mcmc_based_searches.py 92.2 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
2
""" Searches using MCMC-based methods """

3
import sys
Gregory Ashton's avatar
Gregory Ashton committed
4
import os
5
import copy
Gregory Ashton's avatar
Gregory Ashton committed
6
import logging
7
from collections import OrderedDict
8
import subprocess
9
10
11
12
13
14
15
16

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import emcee
import corner
import dill as pickle

17
import core
18
from core import tqdm, args, earth_ephem, sun_ephem, read_par
19
from optimal_setup_functions import get_V_estimate
Gregory Ashton's avatar
Gregory Ashton committed
20
21
from optimal_setup_functions import get_optimal_setup
import helper_functions
22
23


24
class MCMCSearch(core.BaseSearchClass):
Gregory Ashton's avatar
Gregory Ashton committed
25
    """ MCMC search using ComputeFstat"""
26
27

    symbol_dictionary = dict(
28
        F0='$f$', F1='$\dot{f}$', F2='$\ddot{f}$', Alpha=r'$\alpha$',
29
30
        Delta='$\delta$', asini='asini', period='P', ecc='ecc', tp='tp',
        argp='argp')
31
    unit_dictionary = dict(
32
33
        F0='Hz', F1='Hz/s', F2='Hz/s$^2$', Alpha=r'rad', Delta='rad',
        asini='', period='s', ecc='', tp='', argp='')
34
35
36
    rescale_dictionary = {}


Gregory Ashton's avatar
Gregory Ashton committed
37
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
38
    def __init__(self, label, outdir, theta_prior, tref, minStartTime,
39
                 maxStartTime, sftfilepattern=None, nsteps=[100, 100],
40
                 nwalkers=100, ntemps=1, log10temperature_min=-5,
41
                 theta_initial=None, scatter_val=1e-10, rhohatmax=1000,
42
                 binary=False, BSGL=False, minCoverFreq=None, SSBprec=None,
43
                 maxCoverFreq=None, detectors=None, earth_ephem=None,
44
                 sun_ephem=None, injectSources=None, assumeSqrtSX=None):
45
46
47
48
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
49
        sftfilepattern: str
50
51
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
52
        theta_prior: dict
53
54
55
56
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
57
58
59
60
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
61
        tref, minStartTime, maxStartTime: int
62
63
64
65
66
67
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
68
69
70
71
72
73
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
74
75
76
77
        rhohatmax: float
            Upper bound for the SNR scale parameter (required to normalise the
            Bayes factor) - this needs to be carefully set when using the
            evidence.
78
79
        binary: Bool
            If true, search over binary parameters
80
        detectors: str
81
82
            Two character reference to the data to use, specify None for no
            contraint.
83
84
85
86
87
88
89
90
91
92
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

Gregory Ashton's avatar
Gregory Ashton committed
93
94
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
95
        self._add_log_file()
96
        logging.info('Set-up MCMC search for model {}'.format(self.label))
97
98
        if sftfilepattern:
            logging.info('Using data {}'.format(self.sftfilepattern))
99
        else:
100
            logging.info('No sftfilepattern given')
101
102
        if injectSources:
            logging.info('Inject sources: {}'.format(injectSources))
103
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
104
        self._unpack_input_theta()
105
        self.ndim = len(self.theta_keys)
106
107
108
109
        if self.log10temperature_min:
            self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
        else:
            self.betas = None
110

111
112
113
114
115
116
117
118
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

119
120
121
122
        self._set_likelihoodcoef()

    def _set_likelihoodcoef(self):
        self.likelihoodcoef = np.log(70./self.rhohatmax**4)
123

124
        self._log_input()
125

126
    def _log_input(self):
127
        logging.info('theta_prior = {}'.format(self.theta_prior))
128
        logging.info('nwalkers={}'.format(self.nwalkers))
129
130
131
132
        logging.info('scatter_val = {}'.format(self.scatter_val))
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
        logging.info('log10temperature_min = {}'.format(
133
            self.log10temperature_min))
134

135
    def _initiate_search_object(self):
136
        logging.info('Setting up search object')
137
        self.search = core.ComputeFstat(
138
            tref=self.tref, sftfilepattern=self.sftfilepattern,
139
140
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
141
            detectors=self.detectors, BSGL=self.BSGL, transient=False,
142
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
143
            binary=self.binary, injectSources=self.injectSources,
144
            assumeSqrtSX=self.assumeSqrtSX, SSBprec=self.SSBprec)
145
146

    def logp(self, theta_vals, theta_prior, theta_keys, search):
147
        H = [self._generic_lnprior(**theta_prior[key])(p) for p, key in
148
149
150
151
152
153
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
154
155
        FS = search.compute_fullycoherent_det_stat_single_point(
            *self.fixed_theta)
156
        return FS + self.likelihoodcoef
157

158
    def _unpack_input_theta(self):
159
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']
160
161
162
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
163
164
        full_theta_keys_copy = copy.copy(full_theta_keys)

165
166
        full_theta_symbols = ['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                              r'$\delta$']
167
168
        if self.binary:
            full_theta_symbols += [
169
                'asini', 'period', 'ecc', 'tp', 'argp']
170

171
172
        self.theta_keys = []
        fixed_theta_dict = {}
173
        for key, val in self.theta_prior.iteritems():
174
175
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
176
                self.theta_keys.append(key)
177
178
179
180
181
182
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
183
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

199
    def _check_initial_points(self, p0):
200
201
202
203
204
205
206
207
208
209
210
211
212
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

213
                p0 = self._generate_new_p0_to_fix_initial_points(
214
215
                    p0, nt, initial_priors)

216
    def _generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
236

237
    def _OLD_run_sampler_with_progress_bar(self, sampler, ns, p0):
238
239
        for result in tqdm(sampler.sample(p0, iterations=ns), total=ns):
            pass
Gregory Ashton's avatar
Gregory Ashton committed
240
241
        return sampler

242
243
    def setup_convergence_testing(
            self, convergence_period=10, convergence_length=10,
244
            convergence_burnin_fraction=0.25, convergence_threshold_number=10,
245
            convergence_threshold=1.2, convergence_prod_threshold=2,
246
            convergence_plot_upper_lim=2, convergence_early_stopping=True):
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        """
        If called, convergence testing is used during the MCMC simulation

        This uses the Gelmanr-Rubin statistic based on the ratio of between and
        within walkers variance. The original statistic was developed for
        multiple (independent) MCMC simulations, in this context we simply use
        the walkers

        Parameters
        ----------
        convergence_period: int
            period (in number of steps) at which to test convergence
        convergence_length: int
            number of steps to use in testing convergence - this should be
            large enough to measure the variance, but if it is too long
            this will result in incorect early convergence tests
        convergence_burnin_fraction: float [0, 1]
            the fraction of the burn-in period after which to start testing
        convergence_threshold_number: int
            the number of consecutive times where the test passes after which
            to break the burn-in and go to production
        convergence_threshold: float
            the threshold to use in diagnosing convergence. Gelman & Rubin
            recomend a value of 1.2, 1.1 for strict convergence
        convergence_prod_threshold: float
            the threshold to test the production values with
273
274
        convergence_plot_upper_lim: float
            the upper limit to use in the diagnostic plot
275
276
        convergence_early_stopping: bool
            if true, stop the burnin early if convergence is reached
277
        """
278
279
280
281
282
283
284

        if convergence_length > convergence_period:
            raise ValueError('convergence_length must be < convergence_period')
        logging.info('Setting up convergence testing')
        self.convergence_length = convergence_length
        self.convergence_period = convergence_period
        self.convergence_burnin_fraction = convergence_burnin_fraction
285
        self.convergence_prod_threshold = convergence_prod_threshold
286
287
288
289
290
        self.convergence_diagnostic = []
        self.convergence_diagnosticx = []
        self.convergence_threshold_number = convergence_threshold_number
        self.convergence_threshold = convergence_threshold
        self.convergence_number = 0
291
        self.convergence_plot_upper_lim = convergence_plot_upper_lim
292
        self.convergence_early_stopping = convergence_early_stopping
293

294
    def _get_convergence_statistic(self, i, sampler):
295
        s = sampler.chain[0, :, i-self.convergence_length+1:i+1, :]
296
297
298
        N = float(self.convergence_length)
        M = float(self.nwalkers)
        W = np.mean(np.var(s, axis=1), axis=0)
299
300
        per_walker_mean = np.mean(s, axis=1)
        mean = np.mean(per_walker_mean, axis=0)
301
302
        B = N / (M-1.) * np.sum((per_walker_mean-mean)**2, axis=0)
        Vhat = (N-1)/N * W + (M+1)/(M*N) * B
303
        c = np.sqrt(Vhat/W)
304
        self.convergence_diagnostic.append(c)
305
        self.convergence_diagnosticx.append(i - self.convergence_length/2)
306
307
        return c

308
    def _burnin_convergence_test(self, i, sampler, nburn):
309
310
        if i < self.convergence_burnin_fraction*nburn:
            return False
311
        if np.mod(i+1, self.convergence_period) != 0:
312
            return False
313
        c = self._get_convergence_statistic(i, sampler)
314
315
        if np.all(c < self.convergence_threshold):
            self.convergence_number += 1
316
317
        else:
            self.convergence_number = 0
318
319
        if self.convergence_early_stopping:
            return self.convergence_number > self.convergence_threshold_number
320

321
    def _prod_convergence_test(self, i, sampler, nburn):
322
323
324
        testA = i > nburn + self.convergence_length
        testB = np.mod(i+1, self.convergence_period) == 0
        if testA and testB:
325
            self._get_convergence_statistic(i, sampler)
326

327
    def _check_production_convergence(self, k):
328
329
330
331
332
333
334
335
        bools = np.any(
            np.array(self.convergence_diagnostic)[k:, :]
            > self.convergence_prod_threshold, axis=1)
        if np.any(bools):
            logging.warning(
                '{} convergence tests in the production run of {} failed'
                .format(np.sum(bools), len(bools)))

336
    def _run_sampler(self, sampler, p0, nprod=0, nburn=0):
337
        if hasattr(self, 'convergence_period'):
338
339
340
341
            logging.info('Running {} burn-in steps with convergence testing'
                         .format(nburn))
            iterator = tqdm(sampler.sample(p0, iterations=nburn), total=nburn)
            for i, output in enumerate(iterator):
342
                if self._burnin_convergence_test(i, sampler, nburn):
343
344
345
346
347
348
349
350
351
352
353
                    logging.info(
                        'Converged at {} before max number {} of steps reached'
                        .format(i, nburn))
                    self.convergence_idx = i
                    break
            iterator.close()
            logging.info('Running {} production steps'.format(nprod))
            j = nburn
            k = len(self.convergence_diagnostic)
            for result in tqdm(sampler.sample(output[0], iterations=nprod),
                               total=nprod):
354
                self._prod_convergence_test(j, sampler, nburn)
355
                j += 1
356
            self._check_production_convergence(k)
357
358
359
360
361
362
            return sampler
        else:
            for result in tqdm(sampler.sample(p0, iterations=nburn+nprod),
                               total=nburn+nprod):
                pass
            return sampler
363

364
    def run(self, proposal_scale_factor=2, create_plots=True, **kwargs):
365
        """ Run the MCMC simulatation """
366

367
        self.old_data_is_okay_to_use = self._check_old_data_is_okay_to_use()
368
369
370
        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
371
            d = self.get_saved_data_dictionary()
372
373
374
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
375
            self.all_lnlikelihood = d['all_lnlikelihood']
376
377
            return

378
        self._initiate_search_object()
379
380
381
382

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
383
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
384

385
386
387
        p0 = self._generate_initial_p0()
        p0 = self._apply_corrections_to_p0(p0)
        self._check_initial_points(p0)
388
389
390
391

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
Gregory Ashton's avatar
Gregory Ashton committed
392
                j, ninit_steps, n))
393
            sampler = self._run_sampler(sampler, p0, nburn=n)
394
395
            logging.info("Mean acceptance fraction: {}"
                         .format(np.mean(sampler.acceptance_fraction, axis=1)))
396
397
398
            if self.ntemps > 1:
                logging.info("Tswap acceptance fraction: {}"
                             .format(sampler.tswap_acceptance_fraction))
399
            if create_plots:
400
                fig, axes = self._plot_walkers(sampler,
401
402
403
404
                                              symbols=self.theta_symbols,
                                              **kwargs)
                fig.tight_layout()
                fig.savefig('{}/{}_init_{}_walkers.png'.format(
405
                    self.outdir, self.label, j), dpi=400)
406

407
408
409
            p0 = self._get_new_p0(sampler)
            p0 = self._apply_corrections_to_p0(p0)
            self._check_initial_points(p0)
410
411
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
412
413
414
415
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
416
417
418
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
419
        sampler = self._run_sampler(sampler, p0, nburn=nburn, nprod=nprod)
420
421
        logging.info("Mean acceptance fraction: {}"
                     .format(np.mean(sampler.acceptance_fraction, axis=1)))
422
423
424
        if self.ntemps > 1:
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
425

426
        if create_plots:
427
            fig, axes = self._plot_walkers(sampler, symbols=self.theta_symbols,
428
                                          nprod=nprod, **kwargs)
429
430
431
            fig.tight_layout()
            fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label),
                        dpi=200)
432
433
434
435

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
436
        all_lnlikelihood = sampler.lnlikelihood[:, :, nburn:]
437
438
439
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
440
441
        self.all_lnlikelihood = all_lnlikelihood
        self._save_data(sampler, samples, lnprobs, lnlikes, all_lnlikelihood)
442

443
    def _get_rescale_multiplier_for_key(self, key):
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
        """ Get the rescale multiplier from the rescale_dictionary

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
        if key not in self.rescale_dictionary:
            return 1

        if 'multiplier' in self.rescale_dictionary[key]:
            val = self.rescale_dictionary[key]['multiplier']
            if type(val) == str:
                if hasattr(self, val):
                    multiplier = getattr(
                        self, self.rescale_dictionary[key]['multiplier'])
                else:
                    raise ValueError(
                        "multiplier {} not a class attribute".format(val))
            else:
                multiplier = val
        else:
            multiplier = 1
        return multiplier

468
    def _get_rescale_subtractor_for_key(self, key):
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
        """ Get the rescale subtractor from the rescale_dictionary

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
        if key not in self.rescale_dictionary:
            return 0

        if 'subtractor' in self.rescale_dictionary[key]:
            val = self.rescale_dictionary[key]['subtractor']
            if type(val) == str:
                if hasattr(self, val):
                    subtractor = getattr(
                        self, self.rescale_dictionary[key]['subtractor'])
                else:
                    raise ValueError(
                        "subtractor {} not a class attribute".format(val))
            else:
                subtractor = val
        else:
            subtractor = 0
        return subtractor

493
    def _scale_samples(self, samples, theta_keys):
494
        """ Scale the samples using the rescale_dictionary """
495
496
497
498
        for key in theta_keys:
            if key in self.rescale_dictionary:
                idx = theta_keys.index(key)
                s = samples[:, idx]
499
                subtractor = self._get_rescale_subtractor_for_key(key)
500
                s = s - subtractor
501
                multiplier = self._get_rescale_multiplier_for_key(key)
502
                s *= multiplier
503
504
                samples[:, idx] = s

505
506
        return samples

507
    def _get_labels(self):
508
        """ Combine the units, symbols and rescaling to give labels """
509

510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
        labels = []
        for key in self.theta_keys:
            label = None
            s = self.symbol_dictionary[key]
            s.replace('_{glitch}', r'_\textrm{glitch}')
            u = self.unit_dictionary[key]
            if key in self.rescale_dictionary:
                if 'symbol' in self.rescale_dictionary[key]:
                    s = self.rescale_dictionary[key]['symbol']
                if 'label' in self.rescale_dictionary[key]:
                    label = self.rescale_dictionary[key]['label']
                if 'unit' in self.rescale_dictionary[key]:
                    u = self.rescale_dictionary[key]['unit']
            if label is None:
                label = '{} \n [{}]'.format(s, u)
            labels.append(label)
        return labels
527

528
529
    def plot_corner(self, figsize=(7, 7), add_prior=False, nstds=None,
                    label_offset=0.4, dpi=300, rc_context={},
530
                    tglitch_ratio=False, fig_and_axes=None, save_fig=True,
531
                    **kwargs):
532
533
534
535
536
537
538
539
540
        """ Generate a corner plot of the posterior

        Using the `corner` package (https://pypi.python.org/pypi/corner/),
        generate estimates of the posterior from the production samples.

        Parameters
        ----------
        figsize: tuple (7, 7)
            Figure size in inches (passed to plt.subplots)
541
542
543
        add_prior: bool, str
            If true, plot the prior as a red line. If 'full' then for uniform
            priors plot the full extent of the prior.
544
545
546
547
548
549
550
551
552
553
554
555
556
557
        nstds: float
            The number of standard deviations to plot centered on the mean
        label_offset: float
            Offset the labels from the plot: useful to precent overlapping the
            tick labels with the axis labels
        dpi: int
            Passed to plt.savefig
        rc_context: dict
            Dictionary of rc values to set while generating the figure (see
            matplotlib rc for more details)
        tglitch_ratio: bool
            If true, and tglitch is a parameter, plot posteriors as the
            fractional time at which the glitch occurs instead of the actual
            time
558
559
560
561
562
        fig_and_axes: tuple
            fig and axes to plot on, the axes must be of the right shape,
            namely (ndim, ndim)
        save_fig: bool
            If true, save the figure, else return the fig, axes
563

564
        Note: kwargs are passed on to corner.corner
565
566

        """
567

568
569
570
571
        if 'truths' in kwargs and len(kwargs['truths']) != self.ndim:
            logging.warning('len(Truths) != ndim, Truths will be ignored')
            kwargs['truths'] = None

Gregory Ashton's avatar
Gregory Ashton committed
572
573
        if self.ndim < 2:
            with plt.rc_context(rc_context):
574
575
576
577
                if fig_and_axes is None:
                    fig, ax = plt.subplots(figsize=figsize)
                else:
                    fig, ax = fig_and_axes
Gregory Ashton's avatar
Gregory Ashton committed
578
579
580
581
582
583
584
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

585
        with plt.rc_context(rc_context):
586
587
588
589
590
            if fig_and_axes is None:
                fig, axes = plt.subplots(self.ndim, self.ndim,
                                         figsize=figsize)
            else:
                fig, axes = fig_and_axes
591
592

            samples_plt = copy.copy(self.samples)
593
            labels = self._get_labels()
594

595
            samples_plt = self._scale_samples(samples_plt, self.theta_keys)
596
597
598
599
600

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
601
602
603
                        samples_plt[:, j] = (
                            s - self.minStartTime)/(
                                self.maxStartTime - self.minStartTime)
604
                        labels[j] = r'$R_{\textrm{glitch}}$'
605
606
607
608
609
610
611

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
612
613
            elif 'range' in kwargs:
                _range = kwargs.pop('range')
614
615
616
            else:
                _range = None

617
618
619
620
            hist_kwargs = kwargs.pop('hist_kwargs', dict())
            if 'normed' not in hist_kwargs:
                hist_kwargs['normed'] = True

621
            fig_triangle = corner.corner(samples_plt,
622
                                         labels=labels,
623
624
625
626
627
628
629
630
631
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
632
                                         hist_kwargs=hist_kwargs,
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
649
                self._add_prior_to_corner(axes, self.samples, add_prior)
650

651
652
653
654
655
            if save_fig:
                fig_triangle.savefig('{}/{}_corner.png'.format(
                    self.outdir, self.label), dpi=dpi)
            else:
                return fig, axes
656

657
    def _add_prior_to_corner(self, axes, samples, add_prior):
658
659
660
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            s = samples[:, i]
661
662
663
664
665
666
667
668
669
670
            lnprior = self._generic_lnprior(**self.theta_prior[key])
            if add_prior == 'full' and self.theta_prior[key]['type'] == 'unif':
                lower = self.theta_prior[key]['lower']
                upper = self.theta_prior[key]['upper']
                r = upper-lower
                xlim = [lower-0.05*r, upper+0.05*r]
                x = np.linspace(xlim[0], xlim[1], 1000)
            else:
                xlim = ax.get_xlim()
                x = np.linspace(s.min(), s.max(), 1000)
671
672
            multiplier = self._get_rescale_multiplier_for_key(key)
            subtractor = self._get_rescale_subtractor_for_key(key)
673
674
675
676
677
678
679
680
            ax.plot((x-subtractor)*multiplier,
                    [np.exp(lnprior(xi)) for xi in x], '-C3',
                    label='prior')

            for j in range(i, self.ndim):
                axes[j][i].set_xlim(xlim[0], xlim[1])
            for k in range(0, i):
                axes[i][k].set_ylim(xlim[0], xlim[1])
681

682
683
684
685
686
687
688
689
    def plot_prior_posterior(self, normal_stds=2):
        """ Plot the posterior in the context of the prior """
        fig, axes = plt.subplots(nrows=self.ndim, figsize=(8, 4*self.ndim))
        N = 1000
        from scipy.stats import gaussian_kde

        for i, (ax, key) in enumerate(zip(axes, self.theta_keys)):
            prior_dict = self.theta_prior[key]
690
            prior_func = self._generic_lnprior(**prior_dict)
691
692
693
694
695
            if prior_dict['type'] == 'unif':
                x = np.linspace(prior_dict['lower'], prior_dict['upper'], N)
                prior = prior_func(x)
                prior[0] = 0
                prior[-1] = 0
Gregory Ashton's avatar
Gregory Ashton committed
696
697
698
699
700
            elif prior_dict['type'] == 'log10unif':
                upper = prior_dict['log10upper']
                lower = prior_dict['log10lower']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
701
702
703
704
705
            elif prior_dict['type'] == 'norm':
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = prior_func(x)
706
707
708
709
710
            elif prior_dict['type'] == 'halfnorm':
                lower = prior_dict['loc']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
Gregory Ashton's avatar
Gregory Ashton committed
711
712
713
714
715
            elif prior_dict['type'] == 'neghalfnorm':
                upper = prior_dict['loc']
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
716
717
718
            else:
                raise ValueError('Not implemented for prior type {}'.format(
                    prior_dict['type']))
719
            priorln = ax.plot(x, prior, 'C3', label='prior')
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
            ax.set_xlabel(self.theta_symbols[i])

            s = self.samples[:, i]
            while len(s) > 10**4:
                # random downsample to avoid slow calculation of kde
                s = np.random.choice(s, size=int(len(s)/2.))
            kde = gaussian_kde(s)
            ax2 = ax.twinx()
            postln = ax2.plot(x, kde.pdf(x), 'k', label='posterior')
            ax2.set_yticklabels([])
            ax.set_yticklabels([])

        lns = priorln + postln
        labs = [l.get_label() for l in lns]
        axes[0].legend(lns, labs, loc=1, framealpha=0.8)

        fig.savefig('{}/{}_prior_posterior.png'.format(
            self.outdir, self.label))

739
    def plot_cumulative_max(self, **kwargs):
740
741
742
743
        """ Plot the cumulative twoF for the maximum posterior estimate

        See the pyfstat.core.plot_twoF_cumulative function for further details
        """
Gregory Ashton's avatar
Gregory Ashton committed
744
745
746
747
        d, maxtwoF = self.get_max_twoF()
        for key, val in self.theta_prior.iteritems():
            if key not in d:
                d[key] = val
748
749

        if hasattr(self, 'search') is False:
750
            self._initiate_search_object()
751
752
753
        if self.binary is False:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
754
                Alpha=d['Alpha'], Delta=d['Delta'],
755
                tstart=self.minStartTime, tend=self.maxStartTime,
756
                **kwargs)
757
758
759
760
761
        else:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
                Alpha=d['Alpha'], Delta=d['Delta'], asini=d['asini'],
                period=d['period'], ecc=d['ecc'], argp=d['argp'], tp=d['argp'],
762
                tstart=self.minStartTime, tend=self.maxStartTime, **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
763

764
    def _generic_lnprior(self, **kwargs):
765
766
767
768
769
770
771
772
773
        """ Return a lambda function of the pdf

        Parameters
        ----------
        kwargs: dict
            A dictionary containing 'type' of pdf and shape parameters

        """

Gregory Ashton's avatar
Gregory Ashton committed
774
        def log_of_unif(x, a, b):
775
776
777
778
779
780
781
782
783
784
785
786
787
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

Gregory Ashton's avatar
Gregory Ashton committed
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
        def log_of_log10unif(x, log10lower, log10upper):
            log10x = np.log10(x)
            above = log10x < log10upper
            below = log10x > log10lower
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(x*np.log(10)*(log10upper-log10lower))
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(x*np.log(10)*(log10upper-log10lower))
                return p

        def log_of_halfnorm(x, loc, scale):
804
            if x < loc:
805
806
807
808
809
810
811
812
813
814
815
816
817
818
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
Gregory Ashton's avatar
Gregory Ashton committed
819
820
821
822
            return lambda x: log_of_unif(x, kwargs['lower'], kwargs['upper'])
        if kwargs['type'] == 'log10unif':
            return lambda x: log_of_log10unif(
                x, kwargs['log10lower'], kwargs['log10upper'])
823
        elif kwargs['type'] == 'halfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
824
            return lambda x: log_of_halfnorm(x, kwargs['loc'], kwargs['scale'])
825
        elif kwargs['type'] == 'neghalfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
826
827
            return lambda x: log_of_halfnorm(
                -x, kwargs['loc'], kwargs['scale'])
828
829
830
831
832
833
834
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

835
    def _generate_rv(self, **kwargs):
836
837
838
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
Gregory Ashton's avatar
Gregory Ashton committed
839
840
841
        if dist_type == "log10unif":
            return 10**(np.random.uniform(low=kwargs['log10lower'],
                                          high=kwargs['log10upper']))
842
843
844
845
846
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
847
848
849
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
850
851
852
853
854
855
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

856
    def _plot_walkers(self, sampler, symbols=None, alpha=0.8, color="k",
857
858
                      temp=0, lw=0.1, nprod=0, add_det_stat_burnin=False,
                      fig=None, axes=None, xoffset=0, plot_det_stat=False,
859
                      context='ggplot', subtractions=None, labelpad=0.05):
860
861
        """ Plot all the chains from a sampler """

862
863
864
865
866
        if context not in plt.style.available:
            raise ValueError((
                'The requested context {} is not available; please select a'
                ' context from `plt.style.available`').format(context))

867
868
869
        if np.ndim(axes) > 1:
            axes = axes.flatten()

870
871
872
873
874
875
876
877
878
879
880
881
882
        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
            chain = sampler.chain[:, :, :]
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
            chain = sampler.chain[temp, :, :, :]

883
884
        if subtractions is None:
            subtractions = [0 for i in range(ndim)]
885
886
887
        else:
            if len(subtractions) != self.ndim:
                raise ValueError('subtractions must be of length ndim')
888

889
890
891
892
        if plot_det_stat:
            extra_subplots = 1
        else:
            extra_subplots = 0
893
        with plt.style.context((context)):
Gregory Ashton's avatar
Gregory Ashton committed
894
            plt.rcParams['text.usetex'] = True
Gregory Ashton's avatar
Gregory Ashton committed
895
            if fig is None and axes is None:
896
                fig = plt.figure(figsize=(4, 3.0*ndim))
897
898
                ax = fig.add_subplot(ndim+extra_subplots, 1, 1)
                axes = [ax] + [fig.add_subplot(ndim+extra_subplots, 1, i)
Gregory Ashton's avatar
Gregory Ashton committed
899
                               for i in range(2, ndim+1)]
900

Gregory Ashton's avatar
Gregory Ashton committed
901
            idxs = np.arange(chain.shape[1])
902
903
904
905
906
            burnin_idx = chain.shape[1] - nprod
            if hasattr(self, 'convergence_idx'):
                convergence_idx = self.convergence_idx
            else:
                convergence_idx = burnin_idx
907
908
            if ndim > 1:
                for i in range(ndim):
909
                    axes[i].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
910
                    cs = chain[:, :, i].T
911
                    if burnin_idx > 0:
912
913
                        axes[i].plot(xoffset+idxs[:convergence_idx+1],
                                     cs[:convergence_idx+1]-subtractions[i],
914
                                     color="C3", alpha=alpha,
Gregory Ashton's avatar
Gregory Ashton committed
915
                                     lw=lw)
916
                        axes[i].axvline(xoffset+convergence_idx,
917
                                        color='k', ls='--', lw=0.25)
918
919
                    axes[i].plot(xoffset+idxs[burnin_idx:],
                                 cs[burnin_idx:]-subtractions[i],
Gregory Ashton's avatar
Gregory Ashton committed
920
                                 color="k", alpha=alpha, lw=lw)
921
                    if symbols:
922
                        if subtractions[i] == 0:
923
                            axes[i].set_ylabel(symbols[i], labelpad=labelpad)
924
925
                        else:
                            axes[i].set_ylabel(
926
927
                                symbols[i]+'$-$'+symbols[i]+'$_0$',
                                labelpad=labelpad)
928

929
930
                    if hasattr(self, 'convergence_diagnostic'):
                        ax = axes[i].twinx()
931
932
                        axes[i].set_zorder(ax.get_zorder()+1)
                        axes[i].patch.set_visible(False)
933
934
                        c_x = np.array(self.convergence_diagnosticx)
                        c_y = np.array(self.convergence_diagnostic)
935
                        break_idx = np.argmin(np.abs(c_x - burnin_idx))
936
937
938
939
                        ax.plot(c_x[:break_idx], c_y[:break_idx, i], '-C0',
                                zorder=-10)
                        ax.plot(c_x[break_idx:], c_y[break_idx:, i], '-C0',
                                zorder=-10)
940
                        ax.set_ylabel('PSRF')
941
                        ax.ticklabel_format(useOffset=False)
942
                        ax.set_ylim(0.5, self.convergence_plot_upper_lim)
943
            else:
Gregory Ashton's avatar
Gregory Ashton committed
944
                axes[0].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
945
                cs = chain[:, :, temp].T
Gregory Ashton's avatar
Gregory Ashton committed
946
947
                if burnin_idx:
                    axes[0].plot(idxs[:burnin_idx], cs[:burnin_idx],
948
                                 color="C3", alpha=alpha, lw=lw)
Gregory Ashton's avatar
Gregory Ashton committed
949
950
951
                axes[0].plot(idxs[burnin_idx:], cs[burnin_idx:], color="k",
                             alpha=alpha, lw=lw)
                if symbols:
952
                    axes[0].set_ylabel(symbols[0], labelpad=labelpad)
953

Gregory Ashton's avatar
Gregory Ashton committed
954
955
            axes[-1].set_xlabel(r'$\textrm{Number of steps}$', labelpad=0.2)

956
            if plot_det_stat:
957
958
959
                if len(axes) == ndim:
                    axes.append(fig.add_subplot(ndim+1, 1, ndim+1))

960
961
962
                lnl = sampler.lnlikelihood[temp, :, :]
                if burnin_idx and add_det_stat_burnin:
                    burn_in_vals = lnl[:, :burnin_idx].flatten()
963
964
                    try:
                        axes[-1].hist(burn_in_vals[~np.isnan(burn_in_vals)],
965
                                      bins=50, histtype='step', color='C3')
966
967
968
969
                    except ValueError:
                        logging.info('Det. Stat. hist failed, most likely all '
                                     'values where the same')
                        pass
970
971
972
                else:
                    burn_in_vals = []
                prod_vals = lnl[:, burnin_idx:].flatten()
973
974
975
976
977
978
979
                try:
                    axes[-1].hist(prod_vals[~np.isnan(prod_vals)], bins=50,
                                  histtype='step', color='k')
                except ValueError:
                    logging.info('Det. Stat. hist failed, most likely all '
                                 'values where the same')
                    pass
980
981
982
983
984
985
986
987
988
989
990
991
                if self.BSGL:
                    axes[-1].set_xlabel(r'$\mathcal{B}_\mathrm{S/GL}$')
                else:
                    axes[-1].set_xlabel(r'$\widetilde{2\mathcal{F}}$')
                axes[-1].set_ylabel(r'$\textrm{Counts}$')
                combined_vals = np.append(burn_in_vals, prod_vals)
                if len(combined_vals) > 0:
                    minv = np.min(combined_vals)
                    maxv = np.max(combined_vals)
                    Range = abs(maxv-minv)
                    axes[-1].set_xlim(minv-0.1*Range, maxv+0.1*Range)

992
                xfmt = matplotlib.ticker.ScalarFormatter()
993
                xfmt.set_powerlimits((-4, 4))
994
995
                axes[-1].xaxis.set_major_formatter(xfmt)

996
997
        return fig, axes

998
    def _apply_corrections_to_p0(self, p0):
Gregory Ashton's avatar
Gregory Ashton committed
999
1000
1001
        """ Apply any correction to the initial p0 values """
        return p0

1002
    def _generate_scattered_p0(self, p):
1003
        """ Generate a set of p0s scattered about p """
Gregory Ashton's avatar
Gregory Ashton committed
1004
        p0 = [[p + self.scatter_val * p * np.random.randn(self.ndim)
1005
1006
1007
1008
               for i in xrange(self.nwalkers)]
              for j in xrange(self.ntemps)]
        return p0

1009
    def _generate_initial_p0(self):
1010
1011
1012
        """ Generate a set of init vals for the walkers """

        if type(self.theta_initial) == dict:
1013
            logging.info('Generate initial values from initial dictionary')
1014
            if hasattr(self, 'nglitch') and self.nglitch > 1:
1015
                raise ValueError('Initial dict not implemented for nglitch>1')
1016
            p0 = [[[self._generate_rv(**self.theta_initial[key])
1017
1018
1019
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
1020
1021
        elif type(self.theta_initial) == list:
            logging.info('Generate initial values from list of theta_initial')
1022
            p0 = [[[self._generate_rv(**val)
1023
1024
1025
                    for val in self.theta_initial]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
1026
        elif self.theta_initial is None:
1027
            logging.info('Generate initial values from prior dictionary')
1028
            p0 = [[[self._generate_rv(**self.theta_prior[<