grid_based_searches.py 37.5 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" Searches using grid-based methods """
2
from __future__ import division, absolute_import, print_function
Gregory Ashton's avatar
Gregory Ashton committed
3
4
5
6
7
8
9
10
11

import os
import logging
import itertools
from collections import OrderedDict

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
12
from scipy.misc import logsumexp
Gregory Ashton's avatar
Gregory Ashton committed
13

14
15
16
import pyfstat.helper_functions as helper_functions
from pyfstat.core import (BaseSearchClass, ComputeFstat,
                          SemiCoherentGlitchSearch, SemiCoherentSearch, tqdm,
17
                          args, read_par)
Gregory Ashton's avatar
Gregory Ashton committed
18
19
import lalpulsar
import lal
Gregory Ashton's avatar
Gregory Ashton committed
20
21
22
23


class GridSearch(BaseSearchClass):
    """ Gridded search using ComputeFstat """
Gregory Ashton's avatar
Gregory Ashton committed
24
25
26
    tex_labels = {'F0': '$f$', 'F1': '$\dot{f}$', 'F2': '$\ddot{f}$',
                  'Alpha': r'$\alpha$', 'Delta': r'$\delta$'}
    tex_labels0 = {'F0': '$-f_0$', 'F1': '$-\dot{f}_0$', 'F2': '$-\ddot{f}_0$',
27
                   'Alpha': r'$-\alpha_0$', 'Delta': r'$-\delta_0$'}
Gregory Ashton's avatar
Gregory Ashton committed
28

Gregory Ashton's avatar
Gregory Ashton committed
29
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
30
31
32
33
    def __init__(self, label, outdir, sftfilepattern, F0s, F1s, F2s, Alphas,
                 Deltas, tref=None, minStartTime=None, maxStartTime=None,
                 nsegs=1, BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, SSBprec=None, injectSources=None,
David Keitel's avatar
David Keitel committed
34
                 input_arrays=False, assumeSqrtSX=None,
35
36
                 transientWindowType=None, t0Band=None, tauBand=None,
                 outputTransientFstatMap=False):
Gregory Ashton's avatar
Gregory Ashton committed
37
38
39
40
41
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
42
43
44
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
45
46
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
47
48
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
Gregory Ashton's avatar
Gregory Ashton committed
49
50
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
51
52
        input_arrays: bool
            if true, use the F0s, F1s, etc as is
David Keitel's avatar
David Keitel committed
53
        transientWindowType: str
Gregory Ashton's avatar
Gregory Ashton committed
54
55
56
57
            If 'rect' or 'exp', compute atoms so that a transient (t0,tau) map
            can later be computed.  ('none' instead of None explicitly calls
            the transient-window function, but with the full range, for
            debugging). Currently only supported for nsegs=1.
David Keitel's avatar
David Keitel committed
58
59
60
61
62
        t0Band, tauBand: int
            if >0, search t0 in (minStartTime,minStartTime+t0Band)
                   and tau in (2*Tsft,2*Tsft+tauBand).
            if =0, only compute CW Fstat with t0=minStartTime,
                   tau=maxStartTime-minStartTime.
63
64
65
        outputTransientFstatMap: bool
            if true, write output files for (t0,tau) Fstat maps
            (one file for each doppler grid point!)
Gregory Ashton's avatar
Gregory Ashton committed
66
67
68
69
70
71

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
72
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
73
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
74
75
76
        self.search_keys = [x+'s' for x in self.keys[2:]]
        for k in self.search_keys:
            setattr(self, k, np.atleast_1d(getattr(self, k)))
Gregory Ashton's avatar
Gregory Ashton committed
77
78
79

    def inititate_search_object(self):
        logging.info('Setting up search object')
80
81
        if self.nsegs == 1:
            self.search = ComputeFstat(
82
                tref=self.tref, sftfilepattern=self.sftfilepattern,
83
                minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
David Keitel's avatar
David Keitel committed
84
85
86
                detectors=self.detectors,
                transientWindowType=self.transientWindowType,
                t0Band=self.t0Band, tauBand=self.tauBand,
87
                minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
88
                BSGL=self.BSGL, SSBprec=self.SSBprec,
89
90
                injectSources=self.injectSources,
                assumeSqrtSX=self.assumeSqrtSX)
91
            self.search.get_det_stat = self.search.get_fullycoherent_twoF
92
93
94
        else:
            self.search = SemiCoherentSearch(
                label=self.label, outdir=self.outdir, tref=self.tref,
95
                nsegs=self.nsegs, sftfilepattern=self.sftfilepattern,
96
97
98
                BSGL=self.BSGL, minStartTime=self.minStartTime,
                maxStartTime=self.maxStartTime, minCoverFreq=self.minCoverFreq,
                maxCoverFreq=self.maxCoverFreq, detectors=self.detectors,
Gregory Ashton's avatar
Gregory Ashton committed
99
                injectSources=self.injectSources)
100
101

            def cut_out_tstart_tend(*vals):
102
                return self.search.get_semicoherent_twoF(*vals[2:])
103
            self.search.get_det_stat = cut_out_tstart_tend
Gregory Ashton's avatar
Gregory Ashton committed
104
105
106
107

    def get_array_from_tuple(self, x):
        if len(x) == 1:
            return np.array(x)
108
        elif len(x) == 3 and self.input_arrays is False:
Gregory Ashton's avatar
Gregory Ashton committed
109
            return np.arange(x[0], x[1], x[2])
Gregory Ashton's avatar
Gregory Ashton committed
110
        else:
Gregory Ashton's avatar
Gregory Ashton committed
111
112
            logging.info('Using tuple as is')
            return np.array(x)
Gregory Ashton's avatar
Gregory Ashton committed
113
114

    def get_input_data_array(self):
Gregory Ashton's avatar
Gregory Ashton committed
115
        logging.info("Generating input data array")
116
        coord_arrays = []
Gregory Ashton's avatar
Gregory Ashton committed
117
118
        for tup in ([self.minStartTime], [self.maxStartTime], self.F0s,
                    self.F1s, self.F2s, self.Alphas, self.Deltas):
119
            coord_arrays.append(self.get_array_from_tuple(tup))
Gregory Ashton's avatar
Gregory Ashton committed
120

121
122
123
124
        input_data = []
        for vals in itertools.product(*coord_arrays):
                input_data.append(vals)
        self.input_data = np.array(input_data)
125
        self.coord_arrays = coord_arrays
Gregory Ashton's avatar
Gregory Ashton committed
126
127
128
129
130

    def check_old_data_is_okay_to_use(self):
        if args.clean:
            return False
        if os.path.isfile(self.out_file) is False:
131
132
133
            logging.info(
                'No old data found in "{:s}", continuing with grid search'
                .format(self.out_file))
Gregory Ashton's avatar
Gregory Ashton committed
134
            return False
135
        if self.sftfilepattern is not None:
136
137
138
139
140
141
            oldest_sft = min([os.path.getmtime(f) for f in
                              self._get_list_of_matching_sfts()])
            if os.path.getmtime(self.out_file) < oldest_sft:
                logging.info('Search output data outdates sft files,'
                             + ' continuing with grid search')
                return False
142

143
        data = np.atleast_2d(np.genfromtxt(self.out_file, delimiter=' '))
144
145
        if np.all(data[:, 0: len(self.coord_arrays)] ==
                  self.input_data[:, 0:len(self.coord_arrays)]):
146
            logging.info(
147
148
                'Old data found in "{:s}" with matching input, no search '
                'performed'.format(self.out_file))
149
150
151
            return data
        else:
            logging.info(
152
153
                'Old data found in "{:s}", input differs, continuing with '
                'grid search'.format(self.out_file))
154
            return False
155
        return False
Gregory Ashton's avatar
Gregory Ashton committed
156
157
158
159
160
161
162
163

    def run(self, return_data=False):
        self.get_input_data_array()
        old_data = self.check_old_data_is_okay_to_use()
        if old_data is not False:
            self.data = old_data
            return

Gregory Ashton's avatar
Gregory Ashton committed
164
165
        if hasattr(self, 'search') is False:
            self.inititate_search_object()
Gregory Ashton's avatar
Gregory Ashton committed
166
167

        data = []
168
        for vals in tqdm(self.input_data):
169
170
171
            detstat = self.search.get_det_stat(*vals)
            windowRange = getattr(self.search, 'windowRange', None)
            FstatMap = getattr(self.search, 'FstatMap', None)
172
            thisCand = list(vals) + [detstat]
Gregory Ashton's avatar
Gregory Ashton committed
173
            if getattr(self, 'transientWindowType', None):
174
175
176
177
178
179
180
181
182
183
                if self.outputTransientFstatMap:
                    tCWfile = os.path.splitext(self.out_file)[0]+'_tCW_%.16f_%.16f_%.16f_%.16g_%.16g.dat' % (vals[2],vals[5],vals[6],vals[3],vals[4]) # freq alpha delta f1dot f2dot
                    fo = lal.FileOpen(tCWfile, 'w')
                    lalpulsar.write_transientFstatMap_to_fp ( fo, FstatMap, windowRange, None )
                    del fo # instead of lal.FileClose() which is not SWIG-exported
                Fmn = FstatMap.F_mn.data
                maxidx = np.unravel_index(Fmn.argmax(), Fmn.shape)
                thisCand += [windowRange.t0+maxidx[0]*windowRange.dt0,
                             windowRange.tau+maxidx[1]*windowRange.dtau]
            data.append(thisCand)
Gregory Ashton's avatar
Gregory Ashton committed
184

185
        data = np.array(data, dtype=np.float)
Gregory Ashton's avatar
Gregory Ashton committed
186
187
188
        if return_data:
            return data
        else:
189
            self.save_array_to_disk(data)
Gregory Ashton's avatar
Gregory Ashton committed
190
191
            self.data = data

192
193
194
195
196
197
198
199
200
201
202
203
    def get_header(self):
        header = ';'.join(['date:{}'.format(str(datetime.datetime.now())),
                           'user:{}'.format(getpass.getuser()),
                           'hostname:{}'.format(socket.gethostname())])
        header += '\n' + ' '.join(self.keys)
        return header

    def save_array_to_disk(self, data):
        logging.info('Saving data to {}'.format(self.out_file))
        header = self.get_header()
        np.savetxt(self.out_file, data, delimiter=' ', header=header)

Gregory Ashton's avatar
Gregory Ashton committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    def convert_F0_to_mismatch(self, F0, F0hat, Tseg):
        DeltaF0 = F0[1] - F0[0]
        m_spacing = (np.pi*Tseg*DeltaF0)**2 / 12.
        N = len(F0)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def convert_F1_to_mismatch(self, F1, F1hat, Tseg):
        DeltaF1 = F1[1] - F1[0]
        m_spacing = (np.pi*Tseg**2*DeltaF1)**2 / 720.
        N = len(F1)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def add_mismatch_to_ax(self, ax, x, y, xkey, ykey, xhat, yhat, Tseg):
        axX = ax.twiny()
        axX.zorder = -10
        axY = ax.twinx()
        axY.zorder = -10

        if xkey == 'F0':
            m = self.convert_F0_to_mismatch(x, xhat, Tseg)
            axX.set_xlim(m[0], m[-1])

        if ykey == 'F1':
            m = self.convert_F1_to_mismatch(y, yhat, Tseg)
            axY.set_ylim(m[0], m[-1])

Gregory Ashton's avatar
Gregory Ashton committed
230
231
    def plot_1D(self, xkey, ax=None, x0=None, xrescale=1, savefig=True,
                xlabel=None, ylabel='$\widetilde{2\mathcal{F}}$'):
Gregory Ashton's avatar
Gregory Ashton committed
232
233
        if ax is None:
            fig, ax = plt.subplots()
Gregory Ashton's avatar
Gregory Ashton committed
234
235
        xidx = self.keys.index(xkey)
        x = np.unique(self.data[:, xidx])
236
237
        if x0:
            x = x - x0
Gregory Ashton's avatar
Gregory Ashton committed
238
        x = x * xrescale
Gregory Ashton's avatar
Gregory Ashton committed
239
        z = self.data[:, -1]
Gregory Ashton's avatar
Gregory Ashton committed
240
241
242
243
244
        ax.plot(x, z)
        if x0:
            ax.set_xlabel(self.tex_labels[xkey]+self.tex_labels0[xkey])
        else:
            ax.set_xlabel(self.tex_labels[xkey])
Gregory Ashton's avatar
Gregory Ashton committed
245
246
247
248
249

        if xlabel:
            ax.set_xlabel(xlabel)

        ax.set_ylabel(ylabel)
Gregory Ashton's avatar
Gregory Ashton committed
250
        if savefig:
Gregory Ashton's avatar
Gregory Ashton committed
251
            fig.tight_layout()
Gregory Ashton's avatar
Gregory Ashton committed
252
253
            fig.savefig('{}/{}_1D.png'.format(self.outdir, self.label))
        else:
Gregory Ashton's avatar
Gregory Ashton committed
254
            return fig, ax
Gregory Ashton's avatar
Gregory Ashton committed
255
256
257

    def plot_2D(self, xkey, ykey, ax=None, save=True, vmin=None, vmax=None,
                add_mismatch=None, xN=None, yN=None, flat_keys=[],
Gregory Ashton's avatar
Gregory Ashton committed
258
                rel_flat_idxs=[], flatten_method=np.max, title=None,
Gregory Ashton's avatar
Gregory Ashton committed
259
260
                predicted_twoF=None, cm=None, cbarkwargs={}, x0=None, y0=None,
                colorbar=False):
Gregory Ashton's avatar
Gregory Ashton committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
        """ Plots a 2D grid of 2F values

        Parameters
        ----------
        add_mismatch: tuple (xhat, yhat, Tseg)
            If not None, add a secondary axis with the metric mismatch from the
            point xhat, yhat with duration Tseg
        flatten_method: np.max
            Function to use in flattening the flat_keys
        """
        if ax is None:
            fig, ax = plt.subplots()
        xidx = self.keys.index(xkey)
        yidx = self.keys.index(ykey)
        flat_idxs = [self.keys.index(k) for k in flat_keys]

        x = np.unique(self.data[:, xidx])
278
279
        if x0:
            x = x-x0
Gregory Ashton's avatar
Gregory Ashton committed
280
        y = np.unique(self.data[:, yidx])
281
282
        if y0:
            y = y-y0
Gregory Ashton's avatar
Gregory Ashton committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
        flat_vals = [np.unique(self.data[:, j]) for j in flat_idxs]
        z = self.data[:, -1]

        Y, X = np.meshgrid(y, x)
        shape = [len(x), len(y)] + [len(v) for v in flat_vals]
        Z = z.reshape(shape)

        if len(rel_flat_idxs) > 0:
            Z = flatten_method(Z, axis=tuple(rel_flat_idxs))

        if predicted_twoF:
            Z = (predicted_twoF - Z) / (predicted_twoF + 4)
            if cm is None:
                cm = plt.cm.viridis_r
        else:
            if cm is None:
                cm = plt.cm.viridis

        pax = ax.pcolormesh(X, Y, Z, cmap=cm, vmin=vmin, vmax=vmax)
Gregory Ashton's avatar
Gregory Ashton committed
302
303
304
        if colorbar:
            cb = plt.colorbar(pax, ax=ax, **cbarkwargs)
            cb.set_label('$2\mathcal{F}$')
Gregory Ashton's avatar
Gregory Ashton committed
305
306
307
308
309
310

        if add_mismatch:
            self.add_mismatch_to_ax(ax, x, y, xkey, ykey, *add_mismatch)

        ax.set_xlim(x[0], x[-1])
        ax.set_ylim(y[0], y[-1])
311
        if x0:
Gregory Ashton's avatar
Gregory Ashton committed
312
            ax.set_xlabel(self.tex_labels[xkey]+self.tex_labels0[xkey])
313
        else:
Gregory Ashton's avatar
Gregory Ashton committed
314
            ax.set_xlabel(self.tex_labels[xkey])
315
        if y0:
Gregory Ashton's avatar
Gregory Ashton committed
316
            ax.set_ylabel(self.tex_labels[ykey]+self.tex_labels0[ykey])
317
        else:
Gregory Ashton's avatar
Gregory Ashton committed
318
            ax.set_ylabel(self.tex_labels[ykey])
Gregory Ashton's avatar
Gregory Ashton committed
319

Gregory Ashton's avatar
Gregory Ashton committed
320
321
322
        if title:
            ax.set_title(title)

Gregory Ashton's avatar
Gregory Ashton committed
323
324
325
326
327
328
329
330
331
332
333
334
        if xN:
            ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(xN))
        if yN:
            ax.yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(yN))

        if save:
            fig.tight_layout()
            fig.savefig('{}/{}_2D.png'.format(self.outdir, self.label))
        else:
            return ax

    def get_max_twoF(self):
Gregory Ashton's avatar
Gregory Ashton committed
335
336
337
338
339
340
341
342
343
344
        """ Get the maximum twoF over the grid

        Returns
        -------
        d: dict
            Dictionary containing, 'minStartTime', 'maxStartTime', 'F0', 'F1',
            'F2', 'Alpha', 'Delta' and 'twoF' of maximum

        """

Gregory Ashton's avatar
Gregory Ashton committed
345
346
347
348
349
350
351
352
353
354
355
356
357
        twoF = self.data[:, -1]
        idx = np.argmax(twoF)
        v = self.data[idx, :]
        d = OrderedDict(minStartTime=v[0], maxStartTime=v[1], F0=v[2], F1=v[3],
                        F2=v[4], Alpha=v[5], Delta=v[6], twoF=v[7])
        return d

    def print_max_twoF(self):
        d = self.get_max_twoF()
        print('Max twoF values for {}:'.format(self.label))
        for k, v in d.iteritems():
            print('  {}={}'.format(k, v))

358
    def set_out_file(self, extra_label=None):
359
360
361
362
        if self.detectors:
            dets = self.detectors.replace(',', '')
        else:
            dets = 'NA'
363
364
365
366
367
368
369
370
        if extra_label:
            self.out_file = '{}/{}_{}_{}_{}.txt'.format(
                self.outdir, self.label, dets, type(self).__name__,
                extra_label)
        else:
            self.out_file = '{}/{}_{}_{}.txt'.format(
                self.outdir, self.label, dets, type(self).__name__)

Gregory Ashton's avatar
Gregory Ashton committed
371

Gregory Ashton's avatar
Gregory Ashton committed
372
373
374
class SliceGridSearch(GridSearch):
    """ Slice gridded search using ComputeFstat """
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
375
376
377
378
379
    def __init__(self, label, outdir, sftfilepattern, F0s, F1s, F2s, Alphas,
                 Deltas, tref=None, minStartTime=None, maxStartTime=None,
                 nsegs=1, BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, SSBprec=None, injectSources=None,
                 input_arrays=False, assumeSqrtSX=None, Lambda0=None):
Gregory Ashton's avatar
Gregory Ashton committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
        input_arrays: bool
            if true, use the F0s, F1s, etc as is

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.set_out_file()
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
404
405
406
        self.ndim = 0
        self.thetas = [F0s, F1s, Alphas, Deltas]
        self.ndim = 4
Gregory Ashton's avatar
Gregory Ashton committed
407

Gregory Ashton's avatar
Gregory Ashton committed
408
        self.search_keys = ['F0', 'F1', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
409
        self.Lambda0 = np.array(Lambda0)
Gregory Ashton's avatar
Gregory Ashton committed
410
        if len(self.Lambda0) != len(self.search_keys):
Gregory Ashton's avatar
Gregory Ashton committed
411
            raise ValueError(
Gregory Ashton's avatar
Gregory Ashton committed
412
413
                'Lambda0 must be of length {}'.format(len(self.search_keys)))

414
415
    def run(self, factor=2, max_n_ticks=4, whspace=0.07, save=True,
            **kwargs):
Gregory Ashton's avatar
Gregory Ashton committed
416
        lbdim = 0.5 * factor   # size of left/bottom margin
417
        trdim = 0.4 * factor   # size of top/right margin
Gregory Ashton's avatar
Gregory Ashton committed
418
419
420
421
422
423
424
425
426
427
428
429
430
431
        plotdim = factor * self.ndim + factor * (self.ndim - 1.) * whspace
        dim = lbdim + plotdim + trdim

        fig, axes = plt.subplots(self.ndim, self.ndim, figsize=(dim, dim))

        # Format the figure.
        lb = lbdim / dim
        tr = (lbdim + plotdim) / dim
        fig.subplots_adjust(left=lb, bottom=lb, right=tr, top=tr,
                            wspace=whspace, hspace=whspace)

        search = GridSearch(
            self.label, self.outdir, self.sftfilepattern,
            F0s=self.Lambda0[0], F1s=self.Lambda0[1], F2s=self.F2s[0],
432
433
            Alphas=self.Lambda0[2], Deltas=self.Lambda0[3], tref=self.tref,
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime)
Gregory Ashton's avatar
Gregory Ashton committed
434
435
436

        for i, ikey in enumerate(self.search_keys):
            setattr(search, ikey+'s', self.thetas[i])
437
438
            search.label = '{}_{}'.format(self.label, ikey)
            search.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
439
            search.run()
440
441
442
            axes[i, i] = search.plot_1D(ikey, ax=axes[i, i], savefig=False,
                                        x0=self.Lambda0[i]
                                        )
Gregory Ashton's avatar
Gregory Ashton committed
443
            setattr(search, ikey+'s', [self.Lambda0[i]])
444
445
446
            axes[i, i].yaxis.tick_right()
            axes[i, i].yaxis.set_label_position("right")
            axes[i, i].set_xlabel('')
Gregory Ashton's avatar
Gregory Ashton committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

            for j, jkey in enumerate(self.search_keys):
                ax = axes[i, j]

                if j > i:
                    ax.set_frame_on(False)
                    ax.set_xticks([])
                    ax.set_yticks([])
                    continue

                ax.get_shared_x_axes().join(axes[self.ndim-1, j], ax)
                if i < self.ndim - 1:
                    ax.set_xticklabels([])
                if j < i:
                    ax.get_shared_y_axes().join(axes[i, i-1], ax)
                    if j > 0:
                        ax.set_yticklabels([])
                if j == i:
                    continue

                ax.xaxis.set_major_locator(
                    matplotlib.ticker.MaxNLocator(max_n_ticks, prune="upper"))
                ax.yaxis.set_major_locator(
                    matplotlib.ticker.MaxNLocator(max_n_ticks, prune="upper"))

                setattr(search, ikey+'s', self.thetas[i])
                setattr(search, jkey+'s', self.thetas[j])
474
475
                search.label = '{}_{}'.format(self.label, ikey+jkey)
                search.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
476
                search.run()
477
                ax = search.plot_2D(jkey, ikey, ax=ax, save=False,
478
479
                                    y0=self.Lambda0[i], x0=self.Lambda0[j],
                                    **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
480
481
482
                setattr(search, ikey+'s', [self.Lambda0[i]])
                setattr(search, jkey+'s', [self.Lambda0[j]])

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
                ax.grid(lw=0.2, ls='--', zorder=10)
                ax.set_xlabel('')
                ax.set_ylabel('')

        for i, ikey in enumerate(self.search_keys):
            axes[-1, i].set_xlabel(
                self.tex_labels[ikey]+self.tex_labels0[ikey])
            if i > 0:
                axes[i, 0].set_ylabel(
                    self.tex_labels[ikey]+self.tex_labels0[ikey])
            axes[i, i].set_ylabel("$2\mathcal{F}$")

        if save:
            fig.savefig(
                '{}/{}_slice_projection.png'.format(self.outdir, self.label))
        else:
            return fig, axes
Gregory Ashton's avatar
Gregory Ashton committed
500
501


Gregory Ashton's avatar
Gregory Ashton committed
502
class GridUniformPriorSearch():
503
    @helper_functions.initializer
504
    def __init__(self, theta_prior, NF0, NF1, label, outdir, sftfilepattern,
505
                 tref, minStartTime, maxStartTime, minCoverFreq=None,
506
                 maxCoverFreq=None, BSGL=False, detectors=None, nsegs=1,
507
                 SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
508
509
510
511
        dF0 = (theta_prior['F0']['upper'] - theta_prior['F0']['lower'])/NF0
        dF1 = (theta_prior['F1']['upper'] - theta_prior['F1']['lower'])/NF1
        F0s = [theta_prior['F0']['lower'], theta_prior['F0']['upper'], dF0]
        F1s = [theta_prior['F1']['lower'], theta_prior['F1']['upper'], dF1]
512
        self.search = GridSearch(
513
            label, outdir, sftfilepattern, F0s=F0s, F1s=F1s, tref=tref,
Gregory Ashton's avatar
Gregory Ashton committed
514
515
            Alphas=[theta_prior['Alpha']], Deltas=[theta_prior['Delta']],
            minStartTime=minStartTime, maxStartTime=maxStartTime, BSGL=BSGL,
516
            detectors=detectors, minCoverFreq=minCoverFreq,
517
518
            injectSources=injectSources, maxCoverFreq=maxCoverFreq,
            nsegs=nsegs, SSBprec=SSBprec)
519

520
    def run(self):
521
        self.search.run()
522
523

    def get_2D_plot(self, **kwargs):
524
        return self.search.plot_2D('F0', 'F1', **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
525
526


Gregory Ashton's avatar
Gregory Ashton committed
527
528
529
class GridGlitchSearch(GridSearch):
    """ Grid search using the SemiCoherentGlitchSearch """
    @helper_functions.initializer
530
    def __init__(self, label, outdir, sftfilepattern=None, F0s=[0],
Gregory Ashton's avatar
Gregory Ashton committed
531
532
533
                 F1s=[0], F2s=[0], delta_F0s=[0], delta_F1s=[0], tglitchs=None,
                 Alphas=[0], Deltas=[0], tref=None, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
534
                 BSGL=False, detectors=None, write_after=1000):
Gregory Ashton's avatar
Gregory Ashton committed
535
536
537
538
539
540

        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
541
542
543
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
544
545
546
547
548
549
550
551
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0].
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see pyfstat.ComputeFStat.
        """
552
        self.input_arrays = False
Gregory Ashton's avatar
Gregory Ashton committed
553
        if tglitchs is None:
554
            raise ValueError('You must specify `tglitchs`')
Gregory Ashton's avatar
Gregory Ashton committed
555
556

        self.search = SemiCoherentGlitchSearch(
557
            label=label, outdir=outdir, sftfilepattern=self.sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
558
559
560
            tref=tref, minStartTime=minStartTime, maxStartTime=maxStartTime,
            minCoverFreq=minCoverFreq, maxCoverFreq=maxCoverFreq,
            BSGL=self.BSGL)
561
        self.search.get_det_stat = self.search.get_semicoherent_nglitch_twoF
Gregory Ashton's avatar
Gregory Ashton committed
562
563
564

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
565
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
566
567
568
569
        self.keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta', 'delta_F0',
                     'delta_F1', 'tglitch']

    def get_input_data_array(self):
570
571
        logging.info("Generating input data array")
        coord_arrays = []
Gregory Ashton's avatar
Gregory Ashton committed
572
573
        for tup in (self.F0s, self.F1s, self.F2s, self.Alphas, self.Deltas,
                    self.delta_F0s, self.delta_F1s, self.tglitchs):
574
            coord_arrays.append(self.get_array_from_tuple(tup))
Gregory Ashton's avatar
Gregory Ashton committed
575
576

        input_data = []
577
        for vals in itertools.product(*coord_arrays):
Gregory Ashton's avatar
Gregory Ashton committed
578
579
            input_data.append(vals)
        self.input_data = np.array(input_data)
580
        self.coord_arrays = coord_arrays
Gregory Ashton's avatar
Gregory Ashton committed
581
582


Gregory Ashton's avatar
Gregory Ashton committed
583
584
585
class FrequencySlidingWindow(GridSearch):
    """ A sliding-window search over the Frequency """
    @helper_functions.initializer
586
    def __init__(self, label, outdir, sftfilepattern, F0s, F1, F2,
Gregory Ashton's avatar
Gregory Ashton committed
587
588
589
                 Alpha, Delta, tref, minStartTime=None,
                 maxStartTime=None, window_size=10*86400, window_delta=86400,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
590
                 detectors=None, SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
591
592
593
594
595
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
596
597
598
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
599
600
601
602
603
604
605
606
607
608
609
610
        F0s: array
            Frequency range
        F1, F2, Alpha, Delta: float
            Fixed values to compute twoF(F) over
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
611
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
612
613
614
615
616
        self.nsegs = 1
        self.F1s = [F1]
        self.F2s = [F2]
        self.Alphas = [Alpha]
        self.Deltas = [Delta]
617
        self.input_arrays = False
Gregory Ashton's avatar
Gregory Ashton committed
618

Gregory Ashton's avatar
Gregory Ashton committed
619
620
621
    def inititate_search_object(self):
        logging.info('Setting up search object')
        self.search = ComputeFstat(
622
            tref=self.tref, sftfilepattern=self.sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
623
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
David Keitel's avatar
David Keitel committed
624
            detectors=self.detectors, transientWindowType=self.transientWindowType,
Gregory Ashton's avatar
Gregory Ashton committed
625
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
Gregory Ashton's avatar
Gregory Ashton committed
626
627
            BSGL=self.BSGL, SSBprec=self.SSBprec,
            injectSources=self.injectSources)
Gregory Ashton's avatar
Gregory Ashton committed
628
        self.search.get_det_stat = (
629
            self.search.get_fullycoherent_twoF)
Gregory Ashton's avatar
Gregory Ashton committed
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652

    def get_input_data_array(self):
        arrays = []
        tstarts = [self.minStartTime]
        while tstarts[-1] + self.window_size < self.maxStartTime:
            tstarts.append(tstarts[-1]+self.window_delta)
        arrays = [tstarts]
        for tup in (self.F0s, self.F1s, self.F2s,
                    self.Alphas, self.Deltas):
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        input_data = np.array(input_data)
        input_data = np.insert(
            input_data, 1, input_data[:, 0] + self.window_size, axis=1)

        self.arrays = arrays
        self.input_data = np.array(input_data)

    def plot_sliding_window(self, F0=None, ax=None, savefig=True,
653
                            colorbar=True, timestamps=False):
Gregory Ashton's avatar
Gregory Ashton committed
654
655
656
657
658
659
660
661
662
663
664
        data = self.data
        if ax is None:
            ax = plt.subplot()
        tstarts = np.unique(data[:, 0])
        tends = np.unique(data[:, 1])
        frequencies = np.unique(data[:, 2])
        twoF = data[:, -1]
        tmids = (tstarts + tends) / 2.0
        dts = (tmids - self.minStartTime) / 86400.
        if F0:
            frequencies = frequencies - F0
665
            ax.set_ylabel('Frequency - $f_0$ [Hz] \n $f_0={:0.2f}$'.format(F0))
Gregory Ashton's avatar
Gregory Ashton committed
666
667
668
669
670
671
672
673
674
        else:
            ax.set_ylabel('Frequency [Hz]')
        twoF = twoF.reshape((len(tmids), len(frequencies)))
        Y, X = np.meshgrid(frequencies, dts)
        pax = ax.pcolormesh(X, Y, twoF)
        if colorbar:
            cb = plt.colorbar(pax, ax=ax)
            cb.set_label('$2\mathcal{F}$')
        ax.set_xlabel(
675
676
            r'Mid-point (days after $t_\mathrm{{start}}$={})'.format(
                self.minStartTime))
Gregory Ashton's avatar
Gregory Ashton committed
677
678
        ax.set_title(
            'Sliding window length = {} days in increments of {} days'
679
680
681
682
683
684
685
            .format(self.window_size/86400, self.window_delta/86400),
            )
        if timestamps:
            axT = ax.twiny()
            axT.set_xlim(tmids[0]*1e-9, tmids[-1]*1e-9)
            axT.set_xlabel('Mid-point timestamp [GPS $10^{9}$ s]')
            ax.set_title(ax.get_title(), y=1.18)
Gregory Ashton's avatar
Gregory Ashton committed
686
687
688
689
690
691
        if savefig:
            plt.tight_layout()
            plt.savefig(
                '{}/{}_sliding_window.png'.format(self.outdir, self.label))
        else:
            return ax
692
693


Gregory Ashton's avatar
Gregory Ashton committed
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
class EarthTest(GridSearch):
    """ """
    tex_labels = {'deltaRadius': '$\Delta R$ [m]',
                  'phaseOffset': 'phase-offset [rad]',
                  'deltaPspin': '$\Delta P_\mathrm{spin}$ [s]'}

    @helper_functions.initializer
    def __init__(self, label, outdir, sftfilepattern, deltaRadius,
                 phaseOffset, deltaPspin, F0, F1, F2, Alpha,
                 Delta, tref=None, minStartTime=None, maxStartTime=None,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, injectSources=None,
                 assumeSqrtSX=None):
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
        F0, F1, F2, Alpha, Delta: float
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """
721
722
723
724
        self.transientWindowType = None
        self.t0Band = None
        self.tauBand = None

725
726
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
Gregory Ashton's avatar
Gregory Ashton committed
727
728
729
730
731
732
        self.nsegs = 1
        self.F0s = [F0]
        self.F1s = [F1]
        self.F2s = [F2]
        self.Alphas = [Alpha]
        self.Deltas = [Delta]
733
        self.duration = maxStartTime - minStartTime
Gregory Ashton's avatar
Gregory Ashton committed
734
735
        self.deltaRadius = np.atleast_1d(deltaRadius)
        self.phaseOffset = np.atleast_1d(phaseOffset)
736
        self.phaseOffset = self.phaseOffset + 1e-12  # Hack to stop cached data being used
Gregory Ashton's avatar
Gregory Ashton committed
737
738
739
740
741
        self.deltaPspin = np.atleast_1d(deltaPspin)
        self.set_out_file()
        self.SSBprec = lalpulsar.SSBPREC_RELATIVISTIC
        self.keys = ['deltaRadius', 'phaseOffset', 'deltaPspin']

742
743
744
745
746
747
748
749
        self.prior_widths = [
            np.max(self.deltaRadius)-np.min(self.deltaRadius),
            np.max(self.phaseOffset)-np.min(self.phaseOffset),
            np.max(self.deltaPspin)-np.min(self.deltaPspin)]

        if hasattr(self, 'search') is False:
            self.inititate_search_object()

Gregory Ashton's avatar
Gregory Ashton committed
750
751
752
753
754
755
756
757
758
    def get_input_data_array(self):
        logging.info("Generating input data array")
        coord_arrays = [self.deltaRadius, self.phaseOffset, self.deltaPspin]
        input_data = []
        for vals in itertools.product(*coord_arrays):
                input_data.append(vals)
        self.input_data = np.array(input_data)
        self.coord_arrays = coord_arrays

759
760
761
762
763
764
765
766
767
768
769
770
    def run_special(self):
        vals = [self.minStartTime, self.maxStartTime, self.F0, self.F1,
                self.F2, self.Alpha, self.Delta]
        self.special_data = {'zero': [0, 0, 0]}
        for key, (dR, dphi, dP) in self.special_data.iteritems():
            rescaleRadius = (1 + dR / lal.REARTH_SI)
            rescalePeriod = (1 + dP / lal.DAYSID_SI)
            lalpulsar.BarycenterModifyEarthRotation(
                rescaleRadius, dphi, rescalePeriod, self.tref)
            FS = self.search.get_det_stat(*vals)
            self.special_data[key] = list([dR, dphi, dP]) + [FS]

Gregory Ashton's avatar
Gregory Ashton committed
771
    def run(self):
772
        self.run_special()
Gregory Ashton's avatar
Gregory Ashton committed
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
        self.get_input_data_array()
        old_data = self.check_old_data_is_okay_to_use()
        if old_data is not False:
            self.data = old_data
            return

        data = []
        vals = [self.minStartTime, self.maxStartTime, self.F0, self.F1,
                self.F2, self.Alpha, self.Delta]
        for (dR, dphi, dP) in tqdm(self.input_data):
            rescaleRadius = (1 + dR / lal.REARTH_SI)
            rescalePeriod = (1 + dP / lal.DAYSID_SI)
            lalpulsar.BarycenterModifyEarthRotation(
                rescaleRadius, dphi, rescalePeriod, self.tref)
            FS = self.search.get_det_stat(*vals)
            data.append(list([dR, dphi, dP]) + [FS])

        data = np.array(data, dtype=np.float)
        logging.info('Saving data to {}'.format(self.out_file))
        np.savetxt(self.out_file, data, delimiter=' ')
        self.data = data

795
796
797
798
    def marginalised_bayes_factor(self, prior_widths=None):
        if prior_widths is None:
            prior_widths = self.prior_widths

799
        ndims = self.data.shape[1] - 1
800
        params = np.array([np.unique(self.data[:, j]) for j in range(ndims)])
801
802
803
804
805
        twoF = self.data[:, -1].reshape(tuple([len(p) for p in params]))
        F = twoF / 2.0
        for i, x in enumerate(params[::-1]):
            if len(x) > 1:
                dx = x[1] - x[0]
806
                F = logsumexp(F, axis=-1)+np.log(dx)-np.log(prior_widths[-1-i])
807
808
            else:
                F = np.squeeze(F, axis=-1)
809
810
811
812
813
814
815
816
817
818
819
        marginalised_F = np.atleast_1d(F)[0]
        F_at_zero = self.special_data['zero'][-1]/2.0

        max_idx = np.argmax(self.data[:, -1])
        max_F = self.data[max_idx, -1]/2.0
        max_F_params = self.data[max_idx, :-1]
        logging.info('F at zero = {:.1f}, marginalised_F = {:.1f},'
                     ' max_F = {:.1f} ({})'.format(
                         F_at_zero, marginalised_F, max_F, max_F_params))
        return F_at_zero - marginalised_F, (F_at_zero - max_F) / F_at_zero

820
821
    def plot_corner(self, prior_widths=None, fig=None, axes=None,
                    projection='log_mean'):
822
823
824
825
826
827
828
829
830
831
832
833
        Bsa, FmaxMismatch = self.marginalised_bayes_factor(prior_widths)

        data = self.data[:, -1].reshape(
            (len(self.deltaRadius), len(self.phaseOffset),
             len(self.deltaPspin)))
        xyz = [self.deltaRadius/lal.REARTH_SI, self.phaseOffset/(np.pi),
               self.deltaPspin/60.]
        labels = [r'$\frac{\Delta R}{R_\mathrm{Earth}}$',
                  r'$\frac{\Delta \phi}{\pi}$',
                  r'$\Delta P_\mathrm{spin}$ [min]',
                  r'$2\mathcal{F}$']

834
835
836
837
838
839
        try:
            from gridcorner import gridcorner
        except ImportError:
            raise ImportError(
                "Python module 'gridcorner' not found, please install from "
                "https://gitlab.aei.uni-hannover.de/GregAshton/gridcorner")
840

841
842
        fig, axes = gridcorner(data, xyz, projection=projection, factor=1.6,
                               labels=labels)
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
        axes[-1][-1].axvline((lal.DAYJUL_SI - lal.DAYSID_SI)/60.0, color='C3')
        plt.suptitle(
            'T={:.1f} days, $f$={:.2f} Hz, $\log\mathcal{{B}}_{{S/A}}$={:.1f},'
            r' $\frac{{\mathcal{{F}}_0-\mathcal{{F}}_\mathrm{{max}}}}'
            r'{{\mathcal{{F}}_0}}={:.1e}$'
            .format(self.duration/86400, self.F0, Bsa, FmaxMismatch), y=0.99,
            size=14)
        fig.savefig('{}/{}_projection_matrix.png'.format(
            self.outdir, self.label))

    def plot(self, key, prior_widths=None):
        Bsa, FmaxMismatch = self.marginalised_bayes_factor(prior_widths)

        rescales_defaults = {'deltaRadius': 1/lal.REARTH_SI,
                             'phaseOffset': 1/np.pi,
                             'deltaPspin': 1}
        labels = {'deltaRadius': r'$\frac{\Delta R}{R_\mathrm{Earth}}$',
                  'phaseOffset': r'$\frac{\Delta \phi}{\pi}$',
                  'deltaPspin': r'$\Delta P_\mathrm{spin}$ [s]'
                  }

        fig, ax = self.plot_1D(key, xrescale=rescales_defaults[key],
                               xlabel=labels[key], savefig=False)
        ax.set_title(
            'T={} days, $f$={} Hz, $\log\mathcal{{B}}_{{S/A}}$={:.1f}'
            .format(self.duration/86400, self.F0, Bsa))
        fig.tight_layout()
        fig.savefig('{}/{}_1D.png'.format(self.outdir, self.label))
871

Gregory Ashton's avatar
Gregory Ashton committed
872

873
874
875
class DMoff_NO_SPIN(GridSearch):
    """ DMoff test using SSBPREC_NO_SPIN """
    @helper_functions.initializer
876
    def __init__(self, par, label, outdir, sftfilepattern, minStartTime=None,
877
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
878
                 detectors=None, injectSources=None, assumeSqrtSX=None):
879
880
881
        """
        Parameters
        ----------
882
883
884
        par: dict, str
            Either a par dictionary (containing 'F0', 'F1', 'Alpha', 'Delta'
            and 'tref') or a path to a .par file to read in the F0, F1 etc
885
886
        label, outdir: str
            A label and directory to read/write data from/to
887
888
889
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
890
891
892
893
894
895
896
897
898
        minStartTime, maxStartTime: int
            GPS seconds of the start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)

899
900
901
902
        if type(par) == dict:
            self.par = par
        elif type(par) == str and os.path.isfile(par):
            self.par = read_par(filename=par)
903
904
905
906
907
908
909
910
911
912
913
914
915
        else:
            raise ValueError('The .par file does not exist')

        self.nsegs = 1
        self.BSGL = False

        self.tref = self.par['tref']
        self.F1s = [self.par.get('F1', 0)]
        self.F2s = [self.par.get('F2', 0)]
        self.Alphas = [self.par['Alpha']]
        self.Deltas = [self.par['Delta']]
        self.Re = 6.371e6
        self.c = 2.998e8
916
        a0 = self.Re/self.c  # *np.cos(self.par['Delta'])
917
        self.m0 = np.max([4, int(np.ceil(2*np.pi*self.par['F0']*a0))])
918
919
        logging.info(
            'Setting up DMoff_NO_SPIN search with m0 = {}'.format(self.m0))
920
921
922
923
924
925
926
927
928

    def get_results(self):
        """ Compute the three summed detection statistics

        Returns
        -------
            m0, twoF_SUM, twoFstar_SUM_SIDEREAL, twoFstar_SUM_TERRESTRIAL

        """
Gregory Ashton's avatar
Gregory Ashton committed
929
930
931
        self.SSBprec = lalpulsar.SSBPREC_RELATIVISTIC
        self.set_out_file('SSBPREC_RELATIVISTIC')
        self.F0s = [self.par['F0']+j/lal.DAYSID_SI for j in range(-4, 5)]
932
933
934
        self.run()
        twoF_SUM = np.sum(self.data[:, -1])

Gregory Ashton's avatar
Gregory Ashton committed
935
936
937
        self.SSBprec = lalpulsar.SSBPREC_NO_SPIN
        self.set_out_file('SSBPREC_NO_SPIN')
        self.F0s = [self.par['F0']+j/lal.DAYSID_SI
938
939
940
941
                    for j in range(-self.m0, self.m0+1)]
        self.run()
        twoFstar_SUM = np.sum(self.data[:, -1])

Gregory Ashton's avatar
Gregory Ashton committed
942
943
        self.set_out_file('SSBPREC_NO_SPIN_TERRESTRIAL')
        self.F0s = [self.par['F0']+j/lal.DAYJUL_SI
944
945
946
947
948
                    for j in range(-self.m0, self.m0+1)]
        self.run()
        twoFstar_SUM_terrestrial = np.sum(self.data[:, -1])

        return self.m0, twoF_SUM, twoFstar_SUM, twoFstar_SUM_terrestrial