grid_based_searches.py 41 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" Searches using grid-based methods """
2
from __future__ import division, absolute_import, print_function
Gregory Ashton's avatar
Gregory Ashton committed
3
4
5
6
7

import os
import logging
import itertools
from collections import OrderedDict
Gregory Ashton's avatar
Gregory Ashton committed
8
9
10
import datetime
import getpass
import socket
Gregory Ashton's avatar
Gregory Ashton committed
11
12
13
14

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
15
from scipy.misc import logsumexp
Gregory Ashton's avatar
Gregory Ashton committed
16

17
18
19
import pyfstat.helper_functions as helper_functions
from pyfstat.core import (BaseSearchClass, ComputeFstat,
                          SemiCoherentGlitchSearch, SemiCoherentSearch, tqdm,
20
                          args, read_par)
Gregory Ashton's avatar
Gregory Ashton committed
21
22
import lalpulsar
import lal
Gregory Ashton's avatar
Gregory Ashton committed
23
24
25
26


class GridSearch(BaseSearchClass):
    """ Gridded search using ComputeFstat """
Gregory Ashton's avatar
Gregory Ashton committed
27
28
29
    tex_labels = {'F0': '$f$', 'F1': '$\dot{f}$', 'F2': '$\ddot{f}$',
                  'Alpha': r'$\alpha$', 'Delta': r'$\delta$'}
    tex_labels0 = {'F0': '$-f_0$', 'F1': '$-\dot{f}_0$', 'F2': '$-\ddot{f}_0$',
30
                   'Alpha': r'$-\alpha_0$', 'Delta': r'$-\delta_0$'}
Gregory Ashton's avatar
Gregory Ashton committed
31

Gregory Ashton's avatar
Gregory Ashton committed
32
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
33
34
35
36
    def __init__(self, label, outdir, sftfilepattern, F0s, F1s, F2s, Alphas,
                 Deltas, tref=None, minStartTime=None, maxStartTime=None,
                 nsegs=1, BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, SSBprec=None, injectSources=None,
37
                 input_arrays=False, assumeSqrtSX=None):
Gregory Ashton's avatar
Gregory Ashton committed
38
39
40
41
42
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
43
44
45
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
46
47
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
48
49
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
Gregory Ashton's avatar
Gregory Ashton committed
50
51
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
52
53
        input_arrays: bool
            if true, use the F0s, F1s, etc as is
Gregory Ashton's avatar
Gregory Ashton committed
54
55
56
57
58
59

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
60
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
61
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
62
63
64
        self.search_keys = [x+'s' for x in self.keys[2:]]
        for k in self.search_keys:
            setattr(self, k, np.atleast_1d(getattr(self, k)))
Gregory Ashton's avatar
Gregory Ashton committed
65
66
67

    def inititate_search_object(self):
        logging.info('Setting up search object')
68
69
        if self.nsegs == 1:
            self.search = ComputeFstat(
70
                tref=self.tref, sftfilepattern=self.sftfilepattern,
71
                minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
David Keitel's avatar
David Keitel committed
72
                detectors=self.detectors,
73
                minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
74
                BSGL=self.BSGL, SSBprec=self.SSBprec,
75
76
                injectSources=self.injectSources,
                assumeSqrtSX=self.assumeSqrtSX)
77
            self.search.get_det_stat = self.search.get_fullycoherent_twoF
78
79
80
        else:
            self.search = SemiCoherentSearch(
                label=self.label, outdir=self.outdir, tref=self.tref,
81
                nsegs=self.nsegs, sftfilepattern=self.sftfilepattern,
82
83
84
                BSGL=self.BSGL, minStartTime=self.minStartTime,
                maxStartTime=self.maxStartTime, minCoverFreq=self.minCoverFreq,
                maxCoverFreq=self.maxCoverFreq, detectors=self.detectors,
Gregory Ashton's avatar
Gregory Ashton committed
85
                injectSources=self.injectSources)
86
87

            def cut_out_tstart_tend(*vals):
88
                return self.search.get_semicoherent_twoF(*vals[2:])
89
            self.search.get_det_stat = cut_out_tstart_tend
Gregory Ashton's avatar
Gregory Ashton committed
90
91
92
93

    def get_array_from_tuple(self, x):
        if len(x) == 1:
            return np.array(x)
94
        elif len(x) == 3 and self.input_arrays is False:
Gregory Ashton's avatar
Gregory Ashton committed
95
            return np.arange(x[0], x[1], x[2])
Gregory Ashton's avatar
Gregory Ashton committed
96
        else:
Gregory Ashton's avatar
Gregory Ashton committed
97
98
            logging.info('Using tuple as is')
            return np.array(x)
Gregory Ashton's avatar
Gregory Ashton committed
99
100

    def get_input_data_array(self):
Gregory Ashton's avatar
Gregory Ashton committed
101
        logging.info("Generating input data array")
102
        coord_arrays = []
Gregory Ashton's avatar
Gregory Ashton committed
103
104
        for tup in ([self.minStartTime], [self.maxStartTime], self.F0s,
                    self.F1s, self.F2s, self.Alphas, self.Deltas):
105
            coord_arrays.append(self.get_array_from_tuple(tup))
Gregory Ashton's avatar
Gregory Ashton committed
106

107
108
109
110
        input_data = []
        for vals in itertools.product(*coord_arrays):
                input_data.append(vals)
        self.input_data = np.array(input_data)
111
        self.coord_arrays = coord_arrays
Gregory Ashton's avatar
Gregory Ashton committed
112
113
114
115
116

    def check_old_data_is_okay_to_use(self):
        if args.clean:
            return False
        if os.path.isfile(self.out_file) is False:
117
118
119
            logging.info(
                'No old data found in "{:s}", continuing with grid search'
                .format(self.out_file))
Gregory Ashton's avatar
Gregory Ashton committed
120
            return False
121
        if self.sftfilepattern is not None:
122
123
124
125
126
127
            oldest_sft = min([os.path.getmtime(f) for f in
                              self._get_list_of_matching_sfts()])
            if os.path.getmtime(self.out_file) < oldest_sft:
                logging.info('Search output data outdates sft files,'
                             + ' continuing with grid search')
                return False
128

129
        data = np.atleast_2d(np.genfromtxt(self.out_file, delimiter=' '))
130
131
        if np.all(data[:, 0: len(self.coord_arrays)] ==
                  self.input_data[:, 0:len(self.coord_arrays)]):
132
            logging.info(
133
134
                'Old data found in "{:s}" with matching input, no search '
                'performed'.format(self.out_file))
135
136
137
            return data
        else:
            logging.info(
138
139
                'Old data found in "{:s}", input differs, continuing with '
                'grid search'.format(self.out_file))
140
            return False
141
        return False
Gregory Ashton's avatar
Gregory Ashton committed
142
143
144
145
146
147
148
149

    def run(self, return_data=False):
        self.get_input_data_array()
        old_data = self.check_old_data_is_okay_to_use()
        if old_data is not False:
            self.data = old_data
            return

Gregory Ashton's avatar
Gregory Ashton committed
150
151
        if hasattr(self, 'search') is False:
            self.inititate_search_object()
Gregory Ashton's avatar
Gregory Ashton committed
152
153

        data = []
154
        for vals in tqdm(self.input_data):
155
            detstat = self.search.get_det_stat(*vals)
156
157
            thisCand = list(vals) + [detstat]
            data.append(thisCand)
Gregory Ashton's avatar
Gregory Ashton committed
158

159
        data = np.array(data, dtype=np.float)
Gregory Ashton's avatar
Gregory Ashton committed
160
161
162
        if return_data:
            return data
        else:
163
            self.save_array_to_disk(data)
Gregory Ashton's avatar
Gregory Ashton committed
164
165
            self.data = data

166
167
168
169
170
171
172
173
174
175
176
177
    def get_header(self):
        header = ';'.join(['date:{}'.format(str(datetime.datetime.now())),
                           'user:{}'.format(getpass.getuser()),
                           'hostname:{}'.format(socket.gethostname())])
        header += '\n' + ' '.join(self.keys)
        return header

    def save_array_to_disk(self, data):
        logging.info('Saving data to {}'.format(self.out_file))
        header = self.get_header()
        np.savetxt(self.out_file, data, delimiter=' ', header=header)

Gregory Ashton's avatar
Gregory Ashton committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    def convert_F0_to_mismatch(self, F0, F0hat, Tseg):
        DeltaF0 = F0[1] - F0[0]
        m_spacing = (np.pi*Tseg*DeltaF0)**2 / 12.
        N = len(F0)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def convert_F1_to_mismatch(self, F1, F1hat, Tseg):
        DeltaF1 = F1[1] - F1[0]
        m_spacing = (np.pi*Tseg**2*DeltaF1)**2 / 720.
        N = len(F1)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def add_mismatch_to_ax(self, ax, x, y, xkey, ykey, xhat, yhat, Tseg):
        axX = ax.twiny()
        axX.zorder = -10
        axY = ax.twinx()
        axY.zorder = -10

        if xkey == 'F0':
            m = self.convert_F0_to_mismatch(x, xhat, Tseg)
            axX.set_xlim(m[0], m[-1])

        if ykey == 'F1':
            m = self.convert_F1_to_mismatch(y, yhat, Tseg)
            axY.set_ylim(m[0], m[-1])

Gregory Ashton's avatar
Gregory Ashton committed
204
205
    def plot_1D(self, xkey, ax=None, x0=None, xrescale=1, savefig=True,
                xlabel=None, ylabel='$\widetilde{2\mathcal{F}}$'):
Gregory Ashton's avatar
Gregory Ashton committed
206
207
        if ax is None:
            fig, ax = plt.subplots()
Gregory Ashton's avatar
Gregory Ashton committed
208
209
        xidx = self.keys.index(xkey)
        x = np.unique(self.data[:, xidx])
210
211
        if x0:
            x = x - x0
Gregory Ashton's avatar
Gregory Ashton committed
212
        x = x * xrescale
Gregory Ashton's avatar
Gregory Ashton committed
213
        z = self.data[:, -1]
Gregory Ashton's avatar
Gregory Ashton committed
214
215
216
217
218
        ax.plot(x, z)
        if x0:
            ax.set_xlabel(self.tex_labels[xkey]+self.tex_labels0[xkey])
        else:
            ax.set_xlabel(self.tex_labels[xkey])
Gregory Ashton's avatar
Gregory Ashton committed
219
220
221
222
223

        if xlabel:
            ax.set_xlabel(xlabel)

        ax.set_ylabel(ylabel)
Gregory Ashton's avatar
Gregory Ashton committed
224
        if savefig:
Gregory Ashton's avatar
Gregory Ashton committed
225
            fig.tight_layout()
Gregory Ashton's avatar
Gregory Ashton committed
226
227
            fig.savefig('{}/{}_1D.png'.format(self.outdir, self.label))
        else:
228
            return ax
Gregory Ashton's avatar
Gregory Ashton committed
229
230
231

    def plot_2D(self, xkey, ykey, ax=None, save=True, vmin=None, vmax=None,
                add_mismatch=None, xN=None, yN=None, flat_keys=[],
Gregory Ashton's avatar
Gregory Ashton committed
232
                rel_flat_idxs=[], flatten_method=np.max, title=None,
Gregory Ashton's avatar
Gregory Ashton committed
233
234
                predicted_twoF=None, cm=None, cbarkwargs={}, x0=None, y0=None,
                colorbar=False):
Gregory Ashton's avatar
Gregory Ashton committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        """ Plots a 2D grid of 2F values

        Parameters
        ----------
        add_mismatch: tuple (xhat, yhat, Tseg)
            If not None, add a secondary axis with the metric mismatch from the
            point xhat, yhat with duration Tseg
        flatten_method: np.max
            Function to use in flattening the flat_keys
        """
        if ax is None:
            fig, ax = plt.subplots()
        xidx = self.keys.index(xkey)
        yidx = self.keys.index(ykey)
        flat_idxs = [self.keys.index(k) for k in flat_keys]

        x = np.unique(self.data[:, xidx])
252
253
        if x0:
            x = x-x0
Gregory Ashton's avatar
Gregory Ashton committed
254
        y = np.unique(self.data[:, yidx])
255
256
        if y0:
            y = y-y0
Gregory Ashton's avatar
Gregory Ashton committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        flat_vals = [np.unique(self.data[:, j]) for j in flat_idxs]
        z = self.data[:, -1]

        Y, X = np.meshgrid(y, x)
        shape = [len(x), len(y)] + [len(v) for v in flat_vals]
        Z = z.reshape(shape)

        if len(rel_flat_idxs) > 0:
            Z = flatten_method(Z, axis=tuple(rel_flat_idxs))

        if predicted_twoF:
            Z = (predicted_twoF - Z) / (predicted_twoF + 4)
            if cm is None:
                cm = plt.cm.viridis_r
        else:
            if cm is None:
                cm = plt.cm.viridis

        pax = ax.pcolormesh(X, Y, Z, cmap=cm, vmin=vmin, vmax=vmax)
Gregory Ashton's avatar
Gregory Ashton committed
276
277
278
        if colorbar:
            cb = plt.colorbar(pax, ax=ax, **cbarkwargs)
            cb.set_label('$2\mathcal{F}$')
Gregory Ashton's avatar
Gregory Ashton committed
279
280
281
282
283
284

        if add_mismatch:
            self.add_mismatch_to_ax(ax, x, y, xkey, ykey, *add_mismatch)

        ax.set_xlim(x[0], x[-1])
        ax.set_ylim(y[0], y[-1])
285
        if x0:
Gregory Ashton's avatar
Gregory Ashton committed
286
            ax.set_xlabel(self.tex_labels[xkey]+self.tex_labels0[xkey])
287
        else:
Gregory Ashton's avatar
Gregory Ashton committed
288
            ax.set_xlabel(self.tex_labels[xkey])
289
        if y0:
Gregory Ashton's avatar
Gregory Ashton committed
290
            ax.set_ylabel(self.tex_labels[ykey]+self.tex_labels0[ykey])
291
        else:
Gregory Ashton's avatar
Gregory Ashton committed
292
            ax.set_ylabel(self.tex_labels[ykey])
Gregory Ashton's avatar
Gregory Ashton committed
293

Gregory Ashton's avatar
Gregory Ashton committed
294
295
296
        if title:
            ax.set_title(title)

Gregory Ashton's avatar
Gregory Ashton committed
297
298
299
300
301
302
303
304
305
306
307
308
        if xN:
            ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(xN))
        if yN:
            ax.yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(yN))

        if save:
            fig.tight_layout()
            fig.savefig('{}/{}_2D.png'.format(self.outdir, self.label))
        else:
            return ax

    def get_max_twoF(self):
Gregory Ashton's avatar
Gregory Ashton committed
309
310
311
312
313
314
315
316
317
318
        """ Get the maximum twoF over the grid

        Returns
        -------
        d: dict
            Dictionary containing, 'minStartTime', 'maxStartTime', 'F0', 'F1',
            'F2', 'Alpha', 'Delta' and 'twoF' of maximum

        """

Gregory Ashton's avatar
Gregory Ashton committed
319
320
321
322
323
324
325
326
327
328
329
330
331
        twoF = self.data[:, -1]
        idx = np.argmax(twoF)
        v = self.data[idx, :]
        d = OrderedDict(minStartTime=v[0], maxStartTime=v[1], F0=v[2], F1=v[3],
                        F2=v[4], Alpha=v[5], Delta=v[6], twoF=v[7])
        return d

    def print_max_twoF(self):
        d = self.get_max_twoF()
        print('Max twoF values for {}:'.format(self.label))
        for k, v in d.iteritems():
            print('  {}={}'.format(k, v))

332
    def set_out_file(self, extra_label=None):
333
334
335
336
        if self.detectors:
            dets = self.detectors.replace(',', '')
        else:
            dets = 'NA'
337
338
339
340
341
342
343
344
        if extra_label:
            self.out_file = '{}/{}_{}_{}_{}.txt'.format(
                self.outdir, self.label, dets, type(self).__name__,
                extra_label)
        else:
            self.out_file = '{}/{}_{}_{}.txt'.format(
                self.outdir, self.label, dets, type(self).__name__)

Gregory Ashton's avatar
Gregory Ashton committed
345

346
347
348
349
350
351
352
353
354
355
class TransientGridSearch(GridSearch):
    """ Gridded transient-continous search using ComputeFstat """

    @helper_functions.initializer
    def __init__(self, label, outdir, sftfilepattern, F0s, F1s, F2s, Alphas,
                 Deltas, tref=None, minStartTime=None, maxStartTime=None,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, SSBprec=None, injectSources=None,
                 input_arrays=False, assumeSqrtSX=None,
                 transientWindowType=None, t0Band=None, tauBand=None,
356
                 dt0=None, dtau=None,
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
                 outputTransientFstatMap=False):
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
        input_arrays: bool
            if true, use the F0s, F1s, etc as is
        transientWindowType: str
            If 'rect' or 'exp', compute atoms so that a transient (t0,tau) map
            can later be computed.  ('none' instead of None explicitly calls
            the transient-window function, but with the full range, for
            debugging). Currently only supported for nsegs=1.
        t0Band, tauBand: int
            if >0, search t0 in (minStartTime,minStartTime+t0Band)
                   and tau in (2*Tsft,2*Tsft+tauBand).
            if =0, only compute CW Fstat with t0=minStartTime,
                   tau=maxStartTime-minStartTime.
384
385
386
        dt0, dtau: int
            grid resolutions in transient start-time and duration,
            both default to Tsft
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
        outputTransientFstatMap: bool
            if true, write output files for (t0,tau) Fstat maps
            (one file for each doppler grid point!)

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        self.nsegs = 1
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.set_out_file()
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
        self.search_keys = [x+'s' for x in self.keys[2:]]
        for k in self.search_keys:
            setattr(self, k, np.atleast_1d(getattr(self, k)))

    def inititate_search_object(self):
        logging.info('Setting up search object')
        self.search = ComputeFstat(
            tref=self.tref, sftfilepattern=self.sftfilepattern,
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            detectors=self.detectors,
            transientWindowType=self.transientWindowType,
            t0Band=self.t0Band, tauBand=self.tauBand,
411
            dt0=self.dt0, dtau=self.dtau,
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
            BSGL=self.BSGL, SSBprec=self.SSBprec,
            injectSources=self.injectSources,
            assumeSqrtSX=self.assumeSqrtSX)
        self.search.get_det_stat = self.search.get_fullycoherent_twoF

    def run(self, return_data=False):
        self.get_input_data_array()
        old_data = self.check_old_data_is_okay_to_use()
        if old_data is not False:
            self.data = old_data
            return

        if hasattr(self, 'search') is False:
            self.inititate_search_object()

        data = []
        for vals in tqdm(self.input_data):
            detstat = self.search.get_det_stat(*vals)
            windowRange = getattr(self.search, 'windowRange', None)
            FstatMap = getattr(self.search, 'FstatMap', None)
            thisCand = list(vals) + [detstat]
            if getattr(self, 'transientWindowType', None):
                if self.outputTransientFstatMap:
                    tCWfile = os.path.splitext(self.out_file)[0]+'_tCW_%.16f_%.16f_%.16f_%.16g_%.16g.dat' % (vals[2],vals[5],vals[6],vals[3],vals[4]) # freq alpha delta f1dot f2dot
                    fo = lal.FileOpen(tCWfile, 'w')
                    lalpulsar.write_transientFstatMap_to_fp ( fo, FstatMap, windowRange, None )
                    del fo # instead of lal.FileClose() which is not SWIG-exported
                Fmn = FstatMap.F_mn.data
                maxidx = np.unravel_index(Fmn.argmax(), Fmn.shape)
                thisCand += [windowRange.t0+maxidx[0]*windowRange.dt0,
                             windowRange.tau+maxidx[1]*windowRange.dtau]
            data.append(thisCand)

        data = np.array(data, dtype=np.float)
        if return_data:
            return data
        else:
            self.save_array_to_disk(data)
            self.data = data


Gregory Ashton's avatar
Gregory Ashton committed
454
455
456
class SliceGridSearch(GridSearch):
    """ Slice gridded search using ComputeFstat """
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
457
458
459
460
461
    def __init__(self, label, outdir, sftfilepattern, F0s, F1s, F2s, Alphas,
                 Deltas, tref=None, minStartTime=None, maxStartTime=None,
                 nsegs=1, BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, SSBprec=None, injectSources=None,
                 input_arrays=False, assumeSqrtSX=None, Lambda0=None):
Gregory Ashton's avatar
Gregory Ashton committed
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
        input_arrays: bool
            if true, use the F0s, F1s, etc as is

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.set_out_file()
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
486
487
488
        self.ndim = 0
        self.thetas = [F0s, F1s, Alphas, Deltas]
        self.ndim = 4
Gregory Ashton's avatar
Gregory Ashton committed
489

Gregory Ashton's avatar
Gregory Ashton committed
490
        self.search_keys = ['F0', 'F1', 'Alpha', 'Delta']
491
492
        if self.Lambda0 is None:
            raise ValueError('Lambda0 undefined')
Gregory Ashton's avatar
Gregory Ashton committed
493
        if len(self.Lambda0) != len(self.search_keys):
Gregory Ashton's avatar
Gregory Ashton committed
494
            raise ValueError(
Gregory Ashton's avatar
Gregory Ashton committed
495
                'Lambda0 must be of length {}'.format(len(self.search_keys)))
496
        self.Lambda0 = np.array(Lambda0)
Gregory Ashton's avatar
Gregory Ashton committed
497

498
499
    def run(self, factor=2, max_n_ticks=4, whspace=0.07, save=True,
            **kwargs):
Gregory Ashton's avatar
Gregory Ashton committed
500
        lbdim = 0.5 * factor   # size of left/bottom margin
501
        trdim = 0.4 * factor   # size of top/right margin
Gregory Ashton's avatar
Gregory Ashton committed
502
503
504
505
506
507
508
509
510
511
512
513
514
515
        plotdim = factor * self.ndim + factor * (self.ndim - 1.) * whspace
        dim = lbdim + plotdim + trdim

        fig, axes = plt.subplots(self.ndim, self.ndim, figsize=(dim, dim))

        # Format the figure.
        lb = lbdim / dim
        tr = (lbdim + plotdim) / dim
        fig.subplots_adjust(left=lb, bottom=lb, right=tr, top=tr,
                            wspace=whspace, hspace=whspace)

        search = GridSearch(
            self.label, self.outdir, self.sftfilepattern,
            F0s=self.Lambda0[0], F1s=self.Lambda0[1], F2s=self.F2s[0],
516
517
            Alphas=self.Lambda0[2], Deltas=self.Lambda0[3], tref=self.tref,
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime)
Gregory Ashton's avatar
Gregory Ashton committed
518
519
520

        for i, ikey in enumerate(self.search_keys):
            setattr(search, ikey+'s', self.thetas[i])
521
522
            search.label = '{}_{}'.format(self.label, ikey)
            search.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
523
            search.run()
524
525
526
            axes[i, i] = search.plot_1D(ikey, ax=axes[i, i], savefig=False,
                                        x0=self.Lambda0[i]
                                        )
Gregory Ashton's avatar
Gregory Ashton committed
527
            setattr(search, ikey+'s', [self.Lambda0[i]])
528
529
530
            axes[i, i].yaxis.tick_right()
            axes[i, i].yaxis.set_label_position("right")
            axes[i, i].set_xlabel('')
Gregory Ashton's avatar
Gregory Ashton committed
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557

            for j, jkey in enumerate(self.search_keys):
                ax = axes[i, j]

                if j > i:
                    ax.set_frame_on(False)
                    ax.set_xticks([])
                    ax.set_yticks([])
                    continue

                ax.get_shared_x_axes().join(axes[self.ndim-1, j], ax)
                if i < self.ndim - 1:
                    ax.set_xticklabels([])
                if j < i:
                    ax.get_shared_y_axes().join(axes[i, i-1], ax)
                    if j > 0:
                        ax.set_yticklabels([])
                if j == i:
                    continue

                ax.xaxis.set_major_locator(
                    matplotlib.ticker.MaxNLocator(max_n_ticks, prune="upper"))
                ax.yaxis.set_major_locator(
                    matplotlib.ticker.MaxNLocator(max_n_ticks, prune="upper"))

                setattr(search, ikey+'s', self.thetas[i])
                setattr(search, jkey+'s', self.thetas[j])
558
559
                search.label = '{}_{}'.format(self.label, ikey+jkey)
                search.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
560
                search.run()
561
                ax = search.plot_2D(jkey, ikey, ax=ax, save=False,
562
563
                                    y0=self.Lambda0[i], x0=self.Lambda0[j],
                                    **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
564
565
566
                setattr(search, ikey+'s', [self.Lambda0[i]])
                setattr(search, jkey+'s', [self.Lambda0[j]])

567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
                ax.grid(lw=0.2, ls='--', zorder=10)
                ax.set_xlabel('')
                ax.set_ylabel('')

        for i, ikey in enumerate(self.search_keys):
            axes[-1, i].set_xlabel(
                self.tex_labels[ikey]+self.tex_labels0[ikey])
            if i > 0:
                axes[i, 0].set_ylabel(
                    self.tex_labels[ikey]+self.tex_labels0[ikey])
            axes[i, i].set_ylabel("$2\mathcal{F}$")

        if save:
            fig.savefig(
                '{}/{}_slice_projection.png'.format(self.outdir, self.label))
        else:
            return fig, axes
Gregory Ashton's avatar
Gregory Ashton committed
584
585


Gregory Ashton's avatar
Gregory Ashton committed
586
class GridUniformPriorSearch():
587
    @helper_functions.initializer
588
    def __init__(self, theta_prior, NF0, NF1, label, outdir, sftfilepattern,
589
                 tref, minStartTime, maxStartTime, minCoverFreq=None,
590
                 maxCoverFreq=None, BSGL=False, detectors=None, nsegs=1,
591
                 SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
592
593
594
595
        dF0 = (theta_prior['F0']['upper'] - theta_prior['F0']['lower'])/NF0
        dF1 = (theta_prior['F1']['upper'] - theta_prior['F1']['lower'])/NF1
        F0s = [theta_prior['F0']['lower'], theta_prior['F0']['upper'], dF0]
        F1s = [theta_prior['F1']['lower'], theta_prior['F1']['upper'], dF1]
596
        self.search = GridSearch(
597
            label, outdir, sftfilepattern, F0s=F0s, F1s=F1s, tref=tref,
Gregory Ashton's avatar
Gregory Ashton committed
598
599
            Alphas=[theta_prior['Alpha']], Deltas=[theta_prior['Delta']],
            minStartTime=minStartTime, maxStartTime=maxStartTime, BSGL=BSGL,
600
            detectors=detectors, minCoverFreq=minCoverFreq,
601
602
            injectSources=injectSources, maxCoverFreq=maxCoverFreq,
            nsegs=nsegs, SSBprec=SSBprec)
603

604
    def run(self):
605
        self.search.run()
606
607

    def get_2D_plot(self, **kwargs):
608
        return self.search.plot_2D('F0', 'F1', **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
609
610


Gregory Ashton's avatar
Gregory Ashton committed
611
612
613
class GridGlitchSearch(GridSearch):
    """ Grid search using the SemiCoherentGlitchSearch """
    @helper_functions.initializer
614
    def __init__(self, label, outdir='data', sftfilepattern=None, F0s=[0],
Gregory Ashton's avatar
Gregory Ashton committed
615
616
617
                 F1s=[0], F2s=[0], delta_F0s=[0], delta_F1s=[0], tglitchs=None,
                 Alphas=[0], Deltas=[0], tref=None, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
618
                 detectors=None):
Gregory Ashton's avatar
Gregory Ashton committed
619
        """
620
621
        Run a single-glitch grid search

Gregory Ashton's avatar
Gregory Ashton committed
622
623
624
625
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
626
627
628
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
629
630
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
631
632
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Note that
            tglitchs is referenced to zero at minStartTime.
Gregory Ashton's avatar
Gregory Ashton committed
633
634
635
636
637
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see pyfstat.ComputeFStat.
        """
638
639

        self.BSGL = False
640
        self.input_arrays = False
Gregory Ashton's avatar
Gregory Ashton committed
641
        if tglitchs is None:
642
            raise ValueError('You must specify `tglitchs`')
Gregory Ashton's avatar
Gregory Ashton committed
643
644

        self.search = SemiCoherentGlitchSearch(
645
            label=label, outdir=outdir, sftfilepattern=self.sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
646
647
648
            tref=tref, minStartTime=minStartTime, maxStartTime=maxStartTime,
            minCoverFreq=minCoverFreq, maxCoverFreq=maxCoverFreq,
            BSGL=self.BSGL)
649
        self.search.get_det_stat = self.search.get_semicoherent_nglitch_twoF
Gregory Ashton's avatar
Gregory Ashton committed
650
651
652

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
653
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
654
655
656
657
        self.keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta', 'delta_F0',
                     'delta_F1', 'tglitch']

    def get_input_data_array(self):
658
659
        logging.info("Generating input data array")
        coord_arrays = []
Gregory Ashton's avatar
Gregory Ashton committed
660
661
        for tup in (self.F0s, self.F1s, self.F2s, self.Alphas, self.Deltas,
                    self.delta_F0s, self.delta_F1s, self.tglitchs):
662
            coord_arrays.append(self.get_array_from_tuple(tup))
Gregory Ashton's avatar
Gregory Ashton committed
663
664

        input_data = []
665
        for vals in itertools.product(*coord_arrays):
Gregory Ashton's avatar
Gregory Ashton committed
666
667
            input_data.append(vals)
        self.input_data = np.array(input_data)
668
        self.coord_arrays = coord_arrays
Gregory Ashton's avatar
Gregory Ashton committed
669
670


Gregory Ashton's avatar
Gregory Ashton committed
671
672
673
class FrequencySlidingWindow(GridSearch):
    """ A sliding-window search over the Frequency """
    @helper_functions.initializer
674
    def __init__(self, label, outdir, sftfilepattern, F0s, F1, F2,
Gregory Ashton's avatar
Gregory Ashton committed
675
676
677
                 Alpha, Delta, tref, minStartTime=None,
                 maxStartTime=None, window_size=10*86400, window_delta=86400,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
678
                 detectors=None, SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
679
680
681
682
683
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
684
685
686
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
687
688
689
690
691
692
693
694
695
696
        F0s: array
            Frequency range
        F1, F2, Alpha, Delta: float
            Fixed values to compute twoF(F) over
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

697
698
699
700
        self.transientWindowType = None
        self.t0Band = None
        self.tauBand = None

Gregory Ashton's avatar
Gregory Ashton committed
701
702
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
703
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
704
705
706
707
708
        self.nsegs = 1
        self.F1s = [F1]
        self.F2s = [F2]
        self.Alphas = [Alpha]
        self.Deltas = [Delta]
709
        self.input_arrays = False
710
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
711

Gregory Ashton's avatar
Gregory Ashton committed
712
713
714
    def inititate_search_object(self):
        logging.info('Setting up search object')
        self.search = ComputeFstat(
715
            tref=self.tref, sftfilepattern=self.sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
716
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
David Keitel's avatar
David Keitel committed
717
            detectors=self.detectors, transientWindowType=self.transientWindowType,
Gregory Ashton's avatar
Gregory Ashton committed
718
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
Gregory Ashton's avatar
Gregory Ashton committed
719
720
            BSGL=self.BSGL, SSBprec=self.SSBprec,
            injectSources=self.injectSources)
Gregory Ashton's avatar
Gregory Ashton committed
721
        self.search.get_det_stat = (
722
            self.search.get_fullycoherent_twoF)
Gregory Ashton's avatar
Gregory Ashton committed
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745

    def get_input_data_array(self):
        arrays = []
        tstarts = [self.minStartTime]
        while tstarts[-1] + self.window_size < self.maxStartTime:
            tstarts.append(tstarts[-1]+self.window_delta)
        arrays = [tstarts]
        for tup in (self.F0s, self.F1s, self.F2s,
                    self.Alphas, self.Deltas):
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        input_data = np.array(input_data)
        input_data = np.insert(
            input_data, 1, input_data[:, 0] + self.window_size, axis=1)

        self.arrays = arrays
        self.input_data = np.array(input_data)

    def plot_sliding_window(self, F0=None, ax=None, savefig=True,
746
                            colorbar=True, timestamps=False):
Gregory Ashton's avatar
Gregory Ashton committed
747
748
749
750
751
752
753
754
755
756
757
        data = self.data
        if ax is None:
            ax = plt.subplot()
        tstarts = np.unique(data[:, 0])
        tends = np.unique(data[:, 1])
        frequencies = np.unique(data[:, 2])
        twoF = data[:, -1]
        tmids = (tstarts + tends) / 2.0
        dts = (tmids - self.minStartTime) / 86400.
        if F0:
            frequencies = frequencies - F0
758
            ax.set_ylabel('Frequency - $f_0$ [Hz] \n $f_0={:0.2f}$'.format(F0))
Gregory Ashton's avatar
Gregory Ashton committed
759
760
761
762
763
764
765
766
767
        else:
            ax.set_ylabel('Frequency [Hz]')
        twoF = twoF.reshape((len(tmids), len(frequencies)))
        Y, X = np.meshgrid(frequencies, dts)
        pax = ax.pcolormesh(X, Y, twoF)
        if colorbar:
            cb = plt.colorbar(pax, ax=ax)
            cb.set_label('$2\mathcal{F}$')
        ax.set_xlabel(
768
769
            r'Mid-point (days after $t_\mathrm{{start}}$={})'.format(
                self.minStartTime))
Gregory Ashton's avatar
Gregory Ashton committed
770
771
        ax.set_title(
            'Sliding window length = {} days in increments of {} days'
772
773
774
775
776
777
778
            .format(self.window_size/86400, self.window_delta/86400),
            )
        if timestamps:
            axT = ax.twiny()
            axT.set_xlim(tmids[0]*1e-9, tmids[-1]*1e-9)
            axT.set_xlabel('Mid-point timestamp [GPS $10^{9}$ s]')
            ax.set_title(ax.get_title(), y=1.18)
Gregory Ashton's avatar
Gregory Ashton committed
779
780
781
782
783
784
        if savefig:
            plt.tight_layout()
            plt.savefig(
                '{}/{}_sliding_window.png'.format(self.outdir, self.label))
        else:
            return ax
785
786


Gregory Ashton's avatar
Gregory Ashton committed
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
class EarthTest(GridSearch):
    """ """
    tex_labels = {'deltaRadius': '$\Delta R$ [m]',
                  'phaseOffset': 'phase-offset [rad]',
                  'deltaPspin': '$\Delta P_\mathrm{spin}$ [s]'}

    @helper_functions.initializer
    def __init__(self, label, outdir, sftfilepattern, deltaRadius,
                 phaseOffset, deltaPspin, F0, F1, F2, Alpha,
                 Delta, tref=None, minStartTime=None, maxStartTime=None,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, injectSources=None,
                 assumeSqrtSX=None):
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
        F0, F1, F2, Alpha, Delta: float
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """
814
815
816
817
        self.transientWindowType = None
        self.t0Band = None
        self.tauBand = None

818
819
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
Gregory Ashton's avatar
Gregory Ashton committed
820
821
822
823
824
825
        self.nsegs = 1
        self.F0s = [F0]
        self.F1s = [F1]
        self.F2s = [F2]
        self.Alphas = [Alpha]
        self.Deltas = [Delta]
826
        self.duration = maxStartTime - minStartTime
Gregory Ashton's avatar
Gregory Ashton committed
827
828
        self.deltaRadius = np.atleast_1d(deltaRadius)
        self.phaseOffset = np.atleast_1d(phaseOffset)
829
        self.phaseOffset = self.phaseOffset + 1e-12  # Hack to stop cached data being used
Gregory Ashton's avatar
Gregory Ashton committed
830
831
832
833
834
        self.deltaPspin = np.atleast_1d(deltaPspin)
        self.set_out_file()
        self.SSBprec = lalpulsar.SSBPREC_RELATIVISTIC
        self.keys = ['deltaRadius', 'phaseOffset', 'deltaPspin']

835
836
837
838
839
840
841
842
        self.prior_widths = [
            np.max(self.deltaRadius)-np.min(self.deltaRadius),
            np.max(self.phaseOffset)-np.min(self.phaseOffset),
            np.max(self.deltaPspin)-np.min(self.deltaPspin)]

        if hasattr(self, 'search') is False:
            self.inititate_search_object()

Gregory Ashton's avatar
Gregory Ashton committed
843
844
845
846
847
848
849
850
851
    def get_input_data_array(self):
        logging.info("Generating input data array")
        coord_arrays = [self.deltaRadius, self.phaseOffset, self.deltaPspin]
        input_data = []
        for vals in itertools.product(*coord_arrays):
                input_data.append(vals)
        self.input_data = np.array(input_data)
        self.coord_arrays = coord_arrays

852
853
854
855
856
857
858
859
860
861
862
863
    def run_special(self):
        vals = [self.minStartTime, self.maxStartTime, self.F0, self.F1,
                self.F2, self.Alpha, self.Delta]
        self.special_data = {'zero': [0, 0, 0]}
        for key, (dR, dphi, dP) in self.special_data.iteritems():
            rescaleRadius = (1 + dR / lal.REARTH_SI)
            rescalePeriod = (1 + dP / lal.DAYSID_SI)
            lalpulsar.BarycenterModifyEarthRotation(
                rescaleRadius, dphi, rescalePeriod, self.tref)
            FS = self.search.get_det_stat(*vals)
            self.special_data[key] = list([dR, dphi, dP]) + [FS]

Gregory Ashton's avatar
Gregory Ashton committed
864
    def run(self):
865
        self.run_special()
Gregory Ashton's avatar
Gregory Ashton committed
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
        self.get_input_data_array()
        old_data = self.check_old_data_is_okay_to_use()
        if old_data is not False:
            self.data = old_data
            return

        data = []
        vals = [self.minStartTime, self.maxStartTime, self.F0, self.F1,
                self.F2, self.Alpha, self.Delta]
        for (dR, dphi, dP) in tqdm(self.input_data):
            rescaleRadius = (1 + dR / lal.REARTH_SI)
            rescalePeriod = (1 + dP / lal.DAYSID_SI)
            lalpulsar.BarycenterModifyEarthRotation(
                rescaleRadius, dphi, rescalePeriod, self.tref)
            FS = self.search.get_det_stat(*vals)
            data.append(list([dR, dphi, dP]) + [FS])

        data = np.array(data, dtype=np.float)
        logging.info('Saving data to {}'.format(self.out_file))
        np.savetxt(self.out_file, data, delimiter=' ')
        self.data = data

888
889
890
891
    def marginalised_bayes_factor(self, prior_widths=None):
        if prior_widths is None:
            prior_widths = self.prior_widths

892
        ndims = self.data.shape[1] - 1
893
        params = np.array([np.unique(self.data[:, j]) for j in range(ndims)])
894
895
896
897
898
        twoF = self.data[:, -1].reshape(tuple([len(p) for p in params]))
        F = twoF / 2.0
        for i, x in enumerate(params[::-1]):
            if len(x) > 1:
                dx = x[1] - x[0]
899
                F = logsumexp(F, axis=-1)+np.log(dx)-np.log(prior_widths[-1-i])
900
901
            else:
                F = np.squeeze(F, axis=-1)
902
903
904
905
906
907
908
909
910
911
912
        marginalised_F = np.atleast_1d(F)[0]
        F_at_zero = self.special_data['zero'][-1]/2.0

        max_idx = np.argmax(self.data[:, -1])
        max_F = self.data[max_idx, -1]/2.0
        max_F_params = self.data[max_idx, :-1]
        logging.info('F at zero = {:.1f}, marginalised_F = {:.1f},'
                     ' max_F = {:.1f} ({})'.format(
                         F_at_zero, marginalised_F, max_F, max_F_params))
        return F_at_zero - marginalised_F, (F_at_zero - max_F) / F_at_zero

913
914
    def plot_corner(self, prior_widths=None, fig=None, axes=None,
                    projection='log_mean'):
915
916
917
918
919
920
921
922
923
924
925
926
        Bsa, FmaxMismatch = self.marginalised_bayes_factor(prior_widths)

        data = self.data[:, -1].reshape(
            (len(self.deltaRadius), len(self.phaseOffset),
             len(self.deltaPspin)))
        xyz = [self.deltaRadius/lal.REARTH_SI, self.phaseOffset/(np.pi),
               self.deltaPspin/60.]
        labels = [r'$\frac{\Delta R}{R_\mathrm{Earth}}$',
                  r'$\frac{\Delta \phi}{\pi}$',
                  r'$\Delta P_\mathrm{spin}$ [min]',
                  r'$2\mathcal{F}$']

927
928
929
930
931
932
        try:
            from gridcorner import gridcorner
        except ImportError:
            raise ImportError(
                "Python module 'gridcorner' not found, please install from "
                "https://gitlab.aei.uni-hannover.de/GregAshton/gridcorner")
933

934
935
        fig, axes = gridcorner(data, xyz, projection=projection, factor=1.6,
                               labels=labels)
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
        axes[-1][-1].axvline((lal.DAYJUL_SI - lal.DAYSID_SI)/60.0, color='C3')
        plt.suptitle(
            'T={:.1f} days, $f$={:.2f} Hz, $\log\mathcal{{B}}_{{S/A}}$={:.1f},'
            r' $\frac{{\mathcal{{F}}_0-\mathcal{{F}}_\mathrm{{max}}}}'
            r'{{\mathcal{{F}}_0}}={:.1e}$'
            .format(self.duration/86400, self.F0, Bsa, FmaxMismatch), y=0.99,
            size=14)
        fig.savefig('{}/{}_projection_matrix.png'.format(
            self.outdir, self.label))

    def plot(self, key, prior_widths=None):
        Bsa, FmaxMismatch = self.marginalised_bayes_factor(prior_widths)

        rescales_defaults = {'deltaRadius': 1/lal.REARTH_SI,
                             'phaseOffset': 1/np.pi,
                             'deltaPspin': 1}
        labels = {'deltaRadius': r'$\frac{\Delta R}{R_\mathrm{Earth}}$',
                  'phaseOffset': r'$\frac{\Delta \phi}{\pi}$',
                  'deltaPspin': r'$\Delta P_\mathrm{spin}$ [s]'
                  }

        fig, ax = self.plot_1D(key, xrescale=rescales_defaults[key],
                               xlabel=labels[key], savefig=False)
        ax.set_title(
            'T={} days, $f$={} Hz, $\log\mathcal{{B}}_{{S/A}}$={:.1f}'
            .format(self.duration/86400, self.F0, Bsa))
        fig.tight_layout()
        fig.savefig('{}/{}_1D.png'.format(self.outdir, self.label))
964

Gregory Ashton's avatar
Gregory Ashton committed
965

966
967
968
class DMoff_NO_SPIN(GridSearch):
    """ DMoff test using SSBPREC_NO_SPIN """
    @helper_functions.initializer
969
    def __init__(self, par, label, outdir, sftfilepattern, minStartTime=None,
970
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
971
                 detectors=None, injectSources=None, assumeSqrtSX=None):
972
973
974
        """
        Parameters
        ----------
975
976
977
        par: dict, str
            Either a par dictionary (containing 'F0', 'F1', 'Alpha', 'Delta'
            and 'tref') or a path to a .par file to read in the F0, F1 etc
978
979
        label, outdir: str
            A label and directory to read/write data from/to
980
981
982
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
983
984
985
986
987
988
989
990
991
        minStartTime, maxStartTime: int
            GPS seconds of the start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)

992
993
994
995
        if type(par) == dict:
            self.par = par
        elif type(par) == str and os.path.isfile(par):
            self.par = read_par(filename=par)
996
997
998
999
1000
        else:
            raise ValueError('The .par file does not exist')

        self.nsegs = 1
        self.BSGL = False