mcmc_based_searches.py 93.4 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" Searches using MCMC-based methods """
2
from __future__ import division, absolute_import, print_function
Gregory Ashton's avatar
Gregory Ashton committed
3

4
import sys
Gregory Ashton's avatar
Gregory Ashton committed
5
import os
6
import copy
Gregory Ashton's avatar
Gregory Ashton committed
7
import logging
8
from collections import OrderedDict
9
import subprocess
10
11
12
13

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
Gregory Ashton's avatar
Gregory Ashton committed
14
from ptemcee import Sampler as PTSampler
15
16
17
import corner
import dill as pickle

18
import pyfstat.core as core
19
20
from pyfstat.core import tqdm, args, read_par
import pyfstat.optimal_setup_functions as optimal_setup_functions
21
import pyfstat.helper_functions as helper_functions
22
23


24
class MCMCSearch(core.BaseSearchClass):
Gregory Ashton's avatar
Gregory Ashton committed
25
    """MCMC search using ComputeFstat
26
27
28
29
30
31
32
33
34

    Parameters
    ----------
    theta_prior: dict
        Dictionary of priors and fixed values for the search parameters.
        For each parameters (key of the dict), if it is to be held fixed
        the value should be the constant float, if it is be searched, the
        value should be a dictionary of the prior.
    tref, minStartTime, maxStartTime: int
35
36
37
38
39
40
41
        GPS seconds of the reference time, start time and end time. While tref
        is requirede, minStartTime and maxStartTime default to None in which
        case all available data is used.
    label, outdir: str
        A label and output directory (optional, defaults is `'data'`) to
        name files
    sftfilepattern: str, optional
Gregory Ashton's avatar
Gregory Ashton committed
42
43
        Pattern to match SFTs using wildcards (*?) and ranges [0-9];
        mutiple patterns can be given separated by colons.
44
    detectors: str, optional
Gregory Ashton's avatar
Gregory Ashton committed
45
46
        Two character reference to the detectors to use, specify None for no
        contraint and comma separate for multiple references.
47
    nsteps: list (2,), optional
48
49
50
        Number of burn-in and production steps to take, [nburn, nprod]. See
        `pyfstat.MCMCSearch.setup_initialisation()` for details on adding
        initialisation steps.
51
    nwalkers, ntemps: int, optional
52
53
        The number of walkers and temperates to use in the parallel
        tempered PTSampler.
54
    log10beta_min float < 0, optional
55
56
        The  log_10(beta) value, if given the set of betas passed to PTSampler
        are generated from `np.logspace(0, log10beta_min, ntemps)` (given
Gregory Ashton's avatar
Gregory Ashton committed
57
        in descending order to ptemcee).
58
    theta_initial: dict, array, optional
59
60
        A dictionary of distribution about which to distribute the
        initial walkers about
61
    rhohatmax: float, optional
62
63
64
        Upper bound for the SNR scale parameter (required to normalise the
        Bayes factor) - this needs to be carefully set when using the
        evidence.
65
    binary: bool, optional
66
        If true, search over binary parameters
67
    BSGL: bool, optional
Gregory Ashton's avatar
Gregory Ashton committed
68
        If true, use the BSGL statistic
69
    SSBPrec: int, optional
Gregory Ashton's avatar
Gregory Ashton committed
70
        SSBPrec (SSB precision) to use when calling ComputeFstat
71
    minCoverFreq, maxCoverFreq: float, optional
72
73
        Minimum and maximum instantaneous frequency which will be covered
        over the SFT time span as passed to CreateFstatInput
74
    injectSources: dict, optional
Gregory Ashton's avatar
Gregory Ashton committed
75
76
        If given, inject these properties into the SFT files before running
        the search
77
    assumeSqrtSX: float, optional
Gregory Ashton's avatar
Gregory Ashton committed
78
        Don't estimate noise-floors, but assume (stationary) per-IFO sqrt{SX}
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

    Attributes
    ----------
    symbol_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), to Latex math
        symbols for plots
    unit_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), and the
        units (i.e. `Hz`)
    transform_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), where the key is
        itself a dictionary which can item `multiplier`, `subtractor`, or
        `unit` by which to transform by and update the units.

    """
94
95

    symbol_dictionary = dict(
96
        F0='$f$', F1='$\dot{f}$', F2='$\ddot{f}$', Alpha=r'$\alpha$',
97
98
        Delta='$\delta$', asini='asini', period='P', ecc='ecc', tp='tp',
        argp='argp')
99
    unit_dictionary = dict(
100
101
        F0='Hz', F1='Hz/s', F2='Hz/s$^2$', Alpha=r'rad', Delta='rad',
        asini='', period='s', ecc='', tp='', argp='')
102
    transform_dictionary = {}
103

Gregory Ashton's avatar
Gregory Ashton committed
104
    @helper_functions.initializer
105
106
107
    def __init__(self, theta_prior, tref, label, outdir='data',
                 minStartTime=None, maxStartTime=None, sftfilepattern=None,
                 detectors=None, nsteps=[100, 100], nwalkers=100, ntemps=1,
108
                 log10beta_min=-5, theta_initial=None,
109
                 rhohatmax=1000, binary=False, BSGL=False,
Gregory Ashton's avatar
Gregory Ashton committed
110
                 SSBprec=None, minCoverFreq=None, maxCoverFreq=None,
111
                 injectSources=None, assumeSqrtSX=None):
112

Gregory Ashton's avatar
Gregory Ashton committed
113
114
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
115
        self._add_log_file()
116
        logging.info('Set-up MCMC search for model {}'.format(self.label))
117
118
        if sftfilepattern:
            logging.info('Using data {}'.format(self.sftfilepattern))
119
        else:
120
            logging.info('No sftfilepattern given')
121
122
        if injectSources:
            logging.info('Inject sources: {}'.format(injectSources))
123
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
124
        self._unpack_input_theta()
125
        self.ndim = len(self.theta_keys)
126
127
        if self.log10beta_min:
            self.betas = np.logspace(0, self.log10beta_min, self.ntemps)
128
129
        else:
            self.betas = None
130

131
132
133
        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

134
        self._set_likelihoodcoef()
135
        self._log_input()
136
137
138

    def _set_likelihoodcoef(self):
        self.likelihoodcoef = np.log(70./self.rhohatmax**4)
139

140
    def _log_input(self):
141
        logging.info('theta_prior = {}'.format(self.theta_prior))
142
        logging.info('nwalkers={}'.format(self.nwalkers))
143
144
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
145
146
        logging.info('log10beta_min = {}'.format(
            self.log10beta_min))
147

148
    def _initiate_search_object(self):
149
        logging.info('Setting up search object')
150
        self.search = core.ComputeFstat(
151
            tref=self.tref, sftfilepattern=self.sftfilepattern,
152
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
153
            detectors=self.detectors, BSGL=self.BSGL, transient=False,
154
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
155
            binary=self.binary, injectSources=self.injectSources,
156
            assumeSqrtSX=self.assumeSqrtSX, SSBprec=self.SSBprec)
157
158
159
160
        if self.minStartTime is None:
            self.minStartTime = self.search.minStartTime
        if self.maxStartTime is None:
            self.maxStartTime = self.search.maxStartTime
161
162

    def logp(self, theta_vals, theta_prior, theta_keys, search):
163
        H = [self._generic_lnprior(**theta_prior[key])(p) for p, key in
164
165
166
167
168
169
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
170
171
172
        twoF = search.get_fullycoherent_twoF(
            self.minStartTime, self.maxStartTime, *self.fixed_theta)
        return twoF/2.0 + self.likelihoodcoef
173

174
    def _unpack_input_theta(self):
175
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']
176
177
178
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
179
180
        full_theta_keys_copy = copy.copy(full_theta_keys)

181
182
        full_theta_symbols = ['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                              r'$\delta$']
183
184
        if self.binary:
            full_theta_symbols += [
185
                'asini', 'period', 'ecc', 'tp', 'argp']
186

187
188
        self.theta_keys = []
        fixed_theta_dict = {}
189
        for key, val in self.theta_prior.iteritems():
190
191
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
192
                self.theta_keys.append(key)
193
194
195
196
197
198
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
199
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

215
216
217
218
219
220
221
222
223
    def _evaluate_logpost(self, p0vec):
        init_logp = np.array([
            self.logp(p, self.theta_prior, self.theta_keys, self.search)
            for p in p0vec])
        init_logl = np.array([
            self.logl(p, self.search)
            for p in p0vec])
        return init_logl + init_logp

224
    def _check_initial_points(self, p0):
225
226
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
227
228
            num = sum(self._evaluate_logpost(p0[nt]) == -np.inf)
            if num > 0:
229
230
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
231
                    .format(len(p0[0]), num))
232
                p0 = self._generate_new_p0_to_fix_initial_points(
233
                    p0, nt)
234

235
    def _generate_new_p0_to_fix_initial_points(self, p0, nt):
236
        logging.info('Attempting to correct intial values')
237
238
        init_logpost = self._evaluate_logpost(p0[nt])
        idxs = np.arange(self.nwalkers)[init_logpost == -np.inf]
239
        count = 0
240
        while sum(init_logpost == -np.inf) > 0 and count < 100:
241
242
243
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
244
            init_logpost = self._evaluate_logpost(p0[nt])
245
246
            count += 1

247
        if sum(init_logpost == -np.inf) > 0:
248
249
250
251
252
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
253

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    def setup_initialisation(self, nburn0, scatter_val=1e-10):
        """ Add an initialisation step to the MCMC run

        If called prior to `run()`, adds an intial step in which the MCMC
        simulation is run for `nburn0` steps. After this, the MCMC simulation
        continues in the usual manner (i.e. for nburn and nprod steps), but the
        walkers are reset scattered around the maximum likelihood position
        of the initialisation step.

        Parameters
        ----------
        nburn0: int
            Number of initialisation steps to take
        scatter_val: float
            Relative number to scatter walkers around the maximum likelihood
            position after the initialisation step

        """

        logging.info('Setting up initialisation with nburn0={}, scatter_val={}'
                     .format(nburn0, scatter_val))
        self.nsteps = [nburn0] + self.nsteps
        self.scatter_val = scatter_val

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
#    def setup_burnin_convergence_testing(
#            self, n=10, test_type='autocorr', windowed=False, **kwargs):
#        """ Set up convergence testing during the MCMC simulation
#
#        Parameters
#        ----------
#        n: int
#            Number of steps after which to test convergence
#        test_type: str ['autocorr', 'GR']
#            If 'autocorr' use the exponential autocorrelation time (kwargs
#            passed to `get_autocorr_convergence`). If 'GR' use the Gelman-Rubin
#            statistic (kwargs passed to `get_GR_convergence`)
#        windowed: bool
#            If True, only calculate the convergence test in a window of length
#            `n`
#        **kwargs:
#            Passed to either `_test_autocorr_convergence()` or
#            `_test_GR_convergence()` depending on `test_type`.
#
#        """
#        logging.info('Setting up convergence testing')
#        self.convergence_n = n
#        self.convergence_windowed = windowed
#        self.convergence_test_type = test_type
#        self.convergence_kwargs = kwargs
#        self.convergence_diagnostic = []
#        self.convergence_diagnosticx = []
#        if test_type in ['autocorr']:
#            self._get_convergence_test = self._test_autocorr_convergence
#        elif test_type in ['GR']:
#            self._get_convergence_test = self._test_GR_convergence
#        else:
#            raise ValueError('test_type {} not understood'.format(test_type))
#
#
#    def _test_autocorr_convergence(self, i, sampler, test=True, n_cut=5):
#        try:
#            acors = np.zeros((self.ntemps, self.ndim))
#            for temp in range(self.ntemps):
#                if self.convergence_windowed:
#                    j = i-self.convergence_n
#                else:
#                    j = 0
#                x = np.mean(sampler.chain[temp, :, j:i, :], axis=0)
#                acors[temp, :] = emcee.autocorr.exponential_time(x)
#            c = np.max(acors, axis=0)
#        except emcee.autocorr.AutocorrError:
#            logging.info('Failed to calculate exponential autocorrelation')
#            c = np.zeros(self.ndim) + np.nan
#        except AttributeError:
#            logging.info('Unable to calculate exponential autocorrelation')
#            c = np.zeros(self.ndim) + np.nan
#
#        self.convergence_diagnosticx.append(i - self.convergence_n/2.)
#        self.convergence_diagnostic.append(list(c))
#
#        if test:
#            return i > n_cut * np.max(c)
#
#    def _test_GR_convergence(self, i, sampler, test=True, R=1.1):
#        if self.convergence_windowed:
#            s = sampler.chain[0, :, i-self.convergence_n+1:i+1, :]
#        else:
#            s = sampler.chain[0, :, :i+1, :]
#        N = float(self.convergence_n)
#        M = float(self.nwalkers)
#        W = np.mean(np.var(s, axis=1), axis=0)
#        per_walker_mean = np.mean(s, axis=1)
#        mean = np.mean(per_walker_mean, axis=0)
#        B = N / (M-1.) * np.sum((per_walker_mean-mean)**2, axis=0)
#        Vhat = (N-1)/N * W + (M+1)/(M*N) * B
#        c = np.sqrt(Vhat/W)
#        self.convergence_diagnostic.append(c)
#        self.convergence_diagnosticx.append(i - self.convergence_n/2.)
#
#        if test and np.max(c) < R:
#            return True
#        else:
#            return False
#
#    def _test_convergence(self, i, sampler, **kwargs):
#        if np.mod(i+1, self.convergence_n) == 0:
#            return self._get_convergence_test(i, sampler, **kwargs)
#        else:
#            return False
#
#    def _run_sampler_with_conv_test(self, sampler, p0, nprod=0, nburn=0):
#        logging.info('Running {} burn-in steps with convergence testing'
#                     .format(nburn))
#        iterator = tqdm(sampler.sample(p0, iterations=nburn), total=nburn)
#        for i, output in enumerate(iterator):
#            if self._test_convergence(i, sampler, test=True,
#                                      **self.convergence_kwargs):
#                logging.info(
#                    'Converged at {} before max number {} of steps reached'
#                    .format(i, nburn))
#                self.convergence_idx = i
#                break
#        iterator.close()
#        logging.info('Running {} production steps'.format(nprod))
#        j = nburn
#        iterator = tqdm(sampler.sample(output[0], iterations=nprod),
#                        total=nprod)
#        for result in iterator:
#            self._test_convergence(j, sampler, test=False,
#                                   **self.convergence_kwargs)
#            j += 1
#        return sampler

    def _run_sampler(self, sampler, p0, nprod=0, nburn=0, window=50):
        for result in tqdm(sampler.sample(p0, iterations=nburn+nprod),
                           total=nburn+nprod):
            pass
391

392
393
        self.mean_acceptance_fraction = np.mean(
            sampler.acceptance_fraction, axis=1)
394
        logging.info("Mean acceptance fraction: {}"
395
                     .format(self.mean_acceptance_fraction))
396
        if self.ntemps > 1:
397
            self.tswap_acceptance_fraction = sampler.tswap_acceptance_fraction
398
399
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
Gregory Ashton's avatar
Gregory Ashton committed
400
401
402
        self.autocorr_time = sampler.get_autocorr_time(window=window)
        logging.info("Autocorrelation length: {}".format(
            self.autocorr_time))
403
404
405

        return sampler

406
    def _estimate_run_time(self):
407
408
409
410
411
412
413
414
415
416
        """ Print the estimated run time

        Uses timing coefficients based on a Lenovo T460p Intel(R)
        Core(TM) i5-6300HQ CPU @ 2.30GHz.

        """
        # Todo: add option to time on a machine, and move coefficients to
        # ~/.pyfstat.conf
        if (type(self.theta_prior['Alpha']) == dict or
                type(self.theta_prior['Delta']) == dict):
Gregory Ashton's avatar
Gregory Ashton committed
417
418
419
420
            tau0LD = 5.2e-7
            tau0T = 1.5e-8
            tau0S = 1.2e-4
            tau0C = 5.8e-6
421
        else:
Gregory Ashton's avatar
Gregory Ashton committed
422
            tau0LD = 1.3e-7
423
            tau0T = 1.5e-8
Gregory Ashton's avatar
Gregory Ashton committed
424
425
            tau0S = 9.1e-5
            tau0C = 5.5e-6
426
        Nsfts = (self.maxStartTime - self.minStartTime) / 1800.
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
        if hasattr(self, 'run_setup'):
            ts = []
            for row in self.run_setup:
                nsteps = row[0]
                nsegs = row[1]
                numb_evals = np.sum(nsteps)*self.nwalkers*self.ntemps
                t = (tau0S + tau0LD*Nsfts) * numb_evals
                if nsegs > 1:
                    t += (tau0C + tau0T*Nsfts)*nsegs*numb_evals
                ts.append(t)
            time = np.sum(ts)
        else:
            numb_evals = np.sum(self.nsteps)*self.nwalkers*self.ntemps
            time = (tau0S + tau0LD*Nsfts) * numb_evals
            if getattr(self, 'nsegs', 1) > 1:
                time += (tau0C + tau0T*Nsfts)*self.nsegs*numb_evals

444
        logging.info('Estimated run-time = {} s = {:1.0f}:{:1.0f} m'.format(
445
            time, *divmod(time, 60)))
446

Gregory Ashton's avatar
Gregory Ashton committed
447
448
    def run(self, proposal_scale_factor=2, create_plots=True, window=50,
            **kwargs):
449
450
451
452
453
454
455
456
457
458
459
        """ Run the MCMC simulatation

        Parameters
        ----------
        proposal_scale_factor: float
            The proposal scale factor used by the sampler, see Goodman & Weare
            (2010). If the acceptance fraction is too low, you can raise it by
            decreasing the a parameter; and if it is too high, you can reduce
            it by increasing the a parameter [Foreman-Mackay (2013)].
        create_plots: bool
            If true, save trace plots of the walkers
Gregory Ashton's avatar
Gregory Ashton committed
460
        window: int
461
462
            The minimum number of autocorrelation times needed to trust the
            result when estimating the autocorrelation time (see
Gregory Ashton's avatar
Gregory Ashton committed
463
            ptemcee.Sampler.get_autocorr_time for further details.
464
465
466
        **kwargs:
            Passed to _plot_walkers to control the figures

467
468
        Returns
        -------
Gregory Ashton's avatar
Gregory Ashton committed
469
470
        sampler: ptemcee.Sampler
            The ptemcee ptsampler object
471

472
        """
473

474
        self.old_data_is_okay_to_use = self._check_old_data_is_okay_to_use()
475
476
477
        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
478
            d = self.get_saved_data_dictionary()
479
480
481
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
482
            self.all_lnlikelihood = d['all_lnlikelihood']
483
484
            return

485
        self._initiate_search_object()
486
        self._estimate_run_time()
487

Gregory Ashton's avatar
Gregory Ashton committed
488
489
490
        sampler = PTSampler(
            ntemps=self.ntemps, nwalkers=self.nwalkers, dim=self.ndim,
            logl=self.logl, logp=self.logp,
491
            logpargs=(self.theta_prior, self.theta_keys, self.search),
492
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
493

494
495
496
        p0 = self._generate_initial_p0()
        p0 = self._apply_corrections_to_p0(p0)
        self._check_initial_points(p0)
497

498
        # Run initialisation steps if required
499
500
501
        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
Gregory Ashton's avatar
Gregory Ashton committed
502
                j, ninit_steps, n))
Gregory Ashton's avatar
Gregory Ashton committed
503
            sampler = self._run_sampler(sampler, p0, nburn=n, window=window)
504
            if create_plots:
505
                fig, axes = self._plot_walkers(sampler,
506
                                               **kwargs)
507
508
                fig.tight_layout()
                fig.savefig('{}/{}_init_{}_walkers.png'.format(
Gregory Ashton's avatar
Gregory Ashton committed
509
                    self.outdir, self.label, j))
510

511
512
513
            p0 = self._get_new_p0(sampler)
            p0 = self._apply_corrections_to_p0(p0)
            self._check_initial_points(p0)
514
515
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
516
517
518
519
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
520
521
522
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
523
        sampler = self._run_sampler(sampler, p0, nburn=nburn, nprod=nprod)
524
        if create_plots:
525
            fig, axes = self._plot_walkers(sampler, nprod=nprod, **kwargs)
526
527
            fig.tight_layout()
            fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label),
Gregory Ashton's avatar
Gregory Ashton committed
528
                        )
529
530

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
Gregory Ashton's avatar
Gregory Ashton committed
531
532
533
        lnprobs = sampler.logprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.loglikelihood[0, :, nburn:].reshape((-1))
        all_lnlikelihood = sampler.loglikelihood[:, :, nburn:]
534
535
536
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
537
538
        self.all_lnlikelihood = all_lnlikelihood
        self._save_data(sampler, samples, lnprobs, lnlikes, all_lnlikelihood)
Gregory Ashton's avatar
Gregory Ashton committed
539
        return sampler
540

541
    def _get_rescale_multiplier_for_key(self, key):
542
        """ Get the rescale multiplier from the transform_dictionary
543
544
545
546
547

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
548
        if key not in self.transform_dictionary:
549
550
            return 1

551
552
        if 'multiplier' in self.transform_dictionary[key]:
            val = self.transform_dictionary[key]['multiplier']
553
554
555
            if type(val) == str:
                if hasattr(self, val):
                    multiplier = getattr(
556
                        self, self.transform_dictionary[key]['multiplier'])
557
558
559
560
561
562
563
564
565
                else:
                    raise ValueError(
                        "multiplier {} not a class attribute".format(val))
            else:
                multiplier = val
        else:
            multiplier = 1
        return multiplier

566
    def _get_rescale_subtractor_for_key(self, key):
567
        """ Get the rescale subtractor from the transform_dictionary
568
569
570
571
572

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
573
        if key not in self.transform_dictionary:
574
575
            return 0

576
577
        if 'subtractor' in self.transform_dictionary[key]:
            val = self.transform_dictionary[key]['subtractor']
578
579
580
            if type(val) == str:
                if hasattr(self, val):
                    subtractor = getattr(
581
                        self, self.transform_dictionary[key]['subtractor'])
582
583
584
585
586
587
588
589
590
                else:
                    raise ValueError(
                        "subtractor {} not a class attribute".format(val))
            else:
                subtractor = val
        else:
            subtractor = 0
        return subtractor

591
    def _scale_samples(self, samples, theta_keys):
592
        """ Scale the samples using the transform_dictionary """
593
        for key in theta_keys:
594
            if key in self.transform_dictionary:
595
596
                idx = theta_keys.index(key)
                s = samples[:, idx]
597
                subtractor = self._get_rescale_subtractor_for_key(key)
598
                s = s - subtractor
599
                multiplier = self._get_rescale_multiplier_for_key(key)
600
                s *= multiplier
601
602
                samples[:, idx] = s

603
604
        return samples

605
    def _get_labels(self, newline_units=False):
606
        """ Combine the units, symbols and rescaling to give labels """
607

608
609
610
611
612
613
        labels = []
        for key in self.theta_keys:
            label = None
            s = self.symbol_dictionary[key]
            s.replace('_{glitch}', r'_\textrm{glitch}')
            u = self.unit_dictionary[key]
614
615
616
617
618
619
620
            if key in self.transform_dictionary:
                if 'symbol' in self.transform_dictionary[key]:
                    s = self.transform_dictionary[key]['symbol']
                if 'label' in self.transform_dictionary[key]:
                    label = self.transform_dictionary[key]['label']
                if 'unit' in self.transform_dictionary[key]:
                    u = self.transform_dictionary[key]['unit']
621
            if label is None:
622
623
624
625
                if newline_units:
                    label = '{} \n [{}]'.format(s, u)
                else:
                    label = '{} [{}]'.format(s, u)
626
627
            labels.append(label)
        return labels
628

629
630
    def plot_corner(self, figsize=(7, 7), add_prior=False, nstds=None,
                    label_offset=0.4, dpi=300, rc_context={},
631
                    tglitch_ratio=False, fig_and_axes=None, save_fig=True,
632
                    **kwargs):
633
634
635
636
637
638
639
640
641
        """ Generate a corner plot of the posterior

        Using the `corner` package (https://pypi.python.org/pypi/corner/),
        generate estimates of the posterior from the production samples.

        Parameters
        ----------
        figsize: tuple (7, 7)
            Figure size in inches (passed to plt.subplots)
642
643
644
        add_prior: bool, str
            If true, plot the prior as a red line. If 'full' then for uniform
            priors plot the full extent of the prior.
645
646
647
648
649
650
651
652
653
654
655
656
657
658
        nstds: float
            The number of standard deviations to plot centered on the mean
        label_offset: float
            Offset the labels from the plot: useful to precent overlapping the
            tick labels with the axis labels
        dpi: int
            Passed to plt.savefig
        rc_context: dict
            Dictionary of rc values to set while generating the figure (see
            matplotlib rc for more details)
        tglitch_ratio: bool
            If true, and tglitch is a parameter, plot posteriors as the
            fractional time at which the glitch occurs instead of the actual
            time
659
660
661
662
663
        fig_and_axes: tuple
            fig and axes to plot on, the axes must be of the right shape,
            namely (ndim, ndim)
        save_fig: bool
            If true, save the figure, else return the fig, axes
664
665
        **kwargs:
            Passed to corner.corner
666

667
668
669
670
        Returns
        -------
        fig, axes:
            The matplotlib figure and axes, only returned if save_fig = False
671
672

        """
673

674
675
676
677
        if 'truths' in kwargs and len(kwargs['truths']) != self.ndim:
            logging.warning('len(Truths) != ndim, Truths will be ignored')
            kwargs['truths'] = None

Gregory Ashton's avatar
Gregory Ashton committed
678
679
        if self.ndim < 2:
            with plt.rc_context(rc_context):
680
681
682
683
                if fig_and_axes is None:
                    fig, ax = plt.subplots(figsize=figsize)
                else:
                    fig, ax = fig_and_axes
Gregory Ashton's avatar
Gregory Ashton committed
684
685
686
687
688
689
690
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

691
        with plt.rc_context(rc_context):
692
693
694
695
696
            if fig_and_axes is None:
                fig, axes = plt.subplots(self.ndim, self.ndim,
                                         figsize=figsize)
            else:
                fig, axes = fig_and_axes
697
698

            samples_plt = copy.copy(self.samples)
699
            labels = self._get_labels(newline_units=True)
700

701
            samples_plt = self._scale_samples(samples_plt, self.theta_keys)
702
703
704
705
706

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
707
708
709
                        samples_plt[:, j] = (
                            s - self.minStartTime)/(
                                self.maxStartTime - self.minStartTime)
710
                        labels[j] = r'$R_{\textrm{glitch}}$'
711
712
713
714
715
716
717

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
718
719
            elif 'range' in kwargs:
                _range = kwargs.pop('range')
720
721
722
            else:
                _range = None

723
724
725
726
            hist_kwargs = kwargs.pop('hist_kwargs', dict())
            if 'normed' not in hist_kwargs:
                hist_kwargs['normed'] = True

727
            fig_triangle = corner.corner(samples_plt,
728
                                         labels=labels,
729
730
731
732
733
734
735
736
737
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
738
                                         hist_kwargs=hist_kwargs,
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
755
                self._add_prior_to_corner(axes, self.samples, add_prior)
756

757
758
759
760
761
            if save_fig:
                fig_triangle.savefig('{}/{}_corner.png'.format(
                    self.outdir, self.label), dpi=dpi)
            else:
                return fig, axes
762

763
    def _add_prior_to_corner(self, axes, samples, add_prior):
764
765
766
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            s = samples[:, i]
767
768
769
770
771
772
773
774
775
776
            lnprior = self._generic_lnprior(**self.theta_prior[key])
            if add_prior == 'full' and self.theta_prior[key]['type'] == 'unif':
                lower = self.theta_prior[key]['lower']
                upper = self.theta_prior[key]['upper']
                r = upper-lower
                xlim = [lower-0.05*r, upper+0.05*r]
                x = np.linspace(xlim[0], xlim[1], 1000)
            else:
                xlim = ax.get_xlim()
                x = np.linspace(s.min(), s.max(), 1000)
777
778
            multiplier = self._get_rescale_multiplier_for_key(key)
            subtractor = self._get_rescale_subtractor_for_key(key)
779
780
781
782
783
784
785
786
            ax.plot((x-subtractor)*multiplier,
                    [np.exp(lnprior(xi)) for xi in x], '-C3',
                    label='prior')

            for j in range(i, self.ndim):
                axes[j][i].set_xlim(xlim[0], xlim[1])
            for k in range(0, i):
                axes[i][k].set_ylim(xlim[0], xlim[1])
787

788
789
790
791
792
793
794
795
    def plot_prior_posterior(self, normal_stds=2):
        """ Plot the posterior in the context of the prior """
        fig, axes = plt.subplots(nrows=self.ndim, figsize=(8, 4*self.ndim))
        N = 1000
        from scipy.stats import gaussian_kde

        for i, (ax, key) in enumerate(zip(axes, self.theta_keys)):
            prior_dict = self.theta_prior[key]
796
            prior_func = self._generic_lnprior(**prior_dict)
797
798
799
800
801
            if prior_dict['type'] == 'unif':
                x = np.linspace(prior_dict['lower'], prior_dict['upper'], N)
                prior = prior_func(x)
                prior[0] = 0
                prior[-1] = 0
Gregory Ashton's avatar
Gregory Ashton committed
802
803
804
805
806
            elif prior_dict['type'] == 'log10unif':
                upper = prior_dict['log10upper']
                lower = prior_dict['log10lower']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
807
808
809
810
811
            elif prior_dict['type'] == 'norm':
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = prior_func(x)
812
813
814
815
816
            elif prior_dict['type'] == 'halfnorm':
                lower = prior_dict['loc']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
Gregory Ashton's avatar
Gregory Ashton committed
817
818
819
820
821
            elif prior_dict['type'] == 'neghalfnorm':
                upper = prior_dict['loc']
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
822
823
824
            else:
                raise ValueError('Not implemented for prior type {}'.format(
                    prior_dict['type']))
825
            priorln = ax.plot(x, prior, 'C3', label='prior')
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
            ax.set_xlabel(self.theta_symbols[i])

            s = self.samples[:, i]
            while len(s) > 10**4:
                # random downsample to avoid slow calculation of kde
                s = np.random.choice(s, size=int(len(s)/2.))
            kde = gaussian_kde(s)
            ax2 = ax.twinx()
            postln = ax2.plot(x, kde.pdf(x), 'k', label='posterior')
            ax2.set_yticklabels([])
            ax.set_yticklabels([])

        lns = priorln + postln
        labs = [l.get_label() for l in lns]
        axes[0].legend(lns, labs, loc=1, framealpha=0.8)

        fig.savefig('{}/{}_prior_posterior.png'.format(
            self.outdir, self.label))

845
    def plot_cumulative_max(self, **kwargs):
846
847
848
849
        """ Plot the cumulative twoF for the maximum posterior estimate

        See the pyfstat.core.plot_twoF_cumulative function for further details
        """
Gregory Ashton's avatar
Gregory Ashton committed
850
851
852
853
        d, maxtwoF = self.get_max_twoF()
        for key, val in self.theta_prior.iteritems():
            if key not in d:
                d[key] = val
854

855
856
857
        if 'add_pfs' in kwargs:
            self.generate_loudest()

858
        if hasattr(self, 'search') is False:
859
            self._initiate_search_object()
860
861
862
        if self.binary is False:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
863
                Alpha=d['Alpha'], Delta=d['Delta'],
864
                tstart=self.minStartTime, tend=self.maxStartTime,
865
                **kwargs)
866
867
868
869
870
        else:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
                Alpha=d['Alpha'], Delta=d['Delta'], asini=d['asini'],
                period=d['period'], ecc=d['ecc'], argp=d['argp'], tp=d['argp'],
871
                tstart=self.minStartTime, tend=self.maxStartTime, **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
872

873
    def _generic_lnprior(self, **kwargs):
874
875
876
877
        """ Return a lambda function of the pdf

        Parameters
        ----------
878
        **kwargs:
879
880
881
882
            A dictionary containing 'type' of pdf and shape parameters

        """

Gregory Ashton's avatar
Gregory Ashton committed
883
        def log_of_unif(x, a, b):
884
885
886
887
888
889
890
891
892
893
894
895
896
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

Gregory Ashton's avatar
Gregory Ashton committed
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
        def log_of_log10unif(x, log10lower, log10upper):
            log10x = np.log10(x)
            above = log10x < log10upper
            below = log10x > log10lower
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(x*np.log(10)*(log10upper-log10lower))
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(x*np.log(10)*(log10upper-log10lower))
                return p

        def log_of_halfnorm(x, loc, scale):
913
            if x < loc:
914
915
916
917
918
919
920
921
922
923
924
925
926
927
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
Gregory Ashton's avatar
Gregory Ashton committed
928
929
930
931
            return lambda x: log_of_unif(x, kwargs['lower'], kwargs['upper'])
        if kwargs['type'] == 'log10unif':
            return lambda x: log_of_log10unif(
                x, kwargs['log10lower'], kwargs['log10upper'])
932
        elif kwargs['type'] == 'halfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
933
            return lambda x: log_of_halfnorm(x, kwargs['loc'], kwargs['scale'])
934
        elif kwargs['type'] == 'neghalfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
935
936
            return lambda x: log_of_halfnorm(
                -x, kwargs['loc'], kwargs['scale'])
937
938
939
940
941
942
943
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

944
    def _generate_rv(self, **kwargs):
945
946
947
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
Gregory Ashton's avatar
Gregory Ashton committed
948
949
950
        if dist_type == "log10unif":
            return 10**(np.random.uniform(low=kwargs['log10lower'],
                                          high=kwargs['log10upper']))
951
952
953
954
955
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
956
957
958
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
959
960
961
962
963
964
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

965
    def _plot_walkers(self, sampler, symbols=None, alpha=0.8, color="k",
966
967
                      temp=0, lw=0.1, nprod=0, add_det_stat_burnin=False,
                      fig=None, axes=None, xoffset=0, plot_det_stat=False,
968
                      context='ggplot', labelpad=5):
969
970
        """ Plot all the chains from a sampler """

971
972
        if symbols is None:
            symbols = self._get_labels()
973
974
975
976
977
        if context not in plt.style.available:
            raise ValueError((
                'The requested context {} is not available; please select a'
                ' context from `plt.style.available`').format(context))

978
979
980
        if np.ndim(axes) > 1:
            axes = axes.flatten()

981
982
983
        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
984
            chain = sampler.chain[:, :, :].copy()
985
986
987
988
989
990
991
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
992
            chain = sampler.chain[temp, :, :, :].copy()
993

994
995
996
        samples = chain.reshape((nwalkers*nsteps, ndim))
        samples = self._scale_samples(samples, self.theta_keys)
        chain = chain.reshape((nwalkers, nsteps, ndim))
997

998
999
1000
1001
        if plot_det_stat:
            extra_subplots = 1
        else:
            extra_subplots = 0
1002
        with plt.style.context((context)):
Gregory Ashton's avatar
Gregory Ashton committed
1003
            plt.rcParams['text.usetex'] = True
Gregory Ashton's avatar
Gregory Ashton committed
1004
            if fig is None and axes is None:
1005
                fig = plt.figure(figsize=(4, 3.0*ndim))
1006
1007
                ax = fig.add_subplot(ndim+extra_subplots, 1, 1)
                axes = [ax] + [fig.add_subplot(ndim+extra_subplots, 1, i)
Gregory Ashton's avatar
Gregory Ashton committed
1008
                               for i in range(2, ndim+1)]
1009

Gregory Ashton's avatar
Gregory Ashton committed
1010
            idxs = np.arange(chain.shape[1])
1011
            burnin_idx = chain.shape[1] - nprod
1012
1013
1014
1015
            #if hasattr(self, 'convergence_idx'):
            #    last_idx = self.convergence_idx
            #else:
            last_idx = burnin_idx
1016
1017
            if ndim > 1:
                for i in range(ndim):
1018
                    axes[i].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
1019
                    cs = chain[:, :, i].T
1020
                    if burnin_idx > 0:
1021
                        axes[i].plot(xoffset+idxs[:last_idx+1],
1022
                                     cs[:last_idx+1],
1023
                                     color="C3", alpha=alpha,
Gregory Ashton's avatar
Gregory Ashton committed
1024
                                     lw=lw)
1025
                        axes[i].axvline(xoffset+last_idx,
1026
                                        color='k', ls='--', lw=0.5)
1027
                    axes[i].plot(xoffset+idxs[burnin_idx:],
1028
                                 cs[burnin_idx:],
Gregory Ashton's avatar
Gregory Ashton committed
1029
                                 color="k", alpha=alpha, lw=lw)
Gregory Ashton's avatar
Gregory Ashton committed
1030
1031

                    axes[i].set_xlim(0, xoffset+idxs[-1])
1032
                    if symbols:
1033
1034
1035
1036
1037
1038
1039
                        axes[i].set_ylabel(symbols[i], labelpad=labelpad)
                        #if subtractions[i] == 0:
                        #    axes[i].set_ylabel(symbols[i], labelpad=labelpad)
                        #else:
                        #    axes[i].set_ylabel(
                        #        symbols[i]+'$-$'+symbols[i]+'$^\mathrm{s}$',
                        #        labelpad=labelpad)
1040

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
#                    if hasattr(self, 'convergence_diagnostic'):
#                        ax = axes[i].twinx()
#                        axes[i].set_zorder(ax.get_zorder()+1)
#                        axes[i].patch.set_visible(False)
#                        c_x = np.array(self.convergence_diagnosticx)
#                        c_y = np.array(self.convergence_diagnostic)
#                        break_idx = np.argmin(np.abs(c_x - burnin_idx))
#                        ax.plot(c_x[:break_idx], c_y[:break_idx, i], '-C0',
#                                zorder=-10)
#                        ax.plot(c_x[break_idx:], c_y[break_idx:, i], '-C0',
#                                zorder=-10)
#                        if self.convergence_test_type == 'autocorr':
#                            ax.set_ylabel(r'$\tau_\mathrm{exp}$')
#                        elif self.convergence_test_type == 'GR':
#                            ax.set_ylabel('PSRF')
#                        ax.ticklabel_format(useOffset=False)
1057
            else:
Gregory Ashton's avatar
Gregory Ashton committed
1058
                axes[0].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
1059
                cs = chain[:, :, temp].T
Gregory Ashton's avatar
Gregory Ashton committed
1060
1061
                if burnin_idx:
                    axes[0].plot(idxs[:burnin_idx], cs[:burnin_idx],
1062
                                 color="C3", alpha=alpha, lw=lw)
Gregory Ashton's avatar
Gregory Ashton committed
1063
1064
1065
                axes[0].plot(idxs[burnin_idx:], cs[burnin_idx:], color="k",
                             alpha=alpha, lw=lw)
                if symbols:
1066
                    axes[0].set_ylabel(symbols[0], labelpad=labelpad)
1067

Gregory Ashton's avatar
Gregory Ashton committed
1068
1069
            axes[-1].set_xlabel(r'$\textrm{Number of steps}$', labelpad=0.2)

1070
            if plot_det_stat:
1071
1072
1073
                if len(axes) == ndim:
                    axes.append(fig.add_subplot(ndim+1, 1, ndim+1))

Gregory Ashton's avatar
Gregory Ashton committed
1074
                lnl = sampler.loglikelihood[temp, :, :]
1075
1076
                if burnin_idx and add_det_stat_burnin:
                    burn_in_vals = lnl[:, :burnin_idx].flatten()
1077
                    try:
1078
1079
1080
1081
                        twoF_burnin = (burn_in_vals[~np.isnan(burn_in_vals)]
                                       - self.likelihoodcoef)
                        axes[-1].hist(twoF_burnin, bins=50, histtype='step',
                                      color='C3')
1082
1083
1084
1085
                    except ValueError:
                        logging.info('Det. Stat. hist failed, most likely all '
                                     'values where the same')
                        pass
1086
                else:
1087
                    twoF_burnin = []
Gregory Ashton's avatar