pyfstat.py 122 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
""" Classes for various types of searches using ComputeFstatistic """
import os
import sys
import itertools
import logging
import argparse
import copy
import glob
import inspect
from functools import wraps
11
import subprocess
12
from collections import OrderedDict
13
14
15

import numpy as np
import matplotlib
16
matplotlib.use('Agg')
17
import matplotlib.pyplot as plt
18
import scipy.special
19
import scipy.optimize
20
21
22
import emcee
import corner
import dill as pickle
23
import lal
24
25
import lalpulsar

26
27
28
29
30
31
try:
    from tqdm import tqdm
except ImportError:
    def tqdm(x):
        return x

32
plt.rcParams['text.usetex'] = True
33
plt.rcParams['axes.formatter.useoffset'] = False
34

35
36
37
38
39
40
41
config_file = os.path.expanduser('~')+'/.pyfstat.conf'
if os.path.isfile(config_file):
    d = {}
    with open(config_file, 'r') as f:
        for line in f:
            k, v = line.split('=')
            k = k.replace(' ', '')
42
            v = v.replace(' ', '').replace("'", "").replace('"', '').replace('\n', '')
43
44
45
46
47
48
            d[k] = v
    earth_ephem = d['earth_ephem']
    sun_ephem = d['sun_ephem']
else:
    logging.warning('No ~/.pyfstat.conf file found please provide the paths '
                    'when initialising searches')
49
50
51
    earth_ephem = None
    sun_ephem = None

52
53
54
55
56
parser = argparse.ArgumentParser()
parser.add_argument("-q", "--quite", help="Decrease output verbosity",
                    action="store_true")
parser.add_argument("-c", "--clean", help="Don't use cached data",
                    action="store_true")
57
parser.add_argument("-u", "--use-old-data", action="store_true")
58
parser.add_argument('-s', "--setup-only", action="store_true")
59
parser.add_argument('-n', "--no-template-counting", action="store_true")
60
61
62
63
parser.add_argument('unittest_args', nargs='*')
args, unknown = parser.parse_known_args()
sys.argv[1:] = args.unittest_args

Gregory Ashton's avatar
Gregory Ashton committed
64
65
66
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
stream_handler = logging.StreamHandler()
67
if args.quite:
Gregory Ashton's avatar
Gregory Ashton committed
68
    stream_handler.setLevel(logging.WARNING)
69
else:
Gregory Ashton's avatar
Gregory Ashton committed
70
71
72
73
    stream_handler.setLevel(logging.DEBUG)
stream_handler.setFormatter(logging.Formatter(
    '%(asctime)s %(levelname)-8s: %(message)s', datefmt='%H:%M'))
logger.addHandler(stream_handler)
74

75

76
77
78
79
80
81
82
83
84
def round_to_n(x, n):
    if not x:
        return 0
    power = -int(np.floor(np.log10(abs(x)))) + (n - 1)
    factor = (10 ** power)
    return round(x * factor) / factor


def texify_float(x, d=1):
85
86
    if type(x) == str:
        return x
87
88
89
90
91
92
93
94
95
96
97
    x = round_to_n(x, d)
    if 0.01 < abs(x) < 100:
        return str(x)
    else:
        power = int(np.floor(np.log10(abs(x))))
        stem = np.round(x / 10**power, d)
        if d == 1:
            stem = int(stem)
        return r'${}{{\times}}10^{{{}}}$'.format(stem, power)


98
def initializer(func):
99
    """ Decorator function to automatically assign the parameters to self """
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    names, varargs, keywords, defaults = inspect.getargspec(func)

    @wraps(func)
    def wrapper(self, *args, **kargs):
        for name, arg in list(zip(names[1:], args)) + list(kargs.items()):
            setattr(self, name, arg)

        for name, default in zip(reversed(names), reversed(defaults)):
            if not hasattr(self, name):
                setattr(self, name, default)

        func(self, *args, **kargs)

    return wrapper


def read_par(label, outdir):
117
    """ Read in a .par file, returns a dictionary of the values """
118
119
120
121
    filename = '{}/{}.par'.format(outdir, label)
    d = {}
    with open(filename, 'r') as f:
        for line in f:
122
123
124
            if len(line.split('=')) > 1:
                key, val = line.rstrip('\n').split(' = ')
                key = key.strip()
125
                d[key] = np.float64(eval(val.rstrip('; ')))
126
127
128
    return d


129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def get_optimal_setup(
        R0, Vmin, tref, minStartTime, maxStartTime, DeltaOmega,
        DeltaFs, fiducial_freq, detector_names, earth_ephem, sun_ephem):
    logging.info('Calculating optimal setup for R0={}, Vmin={}'.format(
        R0, Vmin))

    log10R0 = np.log10(R0)
    log10Vmin = np.log10(Vmin)
    nsegs_i = 1
    V_i = get_V_estimate(
        nsegs_i, tref, minStartTime, maxStartTime, DeltaOmega, DeltaFs,
        fiducial_freq, detector_names, earth_ephem, sun_ephem)
    logging.info('Stage {}, nsegs={}, V={}'.format(0, nsegs_i, V_i))

    nsegs_vals = [1]
    V_vals = [V_i]

    i = 0
    while np.log10(V_i[0]) > log10Vmin:
        nsegs_i, V_i = get_nsegs_ip1(
            nsegs_i, log10R0, tref, minStartTime, maxStartTime, DeltaOmega,
            DeltaFs, fiducial_freq, detector_names, earth_ephem, sun_ephem)
        nsegs_vals.append(nsegs_i)
        V_vals.append(V_i)
        i += 1
        logging.info(
            'Stage {}, nsegs={}, V={}'.format(i, nsegs_i, V_i))

    nsegs_vals.reverse()
    V_vals.reverse()
    return nsegs_vals, V_vals


def get_nsegs_ip1(
        nsegs_i, log10R0, tref, minStartTime, maxStartTime, DeltaOmega,
        DeltaFs, fiducial_freq, detector_names, earth_ephem, sun_ephem):

    log10Vi = np.log10(get_V_estimate(
        nsegs_i, tref, minStartTime, maxStartTime, DeltaOmega, DeltaFs,
        fiducial_freq, detector_names, earth_ephem, sun_ephem))

    def f(nsegs_ip1):
        if nsegs_ip1[0] < 1:
            return 1e6
        Vip1 = get_V_estimate(
            nsegs_ip1[0], tref, minStartTime, maxStartTime, DeltaOmega, DeltaFs,
            fiducial_freq, detector_names, earth_ephem, sun_ephem)
        if Vip1[0] is None:
            return 1e6
        else:
            log10Vip1 = np.log10(Vip1)
            return np.abs(log10R0 + log10Vip1[0] - log10Vi[0])
    res = scipy.optimize.minimize(f, 2*nsegs_i, method='Powell', tol=0.1,
                                  options={'maxiter':10})
    if res.success:
        return int(res.x), get_V_estimate(
            int(res.x), tref, minStartTime, maxStartTime, DeltaOmega, DeltaFs,
            fiducial_freq, detector_names, earth_ephem, sun_ephem)
    else:
        raise ValueError('Optimisation unsuccesful')


191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
def get_V_estimate(
        nsegs, tref, minStartTime, maxStartTime, DeltaOmega, DeltaFs,
        fiducial_freq, detector_names, earth_ephem, sun_ephem):
    """ Returns V, Vsky, Vpe estimated from the super-sky metric

    Parameters
    ----------
    nsegs: int
        Number of semi-coherent segments
    tref: int
        Reference time in GPS seconds
    minStartTime, maxStartTime: int
        Minimum and maximum SFT timestamps
    DeltaOmega: float
        Solid angle of the sky-patch
    DeltaFs: array
        Array of [DeltaF0, DeltaF1, ...], length determines the number of
        spin-down terms.
    fiducial_freq: float
        Fidicual frequency
    detector_names: array
        Array of detectors to average over
    earth_ephem, sun_ephem: st
        Paths to the ephemeris files

    """
    spindowns = len(DeltaFs) - 1
    tboundaries = np.linspace(minStartTime, maxStartTime, nsegs+1)

    ref_time = lal.LIGOTimeGPS(tref)
    segments = lal.SegListCreate()
    for j in range(len(tboundaries)-1):
        seg = lal.SegCreate(lal.LIGOTimeGPS(tboundaries[j]),
                            lal.LIGOTimeGPS(tboundaries[j+1]),
                            j)
        lal.SegListAppend(segments, seg)
    detNames = lal.CreateStringVector(*detector_names)
    detectors = lalpulsar.MultiLALDetector()
    lalpulsar.ParseMultiLALDetector(detectors, detNames)
    detector_weights = None
    detector_motion = (lalpulsar.DETMOTION_SPIN
                       + lalpulsar.DETMOTION_ORBIT)
    ephemeris = lalpulsar.InitBarycenter(earth_ephem, sun_ephem)
    try:
        SSkyMetric = lalpulsar.ComputeSuperskyMetrics(
            spindowns, ref_time, segments, fiducial_freq, detectors,
            detector_weights, detector_motion, ephemeris)
    except RuntimeError as e:
        logging.debug('Encountered run-time error {}'.format(e))
        return None, None, None

    sqrtdetG_SKY = np.sqrt(np.linalg.det(
        SSkyMetric.semi_rssky_metric.data[:2, :2]))
    sqrtdetG_PE = np.sqrt(np.linalg.det(
        SSkyMetric.semi_rssky_metric.data[2:, 2:]))

    Vsky = .5*sqrtdetG_SKY*DeltaOmega
    Vpe = sqrtdetG_PE * np.prod(DeltaFs)
    if Vsky == 0:
        Vsky = 1
    if Vpe == 0:
        Vpe = 1
    return (Vsky * Vpe, Vsky, Vpe)


256
class BaseSearchClass(object):
257
    """ The base search class, provides general functions """
258
259
260
261

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

262
    def add_log_file(self):
263
        """ Log output to a file, requires class to have outdir and label """
264
265
        logfilename = '{}/{}.log'.format(self.outdir, self.label)
        fh = logging.FileHandler(logfilename)
Gregory Ashton's avatar
Gregory Ashton committed
266
        fh.setLevel(logging.INFO)
267
268
269
270
271
        fh.setFormatter(logging.Formatter(
            '%(asctime)s %(levelname)-8s: %(message)s',
            datefmt='%y-%m-%d %H:%M'))
        logging.getLogger().addHandler(fh)

272
    def shift_matrix(self, n, dT):
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
        """ Generate the shift matrix

        Parameters
        ----------
        n: int
            The dimension of the shift-matrix to generate
        dT: float
            The time delta of the shift matrix

        Returns
        -------
        m: array (n, n)
            The shift matrix
        """

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
        m = np.zeros((n, n))
        factorial = np.math.factorial
        for i in range(n):
            for j in range(n):
                if i == j:
                    m[i, j] = 1.0
                elif i > j:
                    m[i, j] = 0.0
                else:
                    if i == 0:
                        m[i, j] = 2*np.pi*float(dT)**(j-i) / factorial(j-i)
                    else:
                        m[i, j] = float(dT)**(j-i) / factorial(j-i)
        return m

    def shift_coefficients(self, theta, dT):
        """ Shift a set of coefficients by dT

        Parameters
        ----------
        theta: array-like, shape (n,)
            vector of the expansion coefficients to transform starting from the
310
            lowest degree e.g [phi, F0, F1,...].
311
        dT: float
312
            difference between the two reference times as tref_new - tref_old.
313
314
315
316

        Returns
        -------
        theta_new: array-like shape (n,)
317
            vector of the coefficients as evaluate as the new reference time.
318
        """
319

320
321
322
323
        n = len(theta)
        m = self.shift_matrix(n, dT)
        return np.dot(m, theta)

324
    def calculate_thetas(self, theta, delta_thetas, tbounds, theta0_idx=0):
325
326
327
        """ Calculates the set of coefficients for the post-glitch signal """
        thetas = [theta]
        for i, dt in enumerate(delta_thetas):
328
329
330
331
332
333
334
335
336
337
338
339
340
            if i < theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[0], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch - dt
                thetas.insert(0, self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))

            elif i >= theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[i], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch + dt
                thetas.append(self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))
341
342
        return thetas

Gregory Ashton's avatar
Gregory Ashton committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
    def generate_loudest(self):
        params = read_par(self.label, self.outdir)
        for key in ['Alpha', 'Delta', 'F0', 'F1']:
            if key not in params:
                params[key] = self.theta_prior[key]
        cmd = ('lalapps_ComputeFstatistic_v2 -a {} -d {} -f {} -s {} -D "{}"'
               ' --refTime={} --outputLoudest="{}/{}.loudest" '
               '--minStartTime={} --maxStartTime={}').format(
                    params['Alpha'], params['Delta'], params['F0'],
                    params['F1'], self.sftfilepath, params['tref'],
                    self.outdir, self.label, self.minStartTime,
                    self.maxStartTime)
        subprocess.call([cmd], shell=True)

357

Gregory Ashton's avatar
Gregory Ashton committed
358
class ComputeFstat(object):
359
    """ Base class providing interface to `lalpulsar.ComputeFstat` """
Gregory Ashton's avatar
Gregory Ashton committed
360
361
362
363
364

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

    @initializer
365
366
    def __init__(self, tref, sftfilepath=None, minStartTime=None,
                 maxStartTime=None, binary=False, transient=True, BSGL=False,
367
                 detector=None, minCoverFreq=None, maxCoverFreq=None,
368
                 earth_ephem=None, sun_ephem=None, injectSources=None
369
                 ):
370
371
372
373
374
        """
        Parameters
        ----------
        tref: int
            GPS seconds of the reference time.
375
376
        sftfilepath: str
            File patern to match SFTs
377
378
379
380
381
382
383
384
385
386
387
388
        minStartTime, maxStartTime: float GPStime
            Only use SFTs with timestemps starting from (including, excluding)
            this epoch
        binary: bool
            If true, search of binary parameters.
        transient: bool
            If true, allow for the Fstat to be computed over a transient range.
        BSGL: bool
            If true, compute the BSGL rather than the twoF value.
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
389
390
391
392
393
394
395
396
397
398
        minCoverFreq, maxCoverFreq: float
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput.
            If None defaults defined in BaseSearchClass will be used.

        """
Gregory Ashton's avatar
Gregory Ashton committed
399
400
401
402
403
404
405
406

        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        self.init_computefstatistic_single_point()

Gregory Ashton's avatar
Gregory Ashton committed
407
408
409
    def get_SFTCatalog(self):
        if hasattr(self, 'SFTCatalog'):
            return
Gregory Ashton's avatar
Gregory Ashton committed
410
411
412
413
        logging.info('Initialising SFTCatalog')
        constraints = lalpulsar.SFTConstraints()
        if self.detector:
            constraints.detector = self.detector
414
415
416
417
418
        if self.minStartTime:
            constraints.minStartTime = lal.LIGOTimeGPS(self.minStartTime)
        if self.maxStartTime:
            constraints.maxStartTime = lal.LIGOTimeGPS(self.maxStartTime)

419
        logging.info('Loading data matching pattern {}'.format(
420
421
                     self.sftfilepath))
        SFTCatalog = lalpulsar.SFTdataFind(self.sftfilepath, constraints)
422
423
        detector_names = list(set([d.header.name for d in SFTCatalog.data]))
        self.detector_names = detector_names
424
        SFT_timestamps = [d.header.epoch for d in SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
425
426
427
428
429
430
        try:
            from bashplotlib.histogram import plot_hist
            print('Data timestamps histogram:')
            plot_hist(SFT_timestamps, height=5, bincount=50)
        except IOError:
            pass
431
        if len(detector_names) == 0:
Gregory Ashton's avatar
Gregory Ashton committed
432
433
            raise ValueError('No data loaded.')
        logging.info('Loaded {} data files from detectors {}'.format(
434
            len(SFT_timestamps), detector_names))
Gregory Ashton's avatar
Gregory Ashton committed
435
436
437
438
439
440
        logging.info('Data spans from {} ({}) to {} ({})'.format(
            int(SFT_timestamps[0]),
            subprocess.check_output('lalapps_tconvert {}'.format(
                int(SFT_timestamps[0])), shell=True).rstrip('\n'),
            int(SFT_timestamps[-1]),
            subprocess.check_output('lalapps_tconvert {}'.format(
441
                int(SFT_timestamps[-1])), shell=True).rstrip('\n')))
Gregory Ashton's avatar
Gregory Ashton committed
442
443
444
445
446
447
        self.SFTCatalog = SFTCatalog

    def init_computefstatistic_single_point(self):
        """ Initilisation step of run_computefstatistic for a single point """

        self.get_SFTCatalog()
Gregory Ashton's avatar
Gregory Ashton committed
448
449
450
451
452
453

        logging.info('Initialising ephems')
        ephems = lalpulsar.InitBarycenter(self.earth_ephem, self.sun_ephem)

        logging.info('Initialising FstatInput')
        dFreq = 0
454
455
456
457
458
        if self.transient:
            self.whatToCompute = lalpulsar.FSTATQ_ATOMS_PER_DET
        else:
            self.whatToCompute = lalpulsar.FSTATQ_2F

459
460
461
462
463
464
465
466
467
468
469
        FstatOAs = lalpulsar.FstatOptionalArgs()
        FstatOAs.randSeed = lalpulsar.FstatOptionalArgsDefaults.randSeed
        FstatOAs.SSBprec = lalpulsar.FstatOptionalArgsDefaults.SSBprec
        FstatOAs.Dterms = lalpulsar.FstatOptionalArgsDefaults.Dterms
        FstatOAs.runningMedianWindow = lalpulsar.FstatOptionalArgsDefaults.runningMedianWindow
        FstatOAs.FstatMethod = lalpulsar.FstatOptionalArgsDefaults.FstatMethod
        FstatOAs.InjectSqrtSX = lalpulsar.FstatOptionalArgsDefaults.injectSqrtSX
        FstatOAs.assumeSqrtSX = lalpulsar.FstatOptionalArgsDefaults.assumeSqrtSX
        FstatOAs.prevInput = lalpulsar.FstatOptionalArgsDefaults.prevInput
        FstatOAs.collectTiming = lalpulsar.FstatOptionalArgsDefaults.collectTiming

470
        if hasattr(self, 'injectSource') and type(self.injectSources) == dict:
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
            logging.info('Injecting source with params: {}'.format(
                self.injectSources))
            PPV = lalpulsar.CreatePulsarParamsVector(1)
            PP = PPV.data[0]
            PP.Amp.h0 = self.injectSources['h0']
            PP.Amp.cosi = self.injectSources['cosi']
            PP.Amp.phi0 = self.injectSources['phi0']
            PP.Amp.psi = self.injectSources['psi']
            PP.Doppler.Alpha = self.injectSources['Alpha']
            PP.Doppler.Delta = self.injectSources['Delta']
            PP.Doppler.fkdot = np.array(self.injectSources['fkdot'])
            PP.Doppler.refTime = self.tref
            if 't0' not in self.injectSources:
                PP.Transient.type = lalpulsar.TRANSIENT_NONE
            FstatOAs.injectSources = PPV
        else:
            FstatOAs.injectSources = lalpulsar.FstatOptionalArgsDefaults.injectSources
Gregory Ashton's avatar
Gregory Ashton committed
488
489

        if self.minCoverFreq is None or self.maxCoverFreq is None:
Gregory Ashton's avatar
Gregory Ashton committed
490
            fAs = [d.header.f0 for d in self.SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
491
            fBs = [d.header.f0 + (d.numBins-1)*d.header.deltaF
Gregory Ashton's avatar
Gregory Ashton committed
492
                   for d in self.SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
493
494
            self.minCoverFreq = np.min(fAs) + 0.5
            self.maxCoverFreq = np.max(fBs) - 0.5
495
496
497
            logging.info('Min/max cover freqs not provided, using '
                         '{} and {}, est. from SFTs'.format(
                             self.minCoverFreq, self.maxCoverFreq))
Gregory Ashton's avatar
Gregory Ashton committed
498

Gregory Ashton's avatar
Gregory Ashton committed
499
        self.FstatInput = lalpulsar.CreateFstatInput(self.SFTCatalog,
Gregory Ashton's avatar
Gregory Ashton committed
500
501
502
503
                                                     self.minCoverFreq,
                                                     self.maxCoverFreq,
                                                     dFreq,
                                                     ephems,
504
                                                     FstatOAs
Gregory Ashton's avatar
Gregory Ashton committed
505
506
507
508
509
510
511
512
513
514
515
516
517
                                                     )

        logging.info('Initialising PulsarDoplerParams')
        PulsarDopplerParams = lalpulsar.PulsarDopplerParams()
        PulsarDopplerParams.refTime = self.tref
        PulsarDopplerParams.Alpha = 1
        PulsarDopplerParams.Delta = 1
        PulsarDopplerParams.fkdot = np.array([0, 0, 0, 0, 0, 0, 0])
        self.PulsarDopplerParams = PulsarDopplerParams

        logging.info('Initialising FstatResults')
        self.FstatResults = lalpulsar.FstatResults()

518
        if self.BSGL:
Gregory Ashton's avatar
Gregory Ashton committed
519
            if len(self.names) < 2:
Gregory Ashton's avatar
Gregory Ashton committed
520
                raise ValueError("Can't use BSGL with single detector data")
521
            else:
522
                logging.info('Initialising BSGL')
523

524
525
            # Tuning parameters - to be reviewed
            numDetectors = 2
526
527
528
529
530
531
532
533
534
535
            if hasattr(self, 'nsegs'):
                p_val_threshold = 1e-6
                Fstar0s = np.linspace(0, 1000, 10000)
                p_vals = scipy.special.gammaincc(2*self.nsegs, Fstar0s)
                Fstar0 = Fstar0s[np.argmin(np.abs(p_vals - p_val_threshold))]
                if Fstar0 == Fstar0s[-1]:
                    raise ValueError('Max Fstar0 exceeded')
            else:
                Fstar0 = 15.
            logging.info('Using Fstar0 of {:1.2f}'.format(Fstar0))
536
            oLGX = np.zeros(10)
Gregory Ashton's avatar
Gregory Ashton committed
537
            oLGX[:numDetectors] = 1./numDetectors
538
            self.BSGLSetup = lalpulsar.CreateBSGLSetup(numDetectors,
539
                                                       Fstar0,
540
                                                       oLGX,
541
                                                       True,
542
543
                                                       1)
            self.twoFX = np.zeros(10)
Gregory Ashton's avatar
Gregory Ashton committed
544
            self.whatToCompute = (self.whatToCompute +
545
546
                                  lalpulsar.FSTATQ_2F_PER_DET)

547
        if self.transient:
548
            logging.info('Initialising transient parameters')
549
550
551
552
553
554
            self.windowRange = lalpulsar.transientWindowRange_t()
            self.windowRange.type = lalpulsar.TRANSIENT_RECTANGULAR
            self.windowRange.t0Band = 0
            self.windowRange.dt0 = 1
            self.windowRange.tauBand = 0
            self.windowRange.dtau = 1
555

556
557
558
559
560
561
562
563
564
    def compute_fullycoherent_det_stat_single_point(
            self, F0, F1, F2, Alpha, Delta, asini=None, period=None, ecc=None,
            tp=None, argp=None):
        """ Compute the fully-coherent det. statistic at a single point """

        return self.run_computefstatistic_single_point(
            self.minStartTime, self.maxStartTime, F0, F1, F2, Alpha, Delta,
            asini, period, ecc, tp, argp)

Gregory Ashton's avatar
Gregory Ashton committed
565
    def run_computefstatistic_single_point(self, tstart, tend, F0, F1,
566
567
568
                                           F2, Alpha, Delta, asini=None,
                                           period=None, ecc=None, tp=None,
                                           argp=None):
569
        """ Returns twoF or ln(BSGL) fully-coherently at a single point """
Gregory Ashton's avatar
Gregory Ashton committed
570
571
572
573

        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
574
575
576
577
578
579
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp
Gregory Ashton's avatar
Gregory Ashton committed
580
581
582
583

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
584
                               1,
Gregory Ashton's avatar
Gregory Ashton committed
585
586
587
                               self.whatToCompute
                               )

588
        if self.transient is False:
589
590
591
592
593
594
            if self.BSGL is False:
                return self.FstatResults.twoF[0]

            twoF = np.float(self.FstatResults.twoF[0])
            self.twoFX[0] = self.FstatResults.twoFPerDet(0)
            self.twoFX[1] = self.FstatResults.twoFPerDet(1)
595
596
597
            log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
                                               self.BSGLSetup)
            return log10_BSGL/np.log10(np.exp(1))
598

599
600
        self.windowRange.t0 = int(tstart)  # TYPE UINT4
        self.windowRange.tau = int(tend - tstart)  # TYPE UINT4
601

Gregory Ashton's avatar
Gregory Ashton committed
602
        FS = lalpulsar.ComputeTransientFstatMap(
603
            self.FstatResults.multiFatoms[0], self.windowRange, False)
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618

        if self.BSGL is False:
            return 2*FS.F_mn.data[0][0]

        FstatResults_single = copy.copy(self.FstatResults)
        FstatResults_single.lenth = 1
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
        FS0 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
        FS1 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)

        self.twoFX[0] = 2*FS0.F_mn.data[0][0]
        self.twoFX[1] = 2*FS1.F_mn.data[0][0]
619
620
        log10_BSGL = lalpulsar.ComputeBSGL(
                2*FS.F_mn.data[0][0], self.twoFX, self.BSGLSetup)
621

622
        return log10_BSGL/np.log10(np.exp(1))
Gregory Ashton's avatar
Gregory Ashton committed
623

624
625
    def calculate_twoF_cumulative(self, F0, F1, F2, Alpha, Delta, asini=None,
                                  period=None, ecc=None, tp=None, argp=None,
626
627
                                  tstart=None, tend=None, npoints=1000,
                                  minfraction=0.01, maxfraction=1):
628
629
        """ Calculate the cumulative twoF along the obseration span """
        duration = tend - tstart
630
631
        tstart = tstart + minfraction*duration
        taus = np.linspace(minfraction*duration, maxfraction*duration, npoints)
632
        twoFs = []
Gregory Ashton's avatar
Gregory Ashton committed
633
634
635
        if self.transient is False:
            self.transient = True
            self.init_computefstatistic_single_point()
636
637
638
639
640
641
642
643
644
        for tau in taus:
            twoFs.append(self.run_computefstatistic_single_point(
                tstart=tstart, tend=tstart+tau, F0=F0, F1=F1, F2=F2,
                Alpha=Alpha, Delta=Delta, asini=asini, period=period, ecc=ecc,
                tp=tp, argp=argp))

        return taus, np.array(twoFs)

    def plot_twoF_cumulative(self, label, outdir, ax=None, c='k', savefig=True,
645
                             title=None, **kwargs):
646

647
648
649
650
651
652
        taus, twoFs = self.calculate_twoF_cumulative(**kwargs)
        if ax is None:
            fig, ax = plt.subplots()
        ax.plot(taus/86400., twoFs, label=label, color=c)
        ax.set_xlabel(r'Days from $t_{{\rm start}}={:.0f}$'.format(
            kwargs['tstart']))
Gregory Ashton's avatar
Gregory Ashton committed
653
654
655
656
        if self.BSGL:
            ax.set_ylabel(r'$\log_{10}(\mathrm{BSGL})_{\rm cumulative}$')
        else:
            ax.set_ylabel(r'$\widetilde{2\mathcal{F}}_{\rm cumulative}$')
657
        ax.set_xlim(0, taus[-1]/86400)
658
659
        if title:
            ax.set_title(title)
660
661
        if savefig:
            plt.savefig('{}/{}_twoFcumulative.png'.format(outdir, label))
Gregory Ashton's avatar
Gregory Ashton committed
662
            return taus, twoFs
663
664
665
        else:
            return ax

Gregory Ashton's avatar
Gregory Ashton committed
666

667
668
669
670
671
672
673
class SemiCoherentSearch(BaseSearchClass, ComputeFstat):
    """ A semi-coherent search """

    @initializer
    def __init__(self, label, outdir, tref, nsegs=None, sftfilepath=None,
                 binary=False, BSGL=False, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
674
675
                 detector=None, earth_ephem=None, sun_ephem=None,
                 injectSources=None):
676
677
678
679
680
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to.
681
        tref, minStartTime, maxStartTime: int
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
            GPS seconds of the reference time, and start and end of the data.
        nsegs: int
            The (fixed) number of segments
        sftfilepath: str
            File patern to match SFTs

        For all other parameters, see pyfstat.ComputeFStat.
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
        if self.earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if self.sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default
        self.transient = True
        self.init_computefstatistic_single_point()
        self.init_semicoherent_parameters()

    def init_semicoherent_parameters(self):
701
702
703
        logging.info(('Initialising semicoherent parameters from {} to {} in'
                      ' {} segments').format(
            self.minStartTime, self.maxStartTime, self.nsegs))
704
705
        self.transient = True
        self.whatToCompute = lalpulsar.FSTATQ_2F+lalpulsar.FSTATQ_ATOMS_PER_DET
706
707
708
        self.tboundaries = np.linspace(self.minStartTime, self.maxStartTime,
                                       self.nsegs+1)

Gregory Ashton's avatar
Gregory Ashton committed
709
710
711
712
    def run_semi_coherent_computefstatistic_single_point(
            self, F0, F1, F2, Alpha, Delta, asini=None,
            period=None, ecc=None, tp=None, argp=None):
        """ Returns twoF or ln(BSGL) semi-coherently at a single point """
713

Gregory Ashton's avatar
Gregory Ashton committed
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
                               1,
                               self.whatToCompute
                               )

        if self.transient is False:
            if self.BSGL is False:
                return self.FstatResults.twoF[0]

            twoF = np.float(self.FstatResults.twoF[0])
            self.twoFX[0] = self.FstatResults.twoFPerDet(0)
            self.twoFX[1] = self.FstatResults.twoFPerDet(1)
            log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
                                               self.BSGLSetup)
            return log10_BSGL/np.log10(np.exp(1))

        detStat = 0
        for tstart, tend in zip(self.tboundaries[:-1], self.tboundaries[1:]):
            self.windowRange.t0 = int(tstart)  # TYPE UINT4
            self.windowRange.tau = int(tend - tstart)  # TYPE UINT4

            FS = lalpulsar.ComputeTransientFstatMap(
                self.FstatResults.multiFatoms[0], self.windowRange, False)

            if self.BSGL is False:
                detStat += 2*FS.F_mn.data[0][0]
                continue
753

Gregory Ashton's avatar
Gregory Ashton committed
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
            FstatResults_single = copy.copy(self.FstatResults)
            FstatResults_single.lenth = 1
            FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
            FS0 = lalpulsar.ComputeTransientFstatMap(
                FstatResults_single.multiFatoms[0], self.windowRange, False)
            FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
            FS1 = lalpulsar.ComputeTransientFstatMap(
                FstatResults_single.multiFatoms[0], self.windowRange, False)

            self.twoFX[0] = 2*FS0.F_mn.data[0][0]
            self.twoFX[1] = 2*FS1.F_mn.data[0][0]
            log10_BSGL = lalpulsar.ComputeBSGL(
                    2*FS.F_mn.data[0][0], self.twoFX, self.BSGLSetup)

            detStat += log10_BSGL/np.log10(np.exp(1))

        return detStat
771
772


Gregory Ashton's avatar
Gregory Ashton committed
773
class SemiCoherentGlitchSearch(BaseSearchClass, ComputeFstat):
774
775
776
    """ A semi-coherent glitch search

    This implements a basic `semi-coherent glitch F-stat in which the data
777
778
    is divided into segments either side of the proposed glitches and the
    fully-coherent F-stat in each segment is summed to give the semi-coherent
779
780
781
782
    F-stat
    """

    @initializer
783
784
785
    def __init__(self, label, outdir, tref, minStartTime, maxStartTime,
                 nglitch=0, sftfilepath=None, theta0_idx=0, BSGL=False,
                 minCoverFreq=None, maxCoverFreq=None,
786
                 detector=None, earth_ephem=None, sun_ephem=None):
787
788
789
790
        """
        Parameters
        ----------
        label, outdir: str
791
            A label and directory to read/write data from/to.
792
        tref, minStartTime, maxStartTime: int
793
794
795
796
            GPS seconds of the reference time, and start and end of the data.
        nglitch: int
            The (fixed) number of glitches; this can zero, but occasionally
            this causes issue (in which case just use ComputeFstat).
797
798
        sftfilepath: str
            File patern to match SFTs
799
800
801
802
        theta0_idx, int
            Index (zero-based) of which segment the theta refers to - uyseful
            if providing a tight prior on theta to allow the signal to jump
            too theta (and not just from)
803
804

        For all other parameters, see pyfstat.ComputeFStat.
805
806
807
808
809
810
811
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
        if self.earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if self.sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default
812
813
        self.transient = True
        self.binary = False
814
815
816
        self.init_computefstatistic_single_point()

    def compute_nglitch_fstat(self, F0, F1, F2, Alpha, Delta, *args):
817
        """ Returns the semi-coherent glitch summed twoF """
818
819

        args = list(args)
820
821
        tboundaries = ([self.minStartTime] + args[-self.nglitch:]
                       + [self.maxStartTime])
822
823
824
825
826
827
828
829
        delta_F0s = args[-3*self.nglitch:-2*self.nglitch]
        delta_F1s = args[-2*self.nglitch:-self.nglitch]
        delta_F2 = np.zeros(len(delta_F0s))
        delta_phi = np.zeros(len(delta_F0s))
        theta = [0, F0, F1, F2]
        delta_thetas = np.atleast_2d(
                np.array([delta_phi, delta_F0s, delta_F1s, delta_F2]).T)

830
831
        thetas = self.calculate_thetas(theta, delta_thetas, tboundaries,
                                       theta0_idx=self.theta0_idx)
832
833

        twoFSum = 0
834
        for i, theta_i_at_tref in enumerate(thetas):
835
836
837
            ts, te = tboundaries[i], tboundaries[i+1]

            twoFVal = self.run_computefstatistic_single_point(
838
839
                ts, te, theta_i_at_tref[1], theta_i_at_tref[2],
                theta_i_at_tref[3], Alpha, Delta)
840
841
            twoFSum += twoFVal

842
843
844
        if np.isfinite(twoFSum):
            return twoFSum
        else:
845
            return -np.inf
846
847
848

    def compute_glitch_fstat_single(self, F0, F1, F2, Alpha, Delta, delta_F0,
                                    delta_F1, tglitch):
849
850
        """ Returns the semi-coherent glitch summed twoF for nglitch=1

851
        Note: OBSOLETE, used only for testing
852
        """
853
854
855
856
857
858
859
860
861
862
863

        theta = [F0, F1, F2]
        delta_theta = [delta_F0, delta_F1, 0]
        tref = self.tref

        theta_at_glitch = self.shift_coefficients(theta, tglitch - tref)
        theta_post_glitch_at_glitch = theta_at_glitch + delta_theta
        theta_post_glitch = self.shift_coefficients(
            theta_post_glitch_at_glitch, tref - tglitch)

        twoFsegA = self.run_computefstatistic_single_point(
864
            self.minStartTime, tglitch, theta[0], theta[1], theta[2], Alpha,
865
866
            Delta)

867
        if tglitch == self.maxStartTime:
868
869
870
            return twoFsegA

        twoFsegB = self.run_computefstatistic_single_point(
871
            tglitch, self.maxStartTime, theta_post_glitch[0],
872
873
874
875
876
877
            theta_post_glitch[1], theta_post_glitch[2], Alpha,
            Delta)

        return twoFsegA + twoFsegB


Gregory Ashton's avatar
Gregory Ashton committed
878
879
class MCMCSearch(BaseSearchClass):
    """ MCMC search using ComputeFstat"""
880
    @initializer
881
    def __init__(self, label, outdir, sftfilepath, theta_prior, tref,
Gregory Ashton's avatar
Gregory Ashton committed
882
                 minStartTime, maxStartTime, nsteps=[100, 100],
883
884
                 nwalkers=100, ntemps=1, log10temperature_min=-5,
                 theta_initial=None, scatter_val=1e-10,
885
886
                 binary=False, BSGL=False, minCoverFreq=None,
                 maxCoverFreq=None, detector=None, earth_ephem=None,
887
                 sun_ephem=None, injectSources=None):
888
889
890
891
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
892
893
        sftfilepath: str
            File patern to match SFTs
894
        theta_prior: dict
895
896
897
898
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
899
900
901
902
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
903
        tref, minStartTime, maxStartTime: int
904
905
906
907
908
909
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
910
911
912
913
914
915
916
917
918
919
920
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
        binary: Bool
            If true, search over binary parameters
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
921
922
923
924
925
926
927
928
929
930
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

Gregory Ashton's avatar
Gregory Ashton committed
931
932
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
933
        self.add_log_file()
Gregory Ashton's avatar
Gregory Ashton committed
934
935
        logging.info(
            'Set-up MCMC search for model {} on data {}'.format(
936
                self.label, self.sftfilepath))
937
938
939
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
        self.unpack_input_theta()
        self.ndim = len(self.theta_keys)
940
941
942
943
        if self.log10temperature_min:
            self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
        else:
            self.betas = None
944

945
946
947
948
949
950
951
952
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

953
954
955
        self.log_input()

    def log_input(self):
956
        logging.info('theta_prior = {}'.format(self.theta_prior))
957
        logging.info('nwalkers={}'.format(self.nwalkers))
958
959
960
961
        logging.info('scatter_val = {}'.format(self.scatter_val))
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
        logging.info('log10temperature_min = {}'.format(
962
            self.log10temperature_min))
963
964
965

    def inititate_search_object(self):
        logging.info('Setting up search object')
Gregory Ashton's avatar
Gregory Ashton committed
966
        self.search = ComputeFstat(
967
968
969
970
            tref=self.tref, sftfilepath=self.sftfilepath,
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
            detector=self.detector, BSGL=self.BSGL, transient=False,
971
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
972
            binary=self.binary, injectSources=self.injectSources)
973
974

    def logp(self, theta_vals, theta_prior, theta_keys, search):
Gregory Ashton's avatar
Gregory Ashton committed
975
        H = [self.generic_lnprior(**theta_prior[key])(p) for p, key in
976
977
978
979
980
981
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
982
983
        FS = search.compute_fullycoherent_det_stat_single_point(
            *self.fixed_theta)
984
985
986
        return FS

    def unpack_input_theta(self):
987
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']
988
989
990
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
991
992
        full_theta_keys_copy = copy.copy(full_theta_keys)

993
994
        full_theta_symbols = ['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                              r'$\delta$']
995
996
997
998
        if self.binary:
            full_theta_symbols += [
                'asini', 'period', 'period', 'ecc', 'tp', 'argp']

999
1000
        self.theta_keys = []
        fixed_theta_dict = {}
1001
        for key, val in self.theta_prior.iteritems():
1002
1003
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
1004
                self.theta_keys.append(key)
1005
1006
1007
1008
1009
1010
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
1011
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

    def check_initial_points(self, p0):
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

                p0 = self.generate_new_p0_to_fix_initial_points(
                    p0, nt, initial_priors)

    def generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
1064

Gregory Ashton's avatar
Gregory Ashton committed
1065
    def run_sampler_with_progress_bar(self, sampler, ns, p0):
1066
1067
        for result in tqdm(sampler.sample(p0, iterations=ns), total=ns):
            pass
Gregory Ashton's avatar
Gregory Ashton committed
1068
1069
        return sampler

1070
    def run(self, proposal_scale_factor=2, create_plots=True, **kwargs):
1071

Gregory Ashton's avatar
Gregory Ashton committed
1072
        self.old_data_is_okay_to_use = self.check_old_data_is_okay_to_use()
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
            d = self.get_saved_data()
            self.sampler = d['sampler']
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
            return

        self.inititate_search_object()

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
1088
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
1089

Gregory Ashton's avatar
Gregory Ashton committed
1090
1091
        p0 = self.generate_initial_p0()
        p0 = self.apply_corrections_to_p0(p0)
1092
1093
1094
1095
1096
        self.check_initial_points(p0)

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
Gregory Ashton's avatar
Gregory Ashton committed
1097
                j, ninit_steps, n))
Gregory Ashton's avatar
Gregory Ashton committed
1098
            sampler = self.run_sampler_with_progress_bar(sampler, n, p0)
1099
1100
            logging.info("Mean acceptance fraction: {}"
                         .format(np.mean(sampler.acceptance_fraction, axis=1)))
1101
1102
1103
            if self.ntemps > 1:
                logging.info("Tswap acceptance fraction: {}"
                             .format(sampler.tswap_acceptance_fraction))
1104
1105
1106
1107
1108
1109
1110
            if create_plots:
                fig, axes = self.plot_walkers(sampler,
                                              symbols=self.theta_symbols,
                                              **kwargs)
                fig.tight_layout()
                fig.savefig('{}/{}_init_{}_walkers.png'.format(
                    self.outdir, self.label, j), dpi=200)
1111

1112
            p0 = self.get_new_p0(sampler)
Gregory Ashton's avatar
Gregory Ashton committed
1113
            p0 = self.apply_corrections_to_p0(p0)
1114
1115
1116
            self.check_initial_points(p0)
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
1117
1118
1119
1120
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
1121
1122
1123
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
Gregory Ashton's avatar
Gregory Ashton committed
1124
        sampler = self.run_sampler_with_progress_bar(sampler, nburn+nprod, p0)
1125
1126
        logging.info("Mean acceptance fraction: {}"
                     .format(np.mean(sampler.acceptance_fraction, axis=1)))
1127
1128
1129
        if self.ntemps > 1:
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
1130

1131
1132
1133
1134
1135
1136
        if create_plots:
            fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols,
                                          burnin_idx=nburn, **kwargs)
            fig.tight_layout()
            fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label),
                        dpi=200)
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
        self.sampler = sampler
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
        self.save_data(sampler, samples, lnprobs, lnlikes)

1147
    def plot_corner(self, figsize=(7, 7),  tglitch_ratio=False,
1148
1149
1150
                    add_prior=False, nstds=None, label_offset=0.4,
                    dpi=300, rc_context={}, **kwargs):

Gregory Ashton's avatar
Gregory Ashton committed
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
        if self.ndim < 2:
            with plt.rc_context(rc_context):
                fig, ax = plt.subplots(figsize=figsize)
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

1161
1162
1163
1164
1165
1166
        with plt.rc_context(rc_context):
            fig, axes = plt.subplots(self.ndim, self.ndim,
                                     figsize=figsize)

            samples_plt = copy.copy(self.samples)
            theta_symbols_plt = copy.copy(self.theta_symbols)
1167
1168
            theta_symbols_plt = [s.replace('_{glitch}', r'_\textrm{glitch}')
                                 for s in theta_symbols_plt]
1169
1170
1171
1172
1173

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
1174
1175
1176
                        samples_plt[:, j] = (
                            s - self.minStartTime)/(
                                self.maxStartTime - self.minStartTime)
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
                        theta_symbols_plt[j] = r'$R_{\textrm{glitch}}$'

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
            else:
                _range = None

            fig_triangle = corner.corner(samples_plt,
                                         labels=theta_symbols_plt,
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
                self.add_prior_to_corner(axes, samples_plt)

            fig_triangle.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
1219
1220
1221
1222
1223
1224

    def add_prior_to_corner(self, axes, samples):
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            xlim = ax.get_xlim()
            s = samples[:, i]
Gregory Ashton's avatar
Gregory Ashton committed
1225
            prior = self.generic_lnprior(**self.theta_prior[key])
1226
1227
1228
1229
1230
1231
            x = np.linspace(s.min(), s.max(), 100)
            ax2 = ax.twinx()
            ax2.get_yaxis().set_visible(False)
            ax2.plot(x, [prior(xi) for xi in x], '-r')
            ax.set_xlim(xlim)

1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
    def plot_prior_posterior(self, normal_stds=2):
        """ Plot the posterior in the context of the prior """
        fig, axes = plt.subplots(nrows=self.ndim, figsize=(8, 4*self.ndim))
        N = 1000
        from scipy.stats import gaussian_kde

        for i, (ax, key) in enumerate(zip(axes, self.theta_keys)):
            prior_dict = self.theta_prior[key]
            prior_func = self.generic_lnprior(**prior_dict)
            if prior_dict['type'] == 'unif':
                x = np.linspace(prior_dict['lower'], prior_dict['upper'], N)
                prior = prior_func(x)
                prior[0] = 0
                prior[-1] = 0
            elif prior_dict['type'] == 'norm':
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = prior_func(x)
1251
1252
1253
1254
1255
            elif prior_dict['type'] == 'halfnorm':
                lower = prior_dict['loc']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
Gregory Ashton's avatar
Gregory Ashton committed
1256
1257
1258
1259
1260
            elif prior_dict['type'] == 'neghalfnorm':
                upper = prior_dict['loc']
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
            else:
                raise ValueError('Not implemented for prior type {}'.format(
                    prior_dict['type']))
            priorln = ax.plot(x, prior, 'r', label='prior')
            ax.set_xlabel(self.theta_symbols[i])

            s = self.samples[:, i]
            while len(s) > 10**4:
                # random downsample to avoid slow calculation of kde
                s = np.random.choice(s, size=int(len(s)/2.))
            kde = gaussian_kde(s)
            ax2 = ax.twinx()
            postln = ax2.plot(x, kde.pdf(x), 'k', label='posterior')
            ax2.set_yticklabels([])
            ax.set_yticklabels([])

        lns = priorln + postln
        labs = [l.get_label() for l in lns]
        axes[0].legend(lns, labs, loc=1, framealpha=0.8)

        fig.savefig('{}/{}_prior_posterior.png'.format(
            self.outdir, self.label))

1284
    def plot_cumulative_max(self, **kwargs):
Gregory Ashton's avatar
Gregory Ashton committed
1285
1286
1287
1288
        d, maxtwoF = self.get_max_twoF()
        for key, val in self.theta_prior.iteritems():
            if key not in d:
                d[key] = val
1289
1290
1291
1292
1293
1294

        if hasattr(self, 'search') is False:
            self.inititate_search_object()
        if self.binary is False:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
1295
                Alpha=d['Alpha'], Delta=d['Delta'],
1296
                tstart=self.minStartTime, tend=self.maxStartTime,
1297
                **kwargs)
1298
1299
1300
1301
1302
        else:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
                Alpha=d['Alpha'], Delta=d['Delta'], asini=d['asini'],
                period=d['period'], ecc=d['ecc'], argp=d['argp'], tp=d['argp'],
1303
                tstart=self.minStartTime, tend=self.maxStartTime, **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
1304

Gregory Ashton's avatar
Gregory Ashton committed
1305
    def generic_lnprior(self, **kwargs):
1306
1307
1308
1309
1310
1311