580
581
582
583
584
                else:
                    raise ValueError(
                        "multiplier {} not a class attribute".format(val))
            else:
                multiplier = val
        else:
            multiplier = 1
        return multiplier

585
    def _get_rescale_subtractor_for_key(self, key):
586
        """ Get the rescale subtractor from the transform_dictionary
587
588
589
590
591

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
592
        if key not in self.transform_dictionary:
593
594
            return 0

595
596
        if 'subtractor' in self.transform_dictionary[key]:
            val = self.transform_dictionary[key]['subtractor']
597
598
599
            if type(val) == str:
                if hasattr(self, val):
                    subtractor = getattr(
600
                        self, self.transform_dictionary[key]['subtractor'])
601
602
603
604
605
606
607
608
609
                else:
                    raise ValueError(
                        "subtractor {} not a class attribute".format(val))
            else:
                subtractor = val
        else:
            subtractor = 0
        return subtractor

610
    def _scale_samples(self, samples, theta_keys):
611
        """ Scale the samples using the transform_dictionary """
612
        for key in theta_keys:
613
            if key in self.transform_dictionary:
614
615
                idx = theta_keys.index(key)
                s = samples[:, idx]
616
                subtractor = self._get_rescale_subtractor_for_key(key)
617
                s = s - subtractor
618
                multiplier = self._get_rescale_multiplier_for_key(key)
619
                s *= multiplier
620
621
                samples[:, idx] = s

622
623
        return samples

624
    def _get_labels(self, newline_units=False):
625
        """ Combine the units, symbols and rescaling to give labels """
626

627
628
629
630
631
632
        labels = []
        for key in self.theta_keys:
            label = None
            s = self.symbol_dictionary[key]
            s.replace('_{glitch}', r'_\textrm{glitch}')
            u = self.unit_dictionary[key]
633
634
635
636
637
638
639
            if key in self.transform_dictionary:
                if 'symbol' in self.transform_dictionary[key]:
                    s = self.transform_dictionary[key]['symbol']
                if 'label' in self.transform_dictionary[key]:
                    label = self.transform_dictionary[key]['label']
                if 'unit' in self.transform_dictionary[key]:
                    u = self.transform_dictionary[key]['unit']
640
            if label is None:
641
642
643
644
                if newline_units:
                    label = '{} \n [{}]'.format(s, u)
                else:
                    label = '{} [{}]'.format(s, u)
645
646
            labels.append(label)
        return labels
647

648
649
    def plot_corner(self, figsize=(7, 7), add_prior=False, nstds=None,
                    label_offset=0.4, dpi=300, rc_context={},
650
                    tglitch_ratio=False, fig_and_axes=None, save_fig=True,
651
                    **kwargs):
652
653
654
655
656
657
658
659
660
        """ Generate a corner plot of the posterior

        Using the `corner` package (https://pypi.python.org/pypi/corner/),
        generate estimates of the posterior from the production samples.

        Parameters
        ----------
        figsize: tuple (7, 7)
            Figure size in inches (passed to plt.subplots)
661
662
663
        add_prior: bool, str
            If true, plot the prior as a red line. If 'full' then for uniform
            priors plot the full extent of the prior.
664
665
666
667
668
669
670
671
672
673
674
675
676
677
        nstds: float
            The number of standard deviations to plot centered on the mean
        label_offset: float
            Offset the labels from the plot: useful to precent overlapping the
            tick labels with the axis labels
        dpi: int
            Passed to plt.savefig
        rc_context: dict
            Dictionary of rc values to set while generating the figure (see
            matplotlib rc for more details)
        tglitch_ratio: bool
            If true, and tglitch is a parameter, plot posteriors as the
            fractional time at which the glitch occurs instead of the actual
            time
678
679
680
681
682
        fig_and_axes: tuple
            fig and axes to plot on, the axes must be of the right shape,
            namely (ndim, ndim)
        save_fig: bool
            If true, save the figure, else return the fig, axes
683
684
        **kwargs:
            Passed to corner.corner
685

686
687
688
689
        Returns
        -------
        fig, axes:
            The matplotlib figure and axes, only returned if save_fig = False
690
691

        """
692

693
694
695
696
        if 'truths' in kwargs and len(kwargs['truths']) != self.ndim:
            logging.warning('len(Truths) != ndim, Truths will be ignored')
            kwargs['truths'] = None

Gregory Ashton's avatar
Gregory Ashton committed
697
698
        if self.ndim < 2:
            with plt.rc_context(rc_context):
699
700
701
702
                if fig_and_axes is None:
                    fig, ax = plt.subplots(figsize=figsize)
                else:
                    fig, ax = fig_and_axes
Gregory Ashton's avatar
Gregory Ashton committed
703
704
705
706
707
708
709
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

710
        with plt.rc_context(rc_context):
711
712
713
714
715
            if fig_and_axes is None:
                fig, axes = plt.subplots(self.ndim, self.ndim,
                                         figsize=figsize)
            else:
                fig, axes = fig_and_axes
716
717

            samples_plt = copy.copy(self.samples)
718
            labels = self._get_labels(newline_units=True)
719

720
            samples_plt = self._scale_samples(samples_plt, self.theta_keys)
721
722
723
724
725

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
726
727
728
                        samples_plt[:, j] = (
                            s - self.minStartTime)/(
                                self.maxStartTime - self.minStartTime)
729
                        labels[j] = r'$R_{\textrm{glitch}}$'
730
731
732
733
734
735
736

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
737
738
            elif 'range' in kwargs:
                _range = kwargs.pop('range')
739
740
741
            else:
                _range = None

742
743
744
745
            hist_kwargs = kwargs.pop('hist_kwargs', dict())
            if 'normed' not in hist_kwargs:
                hist_kwargs['normed'] = True

746
            fig_triangle = corner.corner(samples_plt,
747
                                         labels=labels,
748
749
750
751
752
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
753
                                         #label_kwargs={'fontsize': 12},
754
755
756
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
757
                                         hist_kwargs=hist_kwargs,
758
759
760
761
762
763
764
765
766
767
768
769
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
770
771

                for tick in ax.xaxis.get_major_ticks():
772
                    #tick.label.set_fontsize(8)
773
774
                    tick.label.set_rotation('horizontal')
                for tick in ax.yaxis.get_major_ticks():
775
                    #tick.label.set_fontsize(8)
776
777
                    tick.label.set_rotation('vertical')

778
779
780
781
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
782
                self._add_prior_to_corner(axes, self.samples, add_prior)
783

784
785
786
787
788
            if save_fig:
                fig_triangle.savefig('{}/{}_corner.png'.format(
                    self.outdir, self.label), dpi=dpi)
            else:
                return fig, axes
789

790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
    def plot_chainconsumer(
            self, save_fig=True, label_offset=0.25, dpi=300, **kwargs):
        """ Generate a corner plot of the posterior using chainconsumer

        Parameters
        ----------
        dpi: int
            Passed to plt.savefig
        **kwargs:
            Passed to chainconsumer.plotter.plot

        """

        if 'truths' in kwargs and len(kwargs['truths']) != self.ndim:
            logging.warning('len(Truths) != ndim, Truths will be ignored')
            kwargs['truths'] = None

        samples_plt = copy.copy(self.samples)
        labels = self._get_labels(newline_units=True)

        samples_plt = self._scale_samples(samples_plt, self.theta_keys)

        import chainconsumer
        c = chainconsumer.ChainConsumer()
        c.add_chain(samples_plt, parameters=labels)
        c.configure(smooth=0, summary=False, sigma2d=True)
        fig = c.plotter.plot(**kwargs)

        axes_list = fig.get_axes()
        axes = np.array(axes_list).reshape(self.ndim, self.ndim)
        plt.draw()
        for ax in axes[:, 0]:
            ax.yaxis.set_label_coords(-label_offset, 0.5)
        for ax in axes[-1, :]:
            ax.xaxis.set_label_coords(0.5, -label_offset)
        for ax in axes_list:
            ax.set_rasterized(True)
            ax.set_rasterization_zorder(-10)

            #for tick in ax.xaxis.get_major_ticks():
            #    #tick.label.set_fontsize(8)
            #    tick.label.set_rotation('horizontal')
            #for tick in ax.yaxis.get_major_ticks():
            #    #tick.label.set_fontsize(8)
            #    tick.label.set_rotation('vertical')

            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

        if save_fig:
            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
        else:
            return fig

845
    def _add_prior_to_corner(self, axes, samples, add_prior):
846
847
848
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            s = samples[:, i]
849
850
851
852
853
854
855
856
857
858
            lnprior = self._generic_lnprior(**self.theta_prior[key])
            if add_prior == 'full' and self.theta_prior[key]['type'] == 'unif':
                lower = self.theta_prior[key]['lower']
                upper = self.theta_prior[key]['upper']
                r = upper-lower
                xlim = [lower-0.05*r, upper+0.05*r]
                x = np.linspace(xlim[0], xlim[1], 1000)
            else:
                xlim = ax.get_xlim()
                x = np.linspace(s.min(), s.max(), 1000)
859
860
            multiplier = self._get_rescale_multiplier_for_key(key)
            subtractor = self._get_rescale_subtractor_for_key(key)
861
862
863
864
865
866
867
868
            ax.plot((x-subtractor)*multiplier,
                    [np.exp(lnprior(xi)) for xi in x], '-C3',
                    label='prior')

            for j in range(i, self.ndim):
                axes[j][i].set_xlim(xlim[0], xlim[1])
            for k in range(0, i):
                axes[i][k].set_ylim(xlim[0], xlim[1])
869

870
871
872
873
874
875
876
877
    def plot_prior_posterior(self, normal_stds=2):
        """ Plot the posterior in the context of the prior """
        fig, axes = plt.subplots(nrows=self.ndim, figsize=(8, 4*self.ndim))
        N = 1000
        from scipy.stats import gaussian_kde

        for i, (ax, key) in enumerate(zip(axes, self.theta_keys)):
            prior_dict = self.theta_prior[key]
878
            prior_func = self._generic_lnprior(**prior_dict)
879
880
881
882
883
            if prior_dict['type'] == 'unif':
                x = np.linspace(prior_dict['lower'], prior_dict['upper'], N)
                prior = prior_func(x)
                prior[0] = 0
                prior[-1] = 0
Gregory Ashton's avatar
Gregory Ashton committed
884
885
886
887
888
            elif prior_dict['type'] == 'log10unif':
                upper = prior_dict['log10upper']
                lower = prior_dict['log10lower']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
889
890
891
892
893
            elif prior_dict['type'] == 'norm':
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = prior_func(x)
894
895
896
897
898
            elif prior_dict['type'] == 'halfnorm':
                lower = prior_dict['loc']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
Gregory Ashton's avatar
Gregory Ashton committed
899
900
901
902
903
            elif prior_dict['type'] == 'neghalfnorm':
                upper = prior_dict['loc']
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
904
905
906
            else:
                raise ValueError('Not implemented for prior type {}'.format(
                    prior_dict['type']))
907
            priorln = ax.plot(x, prior, 'C3', label='prior')
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
            ax.set_xlabel(self.theta_symbols[i])

            s = self.samples[:, i]
            while len(s) > 10**4:
                # random downsample to avoid slow calculation of kde
                s = np.random.choice(s, size=int(len(s)/2.))
            kde = gaussian_kde(s)
            ax2 = ax.twinx()
            postln = ax2.plot(x, kde.pdf(x), 'k', label='posterior')
            ax2.set_yticklabels([])
            ax.set_yticklabels([])

        lns = priorln + postln
        labs = [l.get_label() for l in lns]
        axes[0].legend(lns, labs, loc=1, framealpha=0.8)

        fig.savefig('{}/{}_prior_posterior.png'.format(
            self.outdir, self.label))

927
    def plot_cumulative_max(self, **kwargs):
928
929
930
931
        """ Plot the cumulative twoF for the maximum posterior estimate

        See the pyfstat.core.plot_twoF_cumulative function for further details
        """
Gregory Ashton's avatar
Gregory Ashton committed
932
933
934
935
        d, maxtwoF = self.get_max_twoF()
        for key, val in self.theta_prior.iteritems():
            if key not in d:
                d[key] = val
936

937
938
939
        if 'add_pfs' in kwargs:
            self.generate_loudest()

940
        if hasattr(self, 'search') is False:
941
            self._initiate_search_object()
942
943
944
        if self.binary is False:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
945
                Alpha=d['Alpha'], Delta=d['Delta'],
946
                tstart=self.minStartTime, tend=self.maxStartTime,
947
                **kwargs)
948
949
950
951
952
        else:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
                Alpha=d['Alpha'], Delta=d['Delta'], asini=d['asini'],
                period=d['period'], ecc=d['ecc'], argp=d['argp'], tp=d['argp'],
953
                tstart=self.minStartTime, tend=self.maxStartTime, **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
954

955
    def _generic_lnprior(self, **kwargs):
956
957
958
959
        """ Return a lambda function of the pdf

        Parameters
        ----------
960
        **kwargs:
961
962
963
964
            A dictionary containing 'type' of pdf and shape parameters

        """

Gregory Ashton's avatar
Gregory Ashton committed
965
        def log_of_unif(x, a, b):
966
967
968
969
970
971
972
973
974
975
976
977
978
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

Gregory Ashton's avatar
Gregory Ashton committed
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
        def log_of_log10unif(x, log10lower, log10upper):
            log10x = np.log10(x)
            above = log10x < log10upper
            below = log10x > log10lower
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(x*np.log(10)*(log10upper-log10lower))
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(x*np.log(10)*(log10upper-log10lower))
                return p

        def log_of_halfnorm(x, loc, scale):
995
            if x < loc:
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
Gregory Ashton's avatar
Gregory Ashton committed
1010
1011
1012
1013
            return lambda x: log_of_unif(x, kwargs['lower'], kwargs['upper'])
        if kwargs['type'] == 'log10unif':
            return lambda x: log_of_log10unif(
                x, kwargs['log10lower'], kwargs['log10upper'])
1014
        elif kwargs['type'] == 'halfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
1015
            return lambda x: log_of_halfnorm(x, kwargs['loc'], kwargs['scale'])
1016
        elif kwargs['type'] == 'neghalfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
1017
1018
            return lambda x: log_of_halfnorm(
                -x, kwargs['loc'], kwargs['scale'])
1019
1020
1021
1022
1023
1024
1025
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

1026
    def _generate_rv(self, **kwargs):
1027
1028
1029
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
Gregory Ashton's avatar
Gregory Ashton committed
1030
1031
1032
        if dist_type == "log10unif":
            return 10**(np.random.uniform(low=kwargs['log10lower'],
                                          high=kwargs['log10upper']))
1033
1034
1035
1036
1037
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
1038
1039
1040
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
1041
1042
1043
1044
1045
1046
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

1047
    def _plot_walkers(self, sampler, symbols=None, alpha=0.8, color="k",
1048
1049
                      temp=0, lw=0.1, nprod=0, add_det_stat_burnin=False,
                      fig=None, axes=None, xoffset=0, plot_det_stat=False,
1050
                      context='ggplot', labelpad=5):
1051
1052
        """ Plot all the chains from a sampler """

1053
1054
        if symbols is None:
            symbols = self._get_labels()
1055
1056
1057
1058
1059
        if context not in plt.style.available:
            raise ValueError((
                'The requested context {} is not available; please select a'
                ' context from `plt.style.available`').format(context))

1060
1061
1062
        if np.ndim(axes) > 1:
            axes = axes.flatten()

1063
1064
1065
        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
1066
            chain = sampler.chain[:, :, :].copy()
1067
1068
1069
1070
1071
1072
1073
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
1074
            chain = sampler.chain[temp, :, :, :].copy()
1075

1076
1077
1078
        samples = chain.reshape((nwalkers*nsteps, ndim))
        samples = self._scale_samples(samples, self.theta_keys)
        chain = chain.reshape((nwalkers, nsteps, ndim))
1079

1080
1081
1082
1083
        if plot_det_stat:
            extra_subplots = 1
        else:
            extra_subplots = 0
1084
        with plt.style.context((context)):
Gregory Ashton's avatar
Gregory Ashton committed
1085
            plt.rcParams['text.usetex'] = True
Gregory Ashton's avatar
Gregory Ashton committed
1086
            if fig is None and axes is None:
1087
                fig = plt.figure(figsize=(4, 3.0*ndim))
1088
1089
                ax = fig.add_subplot(ndim+extra_subplots, 1, 1)
                axes = [ax] + [fig.add_subplot(ndim+extra_subplots, 1, i)
Gregory Ashton's avatar
Gregory Ashton committed
1090
                               for i in range(2, ndim+1)]
1091

Gregory Ashton's avatar
Gregory Ashton committed
1092
            idxs = np.arange(chain.shape[1])
1093
            burnin_idx = chain.shape[1] - nprod
1094
1095
1096
1097
            #if hasattr(self, 'convergence_idx'):
            #    last_idx = self.convergence_idx
            #else:
            last_idx = burnin_idx
1098
1099
            if ndim > 1:
                for i in range(ndim):
1100
                    axes[i].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
1101
                    cs = chain[:, :, i].T
1102
                    if burnin_idx > 0:
1103
                        axes[i].plot(xoffset+idxs[:last_idx+1],
1104
                                     cs[:last_idx+1],
1105
                                     color="C3", alpha=alpha,
Gregory Ashton's avatar
Gregory Ashton committed
1106
                                     lw=lw)
1107
                        axes[i].axvline(xoffset+last_idx,
1108
                                        color='k', ls='--', lw=0.5)
1109
                    axes[i].plot(xoffset+idxs[burnin_idx:],
1110
                                 cs[burnin_idx:],
Gregory Ashton's avatar
Gregory Ashton committed
1111
                                 color="k", alpha=alpha, lw=lw)
Gregory Ashton's avatar
Gregory Ashton committed
1112
1113

                    axes[i].set_xlim(0, xoffset+idxs[-1])
1114
                    if symbols:
1115
1116
1117
1118
1119
1120
1121
                        axes[i].set_ylabel(symbols[i], labelpad=labelpad)
                        #if subtractions[i] == 0:
                        #    axes[i].set_ylabel(symbols[i], labelpad=labelpad)
                        #else:
                        #    axes[i].set_ylabel(
                        #        symbols[i]+'$-$'+symbols[i]+'$^\mathrm{s}$',
                        #        labelpad=labelpad)
1122

1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
#                    if hasattr(self, 'convergence_diagnostic'):
#                        ax = axes[i].twinx()
#                        axes[i].set_zorder(ax.get_zorder()+1)
#                        axes[i].patch.set_visible(False)
#