pyfstat.py 102 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
""" Classes for various types of searches using ComputeFstatistic """
import os
import sys
import itertools
import logging
import argparse
import copy
import glob
import inspect
from functools import wraps
11
import subprocess
12
from collections import OrderedDict
13
14
15

import numpy as np
import matplotlib
16
matplotlib.use('Agg')
17
18
19
20
import matplotlib.pyplot as plt
import emcee
import corner
import dill as pickle
21
import lal
22
23
import lalpulsar

24
25
26
27
28
29
try:
    from tqdm import tqdm
except ImportError:
    def tqdm(x):
        return x

30
plt.rcParams['text.usetex'] = True
31
plt.rcParams['axes.formatter.useoffset'] = False
32

33
34
35
36
37
38
39
config_file = os.path.expanduser('~')+'/.pyfstat.conf'
if os.path.isfile(config_file):
    d = {}
    with open(config_file, 'r') as f:
        for line in f:
            k, v = line.split('=')
            k = k.replace(' ', '')
40
            v = v.replace(' ', '').replace("'", "").replace('"', '').replace('\n', '')
41
42
43
44
45
46
            d[k] = v
    earth_ephem = d['earth_ephem']
    sun_ephem = d['sun_ephem']
else:
    logging.warning('No ~/.pyfstat.conf file found please provide the paths '
                    'when initialising searches')
47
48
49
    earth_ephem = None
    sun_ephem = None

50
51
52
53
54
parser = argparse.ArgumentParser()
parser.add_argument("-q", "--quite", help="Decrease output verbosity",
                    action="store_true")
parser.add_argument("-c", "--clean", help="Don't use cached data",
                    action="store_true")
55
parser.add_argument("-u", "--use-old-data", action="store_true")
56
57
58
59
parser.add_argument('unittest_args', nargs='*')
args, unknown = parser.parse_known_args()
sys.argv[1:] = args.unittest_args

Gregory Ashton's avatar
Gregory Ashton committed
60
61
62
63

logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
stream_handler = logging.StreamHandler()
64
if args.quite:
Gregory Ashton's avatar
Gregory Ashton committed
65
    stream_handler.setLevel(logging.WARNING)
66
else:
Gregory Ashton's avatar
Gregory Ashton committed
67
68
69
70
    stream_handler.setLevel(logging.DEBUG)
stream_handler.setFormatter(logging.Formatter(
    '%(asctime)s %(levelname)-8s: %(message)s', datefmt='%H:%M'))
logger.addHandler(stream_handler)
71

72
73

def initializer(func):
74
    """ Decorator function to automatically assign the parameters to self """
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    names, varargs, keywords, defaults = inspect.getargspec(func)

    @wraps(func)
    def wrapper(self, *args, **kargs):
        for name, arg in list(zip(names[1:], args)) + list(kargs.items()):
            setattr(self, name, arg)

        for name, default in zip(reversed(names), reversed(defaults)):
            if not hasattr(self, name):
                setattr(self, name, default)

        func(self, *args, **kargs)

    return wrapper


def read_par(label, outdir):
92
    """ Read in a .par file, returns a dictionary of the values """
93
94
95
96
    filename = '{}/{}.par'.format(outdir, label)
    d = {}
    with open(filename, 'r') as f:
        for line in f:
97
98
99
            if len(line.split('=')) > 1:
                key, val = line.rstrip('\n').split(' = ')
                key = key.strip()
100
                d[key] = np.float64(eval(val.rstrip('; ')))
101
102
103
104
    return d


class BaseSearchClass(object):
105
    """ The base search class, provides general functions """
106
107
108
109

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

110
    def add_log_file(self):
111
        """ Log output to a file, requires class to have outdir and label """
112
113
        logfilename = '{}/{}.log'.format(self.outdir, self.label)
        fh = logging.FileHandler(logfilename)
Gregory Ashton's avatar
Gregory Ashton committed
114
        fh.setLevel(logging.INFO)
115
116
117
118
119
        fh.setFormatter(logging.Formatter(
            '%(asctime)s %(levelname)-8s: %(message)s',
            datefmt='%y-%m-%d %H:%M'))
        logging.getLogger().addHandler(fh)

120
    def shift_matrix(self, n, dT):
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        """ Generate the shift matrix

        Parameters
        ----------
        n: int
            The dimension of the shift-matrix to generate
        dT: float
            The time delta of the shift matrix

        Returns
        -------
        m: array (n, n)
            The shift matrix
        """

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        m = np.zeros((n, n))
        factorial = np.math.factorial
        for i in range(n):
            for j in range(n):
                if i == j:
                    m[i, j] = 1.0
                elif i > j:
                    m[i, j] = 0.0
                else:
                    if i == 0:
                        m[i, j] = 2*np.pi*float(dT)**(j-i) / factorial(j-i)
                    else:
                        m[i, j] = float(dT)**(j-i) / factorial(j-i)
        return m

    def shift_coefficients(self, theta, dT):
        """ Shift a set of coefficients by dT

        Parameters
        ----------
        theta: array-like, shape (n,)
            vector of the expansion coefficients to transform starting from the
158
            lowest degree e.g [phi, F0, F1,...].
159
        dT: float
160
            difference between the two reference times as tref_new - tref_old.
161
162
163
164

        Returns
        -------
        theta_new: array-like shape (n,)
165
            vector of the coefficients as evaluate as the new reference time.
166
        """
167

168
169
170
171
        n = len(theta)
        m = self.shift_matrix(n, dT)
        return np.dot(m, theta)

172
    def calculate_thetas(self, theta, delta_thetas, tbounds, theta0_idx=0):
173
174
175
        """ Calculates the set of coefficients for the post-glitch signal """
        thetas = [theta]
        for i, dt in enumerate(delta_thetas):
176
177
178
179
180
181
182
183
184
185
186
187
188
            if i < theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[0], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch - dt
                thetas.insert(0, self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))

            elif i >= theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[i], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch + dt
                thetas.append(self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))
189
190
191
        return thetas


Gregory Ashton's avatar
Gregory Ashton committed
192
class ComputeFstat(object):
193
    """ Base class providing interface to `lalpulsar.ComputeFstat` """
Gregory Ashton's avatar
Gregory Ashton committed
194
195
196
197
198

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

    @initializer
199
200
    def __init__(self, tref, sftfilepath=None, minStartTime=None,
                 maxStartTime=None, binary=False, transient=True, BSGL=False,
201
202
                 detector=None, minCoverFreq=None, maxCoverFreq=None,
                 earth_ephem=None, sun_ephem=None,
203
                 ):
204
205
206
207
208
        """
        Parameters
        ----------
        tref: int
            GPS seconds of the reference time.
209
210
        sftfilepath: str
            File patern to match SFTs
211
212
213
214
215
216
217
218
219
220
221
222
        minStartTime, maxStartTime: float GPStime
            Only use SFTs with timestemps starting from (including, excluding)
            this epoch
        binary: bool
            If true, search of binary parameters.
        transient: bool
            If true, allow for the Fstat to be computed over a transient range.
        BSGL: bool
            If true, compute the BSGL rather than the twoF value.
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
223
224
225
226
227
228
229
230
231
232
        minCoverFreq, maxCoverFreq: float
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput.
            If None defaults defined in BaseSearchClass will be used.

        """
Gregory Ashton's avatar
Gregory Ashton committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        self.init_computefstatistic_single_point()

    def init_computefstatistic_single_point(self):
        """ Initilisation step of run_computefstatistic for a single point """

        logging.info('Initialising SFTCatalog')
        constraints = lalpulsar.SFTConstraints()
        if self.detector:
            constraints.detector = self.detector
248
249
250
251
252
        if self.minStartTime:
            constraints.minStartTime = lal.LIGOTimeGPS(self.minStartTime)
        if self.maxStartTime:
            constraints.maxStartTime = lal.LIGOTimeGPS(self.maxStartTime)

253
        logging.info('Loading data matching pattern {}'.format(
254
255
                     self.sftfilepath))
        SFTCatalog = lalpulsar.SFTdataFind(self.sftfilepath, constraints)
Gregory Ashton's avatar
Gregory Ashton committed
256
        names = list(set([d.header.name for d in SFTCatalog.data]))
257
        SFT_timestamps = [d.header.epoch for d in SFTCatalog.data]
258
        logging.info(
259
            'Loaded {} data files from detectors {} spanning {} to {}'.format(
260
261
                len(SFT_timestamps), names, int(SFT_timestamps[0]),
                int(SFT_timestamps[-1])))
Gregory Ashton's avatar
Gregory Ashton committed
262
263
264
265
266
267

        logging.info('Initialising ephems')
        ephems = lalpulsar.InitBarycenter(self.earth_ephem, self.sun_ephem)

        logging.info('Initialising FstatInput')
        dFreq = 0
268
269
270
271
272
        if self.transient:
            self.whatToCompute = lalpulsar.FSTATQ_ATOMS_PER_DET
        else:
            self.whatToCompute = lalpulsar.FSTATQ_2F

Gregory Ashton's avatar
Gregory Ashton committed
273
274
275
276
277
278
279
280
        FstatOptionalArgs = lalpulsar.FstatOptionalArgsDefaults

        if self.minCoverFreq is None or self.maxCoverFreq is None:
            fA = SFTCatalog.data[0].header.f0
            numBins = SFTCatalog.data[0].numBins
            fB = fA + (numBins-1)*SFTCatalog.data[0].header.deltaF
            self.minCoverFreq = fA + 0.5
            self.maxCoverFreq = fB - 0.5
281
282
283
            logging.info('Min/max cover freqs not provided, using '
                         '{} and {}, est. from SFTs'.format(
                             self.minCoverFreq, self.maxCoverFreq))
Gregory Ashton's avatar
Gregory Ashton committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

        self.FstatInput = lalpulsar.CreateFstatInput(SFTCatalog,
                                                     self.minCoverFreq,
                                                     self.maxCoverFreq,
                                                     dFreq,
                                                     ephems,
                                                     FstatOptionalArgs
                                                     )

        logging.info('Initialising PulsarDoplerParams')
        PulsarDopplerParams = lalpulsar.PulsarDopplerParams()
        PulsarDopplerParams.refTime = self.tref
        PulsarDopplerParams.Alpha = 1
        PulsarDopplerParams.Delta = 1
        PulsarDopplerParams.fkdot = np.array([0, 0, 0, 0, 0, 0, 0])
        self.PulsarDopplerParams = PulsarDopplerParams

        logging.info('Initialising FstatResults')
        self.FstatResults = lalpulsar.FstatResults()

304
        if self.BSGL:
Gregory Ashton's avatar
Gregory Ashton committed
305
306
            if len(names) < 2:
                raise ValueError("Can't use BSGL with single detector data")
307
            else:
308
                logging.info('Initialising BSGL')
309

310
311
            # Tuning parameters - to be reviewed
            numDetectors = 2
Gregory Ashton's avatar
Gregory Ashton committed
312
            Fstar0sc = 15.
313
            oLGX = np.zeros(10)
Gregory Ashton's avatar
Gregory Ashton committed
314
            oLGX[:numDetectors] = 1./numDetectors
315
316
317
            self.BSGLSetup = lalpulsar.CreateBSGLSetup(numDetectors,
                                                       Fstar0sc,
                                                       oLGX,
318
                                                       True,
319
320
                                                       1)
            self.twoFX = np.zeros(10)
Gregory Ashton's avatar
Gregory Ashton committed
321
            self.whatToCompute = (self.whatToCompute +
322
323
                                  lalpulsar.FSTATQ_2F_PER_DET)

324
        if self.transient:
325
            logging.info('Initialising transient parameters')
326
327
328
329
330
331
            self.windowRange = lalpulsar.transientWindowRange_t()
            self.windowRange.type = lalpulsar.TRANSIENT_RECTANGULAR
            self.windowRange.t0Band = 0
            self.windowRange.dt0 = 1
            self.windowRange.tauBand = 0
            self.windowRange.dtau = 1
332

333
334
335
336
337
338
339
340
341
    def compute_fullycoherent_det_stat_single_point(
            self, F0, F1, F2, Alpha, Delta, asini=None, period=None, ecc=None,
            tp=None, argp=None):
        """ Compute the fully-coherent det. statistic at a single point """

        return self.run_computefstatistic_single_point(
            self.minStartTime, self.maxStartTime, F0, F1, F2, Alpha, Delta,
            asini, period, ecc, tp, argp)

Gregory Ashton's avatar
Gregory Ashton committed
342
    def run_computefstatistic_single_point(self, tstart, tend, F0, F1,
343
344
345
                                           F2, Alpha, Delta, asini=None,
                                           period=None, ecc=None, tp=None,
                                           argp=None):
346
        """ Returns twoF or ln(BSGL) fully-coherently at a single point """
Gregory Ashton's avatar
Gregory Ashton committed
347
348
349
350

        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
351
352
353
354
355
356
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp
Gregory Ashton's avatar
Gregory Ashton committed
357
358
359
360

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
361
                               1,
Gregory Ashton's avatar
Gregory Ashton committed
362
363
364
                               self.whatToCompute
                               )

365
        if self.transient is False:
366
367
368
369
370
371
            if self.BSGL is False:
                return self.FstatResults.twoF[0]

            twoF = np.float(self.FstatResults.twoF[0])
            self.twoFX[0] = self.FstatResults.twoFPerDet(0)
            self.twoFX[1] = self.FstatResults.twoFPerDet(1)
372
373
374
            log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
                                               self.BSGLSetup)
            return log10_BSGL/np.log10(np.exp(1))
375

376
377
        self.windowRange.t0 = int(tstart)  # TYPE UINT4
        self.windowRange.tau = int(tend - tstart)  # TYPE UINT4
378

Gregory Ashton's avatar
Gregory Ashton committed
379
        FS = lalpulsar.ComputeTransientFstatMap(
380
            self.FstatResults.multiFatoms[0], self.windowRange, False)
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

        if self.BSGL is False:
            return 2*FS.F_mn.data[0][0]

        FstatResults_single = copy.copy(self.FstatResults)
        FstatResults_single.lenth = 1
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
        FS0 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
        FS1 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)

        self.twoFX[0] = 2*FS0.F_mn.data[0][0]
        self.twoFX[1] = 2*FS1.F_mn.data[0][0]
396
397
        log10_BSGL = lalpulsar.ComputeBSGL(
                2*FS.F_mn.data[0][0], self.twoFX, self.BSGLSetup)
398

399
        return log10_BSGL/np.log10(np.exp(1))
Gregory Ashton's avatar
Gregory Ashton committed
400

401
402
    def calculate_twoF_cumulative(self, F0, F1, F2, Alpha, Delta, asini=None,
                                  period=None, ecc=None, tp=None, argp=None,
403
404
                                  tstart=None, tend=None, npoints=1000,
                                  minfraction=0.01, maxfraction=1):
405
406
        """ Calculate the cumulative twoF along the obseration span """
        duration = tend - tstart
407
408
        tstart = tstart + minfraction*duration
        taus = np.linspace(minfraction*duration, maxfraction*duration, npoints)
409
        twoFs = []
Gregory Ashton's avatar
Gregory Ashton committed
410
411
412
        if self.transient is False:
            self.transient = True
            self.init_computefstatistic_single_point()
413
414
415
416
417
418
419
420
421
        for tau in taus:
            twoFs.append(self.run_computefstatistic_single_point(
                tstart=tstart, tend=tstart+tau, F0=F0, F1=F1, F2=F2,
                Alpha=Alpha, Delta=Delta, asini=asini, period=period, ecc=ecc,
                tp=tp, argp=argp))

        return taus, np.array(twoFs)

    def plot_twoF_cumulative(self, label, outdir, ax=None, c='k', savefig=True,
422
                             title=None, **kwargs):
423

424
425
426
427
428
429
        taus, twoFs = self.calculate_twoF_cumulative(**kwargs)
        if ax is None:
            fig, ax = plt.subplots()
        ax.plot(taus/86400., twoFs, label=label, color=c)
        ax.set_xlabel(r'Days from $t_{{\rm start}}={:.0f}$'.format(
            kwargs['tstart']))
Gregory Ashton's avatar
Gregory Ashton committed
430
431
432
433
        if self.BSGL:
            ax.set_ylabel(r'$\log_{10}(\mathrm{BSGL})_{\rm cumulative}$')
        else:
            ax.set_ylabel(r'$\widetilde{2\mathcal{F}}_{\rm cumulative}$')
434
        ax.set_xlim(0, taus[-1]/86400)
435
        ax.set_title(title)
436
437
        if savefig:
            plt.savefig('{}/{}_twoFcumulative.png'.format(outdir, label))
Gregory Ashton's avatar
Gregory Ashton committed
438
            return taus, twoFs
439
440
441
        else:
            return ax

Gregory Ashton's avatar
Gregory Ashton committed
442

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
class SemiCoherentSearch(BaseSearchClass, ComputeFstat):
    """ A semi-coherent search """

    @initializer
    def __init__(self, label, outdir, tref, nsegs=None, sftfilepath=None,
                 binary=False, BSGL=False, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
                 detector=None, earth_ephem=None, sun_ephem=None):
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to.
        tref, tstart, tend: int
            GPS seconds of the reference time, and start and end of the data.
        nsegs: int
            The (fixed) number of segments
        sftfilepath: str
            File patern to match SFTs

        For all other parameters, see pyfstat.ComputeFStat.
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
        if self.earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if self.sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default
        self.transient = True
        self.init_computefstatistic_single_point()
        self.init_semicoherent_parameters()

    def init_semicoherent_parameters(self):
        logging.info('Initialise semicoherent parameters')
        self.tboundaries = np.linspace(self.minStartTime, self.maxStartTime,
                                       self.nsegs+1)

Gregory Ashton's avatar
Gregory Ashton committed
480
481
482
483
    def run_semi_coherent_computefstatistic_single_point(
            self, F0, F1, F2, Alpha, Delta, asini=None,
            period=None, ecc=None, tp=None, argp=None):
        """ Returns twoF or ln(BSGL) semi-coherently at a single point """
484

Gregory Ashton's avatar
Gregory Ashton committed
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
                               1,
                               self.whatToCompute
                               )

        if self.transient is False:
            if self.BSGL is False:
                return self.FstatResults.twoF[0]

            twoF = np.float(self.FstatResults.twoF[0])
            self.twoFX[0] = self.FstatResults.twoFPerDet(0)
            self.twoFX[1] = self.FstatResults.twoFPerDet(1)
            log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
                                               self.BSGLSetup)
            return log10_BSGL/np.log10(np.exp(1))

        detStat = 0
        for tstart, tend in zip(self.tboundaries[:-1], self.tboundaries[1:]):
            self.windowRange.t0 = int(tstart)  # TYPE UINT4
            self.windowRange.tau = int(tend - tstart)  # TYPE UINT4

            FS = lalpulsar.ComputeTransientFstatMap(
                self.FstatResults.multiFatoms[0], self.windowRange, False)

            if self.BSGL is False:
                detStat += 2*FS.F_mn.data[0][0]
                continue
524

Gregory Ashton's avatar
Gregory Ashton committed
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
            FstatResults_single = copy.copy(self.FstatResults)
            FstatResults_single.lenth = 1
            FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
            FS0 = lalpulsar.ComputeTransientFstatMap(
                FstatResults_single.multiFatoms[0], self.windowRange, False)
            FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
            FS1 = lalpulsar.ComputeTransientFstatMap(
                FstatResults_single.multiFatoms[0], self.windowRange, False)

            self.twoFX[0] = 2*FS0.F_mn.data[0][0]
            self.twoFX[1] = 2*FS1.F_mn.data[0][0]
            log10_BSGL = lalpulsar.ComputeBSGL(
                    2*FS.F_mn.data[0][0], self.twoFX, self.BSGLSetup)

            detStat += log10_BSGL/np.log10(np.exp(1))

        return detStat
542
543


Gregory Ashton's avatar
Gregory Ashton committed
544
class SemiCoherentGlitchSearch(BaseSearchClass, ComputeFstat):
545
546
547
    """ A semi-coherent glitch search

    This implements a basic `semi-coherent glitch F-stat in which the data
548
549
    is divided into segments either side of the proposed glitches and the
    fully-coherent F-stat in each segment is summed to give the semi-coherent
550
551
552
553
    F-stat
    """

    @initializer
Gregory Ashton's avatar
Gregory Ashton committed
554
    def __init__(self, label, outdir, tref, tstart, tend, nglitch=0,
555
556
557
                 sftfilepath=None, theta0_idx=0, BSGL=False, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
                 detector=None, earth_ephem=None, sun_ephem=None):
558
559
560
561
        """
        Parameters
        ----------
        label, outdir: str
562
563
564
565
566
567
            A label and directory to read/write data from/to.
        tref, tstart, tend: int
            GPS seconds of the reference time, and start and end of the data.
        nglitch: int
            The (fixed) number of glitches; this can zero, but occasionally
            this causes issue (in which case just use ComputeFstat).
568
569
        sftfilepath: str
            File patern to match SFTs
570
571
572
573
        theta0_idx, int
            Index (zero-based) of which segment the theta refers to - uyseful
            if providing a tight prior on theta to allow the signal to jump
            too theta (and not just from)
574
575

        For all other parameters, see pyfstat.ComputeFStat.
576
577
578
579
580
581
582
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
        if self.earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if self.sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default
583
584
        self.transient = True
        self.binary = False
585
586
587
        self.init_computefstatistic_single_point()

    def compute_nglitch_fstat(self, F0, F1, F2, Alpha, Delta, *args):
588
        """ Returns the semi-coherent glitch summed twoF """
589
590
591

        args = list(args)
        tboundaries = [self.tstart] + args[-self.nglitch:] + [self.tend]
592
593
594
595
596
597
598
599
        delta_F0s = args[-3*self.nglitch:-2*self.nglitch]
        delta_F1s = args[-2*self.nglitch:-self.nglitch]
        delta_F2 = np.zeros(len(delta_F0s))
        delta_phi = np.zeros(len(delta_F0s))
        theta = [0, F0, F1, F2]
        delta_thetas = np.atleast_2d(
                np.array([delta_phi, delta_F0s, delta_F1s, delta_F2]).T)

600
601
        thetas = self.calculate_thetas(theta, delta_thetas, tboundaries,
                                       theta0_idx=self.theta0_idx)
602
603

        twoFSum = 0
604
        for i, theta_i_at_tref in enumerate(thetas):
605
606
607
            ts, te = tboundaries[i], tboundaries[i+1]

            twoFVal = self.run_computefstatistic_single_point(
608
609
                ts, te, theta_i_at_tref[1], theta_i_at_tref[2],
                theta_i_at_tref[3], Alpha, Delta)
610
611
            twoFSum += twoFVal

612
613
614
        if np.isfinite(twoFSum):
            return twoFSum
        else:
615
            return -np.inf
616
617
618

    def compute_glitch_fstat_single(self, F0, F1, F2, Alpha, Delta, delta_F0,
                                    delta_F1, tglitch):
619
620
621
622
        """ Returns the semi-coherent glitch summed twoF for nglitch=1

        Note: used for testing
        """
623
624
625
626
627
628
629
630
631
632
633

        theta = [F0, F1, F2]
        delta_theta = [delta_F0, delta_F1, 0]
        tref = self.tref

        theta_at_glitch = self.shift_coefficients(theta, tglitch - tref)
        theta_post_glitch_at_glitch = theta_at_glitch + delta_theta
        theta_post_glitch = self.shift_coefficients(
            theta_post_glitch_at_glitch, tref - tglitch)

        twoFsegA = self.run_computefstatistic_single_point(
Gregory Ashton's avatar
Gregory Ashton committed
634
            self.tstart, tglitch, theta[0], theta[1], theta[2], Alpha,
635
636
637
638
639
640
            Delta)

        if tglitch == self.tend:
            return twoFsegA

        twoFsegB = self.run_computefstatistic_single_point(
Gregory Ashton's avatar
Gregory Ashton committed
641
            tglitch, self.tend, theta_post_glitch[0],
642
643
644
645
646
647
            theta_post_glitch[1], theta_post_glitch[2], Alpha,
            Delta)

        return twoFsegA + twoFsegB


Gregory Ashton's avatar
Gregory Ashton committed
648
649
class MCMCSearch(BaseSearchClass):
    """ MCMC search using ComputeFstat"""
650
    @initializer
651
    def __init__(self, label, outdir, sftfilepath, theta_prior, tref,
652
                 tstart, tend, nsteps=[100, 100, 100], nwalkers=100, ntemps=1,
653
                 log10temperature_min=-5, theta_initial=None, scatter_val=1e-10,
654
655
                 binary=False, BSGL=False, minCoverFreq=None,
                 maxCoverFreq=None, detector=None, earth_ephem=None,
656
                 sun_ephem=None):
657
658
659
660
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
661
662
        sftfilepath: str
            File patern to match SFTs
663
        theta_prior: dict
664
665
666
667
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
668
669
670
671
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
672
673
674
675
676
677
678
        tref, tstart, tend: int
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
679
680
681
682
683
684
685
686
687
688
689
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
        binary: Bool
            If true, search over binary parameters
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
690
691
692
693
694
695
696
697
698
699
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

700
701
702
        self.minStartTime = tstart
        self.maxStartTime = tend

Gregory Ashton's avatar
Gregory Ashton committed
703
704
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
705
        self.add_log_file()
Gregory Ashton's avatar
Gregory Ashton committed
706
707
        logging.info(
            'Set-up MCMC search for model {} on data {}'.format(
708
                self.label, self.sftfilepath))
709
710
711
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
        self.unpack_input_theta()
        self.ndim = len(self.theta_keys)
712
713
714
715
        if self.log10temperature_min:
            self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
        else:
            self.betas = None
716

717
718
719
720
721
722
723
724
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

725
726
727
        self.log_input()

    def log_input(self):
728
        logging.info('theta_prior = {}'.format(self.theta_prior))
729
        logging.info('nwalkers={}'.format(self.nwalkers))
730
731
732
733
        logging.info('scatter_val = {}'.format(self.scatter_val))
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
        logging.info('log10temperature_min = {}'.format(
734
            self.log10temperature_min))
735
736
737

    def inititate_search_object(self):
        logging.info('Setting up search object')
Gregory Ashton's avatar
Gregory Ashton committed
738
        self.search = ComputeFstat(
739
740
741
742
            tref=self.tref, sftfilepath=self.sftfilepath,
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
            detector=self.detector, BSGL=self.BSGL, transient=False,
743
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
744
            binary=self.binary)
745
746

    def logp(self, theta_vals, theta_prior, theta_keys, search):
Gregory Ashton's avatar
Gregory Ashton committed
747
        H = [self.generic_lnprior(**theta_prior[key])(p) for p, key in
748
749
750
751
752
753
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
754
755
        FS = search.compute_fullycoherent_det_stat_single_point(
            *self.fixed_theta)
756
757
758
        return FS

    def unpack_input_theta(self):
759
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']
760
761
762
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
763
764
        full_theta_keys_copy = copy.copy(full_theta_keys)

765
766
        full_theta_symbols = ['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                              r'$\delta$']
767
768
769
770
        if self.binary:
            full_theta_symbols += [
                'asini', 'period', 'period', 'ecc', 'tp', 'argp']

771
772
        self.theta_keys = []
        fixed_theta_dict = {}
773
        for key, val in self.theta_prior.iteritems():
774
775
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
776
                self.theta_keys.append(key)
777
778
779
780
781
782
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
783
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

    def check_initial_points(self, p0):
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

                p0 = self.generate_new_p0_to_fix_initial_points(
                    p0, nt, initial_priors)

    def generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
836

Gregory Ashton's avatar
Gregory Ashton committed
837
    def run_sampler_with_progress_bar(self, sampler, ns, p0):
838
839
        for result in tqdm(sampler.sample(p0, iterations=ns), total=ns):
            pass
Gregory Ashton's avatar
Gregory Ashton committed
840
841
842
        return sampler

    def run(self, proposal_scale_factor=2):
843

Gregory Ashton's avatar
Gregory Ashton committed
844
        self.old_data_is_okay_to_use = self.check_old_data_is_okay_to_use()
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
            d = self.get_saved_data()
            self.sampler = d['sampler']
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
            return

        self.inititate_search_object()

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
860
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
861

Gregory Ashton's avatar
Gregory Ashton committed
862
863
        p0 = self.generate_initial_p0()
        p0 = self.apply_corrections_to_p0(p0)
864
865
866
867
868
        self.check_initial_points(p0)

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
Gregory Ashton's avatar
Gregory Ashton committed
869
                j, ninit_steps, n))
Gregory Ashton's avatar
Gregory Ashton committed
870
            sampler = self.run_sampler_with_progress_bar(sampler, n, p0)
871
872
            logging.info("Mean acceptance fraction: {}"
                         .format(np.mean(sampler.acceptance_fraction, axis=1)))
873
874
875
            if self.ntemps > 1:
                logging.info("Tswap acceptance fraction: {}"
                             .format(sampler.tswap_acceptance_fraction))
Gregory Ashton's avatar
Gregory Ashton committed
876
            fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols)
877
878
879
            fig.savefig('{}/{}_init_{}_walkers.png'.format(
                self.outdir, self.label, j))

880
            p0 = self.get_new_p0(sampler)
Gregory Ashton's avatar
Gregory Ashton committed
881
            p0 = self.apply_corrections_to_p0(p0)
882
883
884
            self.check_initial_points(p0)
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
885
886
887
888
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
889
890
891
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
Gregory Ashton's avatar
Gregory Ashton committed
892
        sampler = self.run_sampler_with_progress_bar(sampler, nburn+nprod, p0)
893
894
        logging.info("Mean acceptance fraction: {}"
                     .format(np.mean(sampler.acceptance_fraction, axis=1)))
895
896
897
        if self.ntemps > 1:
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
898

Gregory Ashton's avatar
Gregory Ashton committed
899
900
        fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols,
                                      burnin_idx=nburn)
901
902
903
904
905
906
907
908
909
910
911
        fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label))

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
        self.sampler = sampler
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
        self.save_data(sampler, samples, lnprobs, lnlikes)

912
    def plot_corner(self, figsize=(7, 7),  tglitch_ratio=False,
913
914
915
                    add_prior=False, nstds=None, label_offset=0.4,
                    dpi=300, rc_context={}, **kwargs):

Gregory Ashton's avatar
Gregory Ashton committed
916
917
918
919
920
921
922
923
924
925
        if self.ndim < 2:
            with plt.rc_context(rc_context):
                fig, ax = plt.subplots(figsize=figsize)
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

926
927
928
929
930
931
        with plt.rc_context(rc_context):
            fig, axes = plt.subplots(self.ndim, self.ndim,
                                     figsize=figsize)

            samples_plt = copy.copy(self.samples)
            theta_symbols_plt = copy.copy(self.theta_symbols)
932
933
            theta_symbols_plt = [s.replace('_{glitch}', r'_\textrm{glitch}')
                                 for s in theta_symbols_plt]
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
                        samples_plt[:, j] = (s - self.tstart)/(
                                             self.tend - self.tstart)
                        theta_symbols_plt[j] = r'$R_{\textrm{glitch}}$'

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
            else:
                _range = None

            fig_triangle = corner.corner(samples_plt,
                                         labels=theta_symbols_plt,
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
                self.add_prior_to_corner(axes, samples_plt)

            fig_triangle.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
983
984
985
986
987
988

    def add_prior_to_corner(self, axes, samples):
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            xlim = ax.get_xlim()
            s = samples[:, i]
Gregory Ashton's avatar
Gregory Ashton committed
989
            prior = self.generic_lnprior(**self.theta_prior[key])
990
991
992
993
994
995
            x = np.linspace(s.min(), s.max(), 100)
            ax2 = ax.twinx()
            ax2.get_yaxis().set_visible(False)
            ax2.plot(x, [prior(xi) for xi in x], '-r')
            ax.set_xlim(xlim)

996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
    def plot_prior_posterior(self, normal_stds=2):
        """ Plot the posterior in the context of the prior """
        fig, axes = plt.subplots(nrows=self.ndim, figsize=(8, 4*self.ndim))
        N = 1000
        from scipy.stats import gaussian_kde

        for i, (ax, key) in enumerate(zip(axes, self.theta_keys)):
            prior_dict = self.theta_prior[key]
            prior_func = self.generic_lnprior(**prior_dict)
            if prior_dict['type'] == 'unif':
                x = np.linspace(prior_dict['lower'], prior_dict['upper'], N)
                prior = prior_func(x)
                prior[0] = 0
                prior[-1] = 0
            elif prior_dict['type'] == 'norm':
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = prior_func(x)
1015
1016
1017
1018
1019
            elif prior_dict['type'] == 'halfnorm':
                lower = prior_dict['loc']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
Gregory Ashton's avatar
Gregory Ashton committed
1020
1021
1022
1023
1024
            elif prior_dict['type'] == 'neghalfnorm':
                upper = prior_dict['loc']
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
            else:
                raise ValueError('Not implemented for prior type {}'.format(
                    prior_dict['type']))
            priorln = ax.plot(x, prior, 'r', label='prior')
            ax.set_xlabel(self.theta_symbols[i])

            s = self.samples[:, i]
            while len(s) > 10**4:
                # random downsample to avoid slow calculation of kde
                s = np.random.choice(s, size=int(len(s)/2.))
            kde = gaussian_kde(s)
            ax2 = ax.twinx()
            postln = ax2.plot(x, kde.pdf(x), 'k', label='posterior')
            ax2.set_yticklabels([])
            ax.set_yticklabels([])

        lns = priorln + postln
        labs = [l.get_label() for l in lns]
        axes[0].legend(lns, labs, loc=1, framealpha=0.8)

        fig.savefig('{}/{}_prior_posterior.png'.format(
            self.outdir, self.label))

1048
    def plot_cumulative_max(self, **kwargs):
Gregory Ashton's avatar
Gregory Ashton committed
1049
1050
1051
1052
        d, maxtwoF = self.get_max_twoF()
        for key, val in self.theta_prior.iteritems():
            if key not in d:
                d[key] = val
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066

        if hasattr(self, 'search') is False:
            self.inititate_search_object()
        if self.binary is False:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
                Alpha=d['Alpha'], Delta=d['Delta'], tstart=self.tstart,
                tend=self.tend, **kwargs)
        else:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
                Alpha=d['Alpha'], Delta=d['Delta'], asini=d['asini'],
                period=d['period'], ecc=d['ecc'], argp=d['argp'], tp=d['argp'],
                tstart=self.tstart, tend=self.tend, **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
1067

Gregory Ashton's avatar
Gregory Ashton committed
1068
    def generic_lnprior(self, **kwargs):
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
        """ Return a lambda function of the pdf

        Parameters
        ----------
        kwargs: dict
            A dictionary containing 'type' of pdf and shape parameters

        """

        def logunif(x, a, b):
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

        def halfnorm(x, loc, scale):
            if x < 0:
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
            return lambda x: logunif(x, kwargs['lower'], kwargs['upper'])
        elif kwargs['type'] == 'halfnorm':
            return lambda x: halfnorm(x, kwargs['loc'], kwargs['scale'])
1111
1112
        elif kwargs['type'] == 'neghalfnorm':
            return lambda x: halfnorm(-x, kwargs['loc'], kwargs['scale'])
1113
1114
1115
1116
1117
1118
1119
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

Gregory Ashton's avatar
Gregory Ashton committed
1120
    def generate_rv(self, **kwargs):
1121
1122
1123
1124
1125
1126
1127
1128
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
1129
1130
1131
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
1132
1133
1134
1135
1136
1137
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

Gregory Ashton's avatar
Gregory Ashton committed
1138
    def plot_walkers(self, sampler, symbols=None, alpha=0.4, color="k", temp=0,
Gregory Ashton's avatar
Gregory Ashton committed
1139
1140
                     lw=0.1, burnin_idx=None, add_det_stat_burnin=False,
                     fig=None, axes=None, xoffset=0, plot_det_stat=True):
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
        """ Plot all the chains from a sampler """

        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
            chain = sampler.chain[:, :, :]
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
            chain = sampler.chain[temp, :, :, :]

        with plt.style.context(('classic')):
Gregory Ashton's avatar
Gregory Ashton committed
1157
1158
1159
1160
1161
            if fig is None and axes is None:
                fig = plt.figure(figsize=(8, 4*ndim))
                ax = fig.add_subplot(ndim+1, 1, 1)
                axes = [ax] + [fig.add_subplot(ndim+1, 1, i, sharex=ax)
                               for i in range(2, ndim+1)]
1162

Gregory Ashton's avatar
Gregory Ashton committed
1163
            idxs = np.arange(chain.shape[1])
1164
1165
            if ndim > 1:
                for i in range(ndim):
1166
                    axes[i].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
1167
1168
                    cs = chain[:, :, i].T
                    if burnin_idx:
Gregory Ashton's avatar
Gregory Ashton committed
1169
1170
1171
1172
1173
                        axes[i].plot(xoffset+idxs[:burnin_idx],
                                     cs[:burnin_idx], color="r", alpha=alpha,
                                     lw=lw)
                    axes[i].plot(xoffset+idxs[burnin_idx:], cs[burnin_idx:],
                                 color="k", alpha=alpha, lw=lw)
1174
1175
                    if symbols:
                        axes[i].set_ylabel(symbols[i])
1176
            else:
Gregory Ashton's avatar
Gregory Ashton committed
1177
                axes[0].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
1178
                cs = chain[:, :, temp].T
Gregory Ashton's avatar
Gregory Ashton committed
1179
1180
1181
1182
1183
1184
1185
                if burnin_idx:
                    axes[0].plot(idxs[:burnin_idx], cs[:burnin_idx],
                                 color="r", alpha=alpha, lw=lw)
                axes[0].plot(idxs[burnin_idx:], cs[burnin_idx:], color="k",
                             alpha=alpha, lw=lw)
                if symbols:
                    axes[0].set_ylabel(symbols[0])
1186

Gregory Ashton's avatar
Gregory Ashton committed
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
        if len(axes) == ndim:
            axes.append(fig.add_subplot(ndim+1, 1, ndim+1))

        if plot_det_stat:
            lnl = sampler.lnlikelihood[temp, :, :]
            if burnin_idx and add_det_stat_burnin:
                burn_in_vals = lnl[:, :burnin_idx].flatten()
                axes[-1].hist(burn_in_vals[~np.isnan(burn_in_vals)], bins=50,
                              histtype='step', color='r')
            else:
                burn_in_vals = []
            prod_vals = lnl[:, burnin_idx:].flatten()
            axes[-1].hist(prod_vals[~np.isnan(prod_vals)], bins=50,
                          histtype='step', color='k')
            if self.BSGL:
                axes[-1].set_xlabel(r'$\mathcal{B}_\mathrm{S/GL}$')
            else:
                axes[-1].set_xlabel(r'$2\mathcal{F}$')
            combined_vals = np.append(burn_in_vals, prod_vals)
            if len(combined_vals) > 0:
                minv = np.min(combined_vals)
                maxv = np.max(combined_vals)
                Range = abs(maxv-minv)
                axes[-1].set_xlim(minv-0.1*Range, maxv+0.1*Range)
Gregory Ashton's avatar
Gregory Ashton committed
1211

1212
1213
        return fig, axes

Gregory Ashton's avatar
Gregory Ashton committed
1214
1215
1216
1217
1218
    def apply_corrections_to_p0(self, p0):
        """ Apply any correction to the initial p0 values """
        return p0

    def generate_scattered_p0(self, p):
1219
        """ Generate a set of p0s scattered about p """
Gregory Ashton's avatar
Gregory Ashton committed
1220
        p0 = [[p + self.scatter_val * p * np.random.randn(self.ndim)
1221
1222
1223
1224
               for i in xrange(self.nwalkers)]
              for j in xrange(self.ntemps)]
        return p0

Gregory Ashton's avatar
Gregory Ashton committed
1225
    def generate_initial_p0(self):
1226
1227
1228
        """ Generate a set of init vals for the walkers """

        if type(self.theta_initial) == dict:
1229
            logging.info('Generate initial values from initial dictionary')
1230
            if hasattr(self, 'nglitch') and self.nglitch > 1:
1231
                raise ValueError('Initial dict not implemented for nglitch>1')
Gregory Ashton's avatar
Gregory Ashton committed
1232
            p0 = [[[self.generate_rv(**self.theta_initial[key])
1233
1234
1235
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
1236
1237
1238
1239
1240
1241
        elif type(self.theta_initial) == list:
            logging.info('Generate initial values from list of theta_initial')
            p0 = [[[self.generate_rv(**val)
                    for val in self.theta_initial]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
1242
        elif self.theta_initial is None:
1243
            logging.info('Generate initial values from prior dictionary')
Gregory Ashton's avatar
Gregory Ashton committed
1244
            p0 = [[[self.generate_rv(**self.theta_prior[key])
1245
1246
1247
1248
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
        elif len(self.theta_initial) == self.ndim:
Gregory Ashton's avatar
Gregory Ashton committed
1249
            p0 = self.generate_scattered_p0(self.theta_initial)
1250
1251
1252
1253
1254
        else:
            raise ValueError('theta_initial not understood')

        return p0

1255
    def get_new_p0(self, sampler):
1256
1257
1258
1259
1260
1261
        """ Returns new initial positions for walkers are burn0 stage

        This returns new positions for all walkers by scattering points about
        the maximum posterior with scale `scatter_val`.

        """
Gregory Ashton's avatar
Gregory Ashton committed
1262
1263
1264
1265
        temp_idx = 0
        pF = sampler.chain[temp_idx, :, :, :]
        lnl = sampler.lnlikelihood[temp_idx, :, :]
        lnp = sampler.lnprobability[temp_idx, :, :]
1266
1267

        # General warnings about the state of lnp
Gregory Ashton's avatar
Gregory Ashton committed
1268
        if np.any(np.isnan(lnp)):
1269
1270
            logging.warning(
                "Of {} lnprobs {} are nan".format(
Gregory Ashton's avatar
Gregory Ashton committed
1271
1272
                    np.shape(lnp), np.sum(np.isnan(lnp))))
        if np.any(np.isposinf(lnp)):
1273
1274
            logging.warning(
                "Of {} lnprobs {} are +np.inf".format(
Gregory Ashton's avatar
Gregory Ashton committed
1275
1276
                    np.shape(lnp), np.sum(np.isposinf(lnp))))
        if np.any(np.isneginf(lnp)):
1277
1278
            logging.warning(
                "Of {} lnprobs {} are -np.inf".format(
Gregory Ashton's avatar
Gregory Ashton committed
1279
                    np.shape(lnp), np.sum(np.isneginf(lnp))))
1280

1281
1282
        lnp_finite = copy.copy(lnp)
        lnp_finite[np.isinf(lnp)] = np.nan
Gregory Ashton's avatar
Gregory Ashton committed
1283
1284
        idx = np.unravel_index(np.nanargmax(lnp_finite), lnp_finite.shape)
        p = pF[idx]
1285
        p0 = self.generate_scattered_p0(p)
1286

1287
1288
1289
1290
1291
1292