grid_based_searches.py 36.4 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" Searches using grid-based methods """
2
from __future__ import division, absolute_import, print_function
Gregory Ashton's avatar
Gregory Ashton committed
3
4
5
6
7
8
9
10
11

import os
import logging
import itertools
from collections import OrderedDict

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
12
from scipy.misc import logsumexp
Gregory Ashton's avatar
Gregory Ashton committed
13

14
15
16
import pyfstat.helper_functions as helper_functions
from pyfstat.core import (BaseSearchClass, ComputeFstat,
                          SemiCoherentGlitchSearch, SemiCoherentSearch, tqdm,
17
                          args, read_par)
Gregory Ashton's avatar
Gregory Ashton committed
18
19
import lalpulsar
import lal
Gregory Ashton's avatar
Gregory Ashton committed
20
21
22
23


class GridSearch(BaseSearchClass):
    """ Gridded search using ComputeFstat """
Gregory Ashton's avatar
Gregory Ashton committed
24
25
26
    tex_labels = {'F0': '$f$', 'F1': '$\dot{f}$', 'F2': '$\ddot{f}$',
                  'Alpha': r'$\alpha$', 'Delta': r'$\delta$'}
    tex_labels0 = {'F0': '$-f_0$', 'F1': '$-\dot{f}_0$', 'F2': '$-\ddot{f}_0$',
27
                   'Alpha': r'$-\alpha_0$', 'Delta': r'$-\delta_0$'}
Gregory Ashton's avatar
Gregory Ashton committed
28

Gregory Ashton's avatar
Gregory Ashton committed
29
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
30
31
32
33
    def __init__(self, label, outdir, sftfilepattern, F0s, F1s, F2s, Alphas,
                 Deltas, tref=None, minStartTime=None, maxStartTime=None,
                 nsegs=1, BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, SSBprec=None, injectSources=None,
David Keitel's avatar
David Keitel committed
34
                 input_arrays=False, assumeSqrtSX=None,
35
36
                 transientWindowType=None, t0Band=None, tauBand=None,
                 outputTransientFstatMap=False):
Gregory Ashton's avatar
Gregory Ashton committed
37
38
39
40
41
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
42
43
44
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
45
46
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
47
48
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
Gregory Ashton's avatar
Gregory Ashton committed
49
50
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
51
52
        input_arrays: bool
            if true, use the F0s, F1s, etc as is
David Keitel's avatar
David Keitel committed
53
        transientWindowType: str
Gregory Ashton's avatar
Gregory Ashton committed
54
55
56
57
            If 'rect' or 'exp', compute atoms so that a transient (t0,tau) map
            can later be computed.  ('none' instead of None explicitly calls
            the transient-window function, but with the full range, for
            debugging). Currently only supported for nsegs=1.
David Keitel's avatar
David Keitel committed
58
59
60
61
62
        t0Band, tauBand: int
            if >0, search t0 in (minStartTime,minStartTime+t0Band)
                   and tau in (2*Tsft,2*Tsft+tauBand).
            if =0, only compute CW Fstat with t0=minStartTime,
                   tau=maxStartTime-minStartTime.
63
64
65
        outputTransientFstatMap: bool
            if true, write output files for (t0,tau) Fstat maps
            (one file for each doppler grid point!)
Gregory Ashton's avatar
Gregory Ashton committed
66
67
68
69
70
71

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
72
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
73
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
74
75
76
        self.search_keys = [x+'s' for x in self.keys[2:]]
        for k in self.search_keys:
            setattr(self, k, np.atleast_1d(getattr(self, k)))
Gregory Ashton's avatar
Gregory Ashton committed
77
78
79

    def inititate_search_object(self):
        logging.info('Setting up search object')
80
81
        if self.nsegs == 1:
            self.search = ComputeFstat(
82
                tref=self.tref, sftfilepattern=self.sftfilepattern,
83
                minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
David Keitel's avatar
David Keitel committed
84
85
86
                detectors=self.detectors,
                transientWindowType=self.transientWindowType,
                t0Band=self.t0Band, tauBand=self.tauBand,
87
                minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
88
                BSGL=self.BSGL, SSBprec=self.SSBprec,
89
90
                injectSources=self.injectSources,
                assumeSqrtSX=self.assumeSqrtSX)
91
            self.search.get_det_stat = self.search.get_fullycoherent_twoF
92
93
94
        else:
            self.search = SemiCoherentSearch(
                label=self.label, outdir=self.outdir, tref=self.tref,
95
                nsegs=self.nsegs, sftfilepattern=self.sftfilepattern,
96
97
98
                BSGL=self.BSGL, minStartTime=self.minStartTime,
                maxStartTime=self.maxStartTime, minCoverFreq=self.minCoverFreq,
                maxCoverFreq=self.maxCoverFreq, detectors=self.detectors,
Gregory Ashton's avatar
Gregory Ashton committed
99
                injectSources=self.injectSources)
100
101

            def cut_out_tstart_tend(*vals):
102
                return self.search.get_semicoherent_twoF(*vals[2:])
103
            self.search.get_det_stat = cut_out_tstart_tend
Gregory Ashton's avatar
Gregory Ashton committed
104
105
106
107

    def get_array_from_tuple(self, x):
        if len(x) == 1:
            return np.array(x)
108
        elif len(x) == 3 and self.input_arrays is False:
Gregory Ashton's avatar
Gregory Ashton committed
109
            return np.arange(x[0], x[1], x[2])
Gregory Ashton's avatar
Gregory Ashton committed
110
        else:
Gregory Ashton's avatar
Gregory Ashton committed
111
112
            logging.info('Using tuple as is')
            return np.array(x)
Gregory Ashton's avatar
Gregory Ashton committed
113
114

    def get_input_data_array(self):
Gregory Ashton's avatar
Gregory Ashton committed
115
        logging.info("Generating input data array")
116
        coord_arrays = []
Gregory Ashton's avatar
Gregory Ashton committed
117
118
        for tup in ([self.minStartTime], [self.maxStartTime], self.F0s,
                    self.F1s, self.F2s, self.Alphas, self.Deltas):
119
            coord_arrays.append(self.get_array_from_tuple(tup))
Gregory Ashton's avatar
Gregory Ashton committed
120

121
122
123
124
        input_data = []
        for vals in itertools.product(*coord_arrays):
                input_data.append(vals)
        self.input_data = np.array(input_data)
125
        self.coord_arrays = coord_arrays
Gregory Ashton's avatar
Gregory Ashton committed
126
127
128
129
130

    def check_old_data_is_okay_to_use(self):
        if args.clean:
            return False
        if os.path.isfile(self.out_file) is False:
131
            logging.info('No old data found in "{:s}", continuing with grid search'.format(self.out_file))
Gregory Ashton's avatar
Gregory Ashton committed
132
            return False
133
        if self.sftfilepattern is not None:
134
135
136
137
138
139
            oldest_sft = min([os.path.getmtime(f) for f in
                              self._get_list_of_matching_sfts()])
            if os.path.getmtime(self.out_file) < oldest_sft:
                logging.info('Search output data outdates sft files,'
                             + ' continuing with grid search')
                return False
140

141
        data = np.atleast_2d(np.genfromtxt(self.out_file, delimiter=' '))
142
        if np.all(data[:,0:len(self.coord_arrays)] == self.input_data[:,0:len(self.coord_arrays)]):
143
            logging.info(
144
                'Old data found in "{:s}" with matching input, no search performed'.format(self.out_file))
145
146
147
            return data
        else:
            logging.info(
148
                'Old data found in "{:s}", input differs, continuing with grid search'.format(self.out_file))
149
            return False
150
        return False
Gregory Ashton's avatar
Gregory Ashton committed
151
152
153
154
155
156
157
158

    def run(self, return_data=False):
        self.get_input_data_array()
        old_data = self.check_old_data_is_okay_to_use()
        if old_data is not False:
            self.data = old_data
            return

Gregory Ashton's avatar
Gregory Ashton committed
159
160
        if hasattr(self, 'search') is False:
            self.inititate_search_object()
Gregory Ashton's avatar
Gregory Ashton committed
161
162

        data = []
163
        for vals in tqdm(self.input_data):
164
165
166
            detstat = self.search.get_det_stat(*vals)
            windowRange = getattr(self.search, 'windowRange', None)
            FstatMap = getattr(self.search, 'FstatMap', None)
167
168
169
170
171
172
173
174
175
176
177
178
            thisCand = list(vals) + [detstat]
            if self.transientWindowType:
                if self.outputTransientFstatMap:
                    tCWfile = os.path.splitext(self.out_file)[0]+'_tCW_%.16f_%.16f_%.16f_%.16g_%.16g.dat' % (vals[2],vals[5],vals[6],vals[3],vals[4]) # freq alpha delta f1dot f2dot
                    fo = lal.FileOpen(tCWfile, 'w')
                    lalpulsar.write_transientFstatMap_to_fp ( fo, FstatMap, windowRange, None )
                    del fo # instead of lal.FileClose() which is not SWIG-exported
                Fmn = FstatMap.F_mn.data
                maxidx = np.unravel_index(Fmn.argmax(), Fmn.shape)
                thisCand += [windowRange.t0+maxidx[0]*windowRange.dt0,
                             windowRange.tau+maxidx[1]*windowRange.dtau]
            data.append(thisCand)
Gregory Ashton's avatar
Gregory Ashton committed
179

180
        data = np.array(data, dtype=np.float)
Gregory Ashton's avatar
Gregory Ashton committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
        if return_data:
            return data
        else:
            logging.info('Saving data to {}'.format(self.out_file))
            np.savetxt(self.out_file, data, delimiter=' ')
            self.data = data

    def convert_F0_to_mismatch(self, F0, F0hat, Tseg):
        DeltaF0 = F0[1] - F0[0]
        m_spacing = (np.pi*Tseg*DeltaF0)**2 / 12.
        N = len(F0)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def convert_F1_to_mismatch(self, F1, F1hat, Tseg):
        DeltaF1 = F1[1] - F1[0]
        m_spacing = (np.pi*Tseg**2*DeltaF1)**2 / 720.
        N = len(F1)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def add_mismatch_to_ax(self, ax, x, y, xkey, ykey, xhat, yhat, Tseg):
        axX = ax.twiny()
        axX.zorder = -10
        axY = ax.twinx()
        axY.zorder = -10

        if xkey == 'F0':
            m = self.convert_F0_to_mismatch(x, xhat, Tseg)
            axX.set_xlim(m[0], m[-1])

        if ykey == 'F1':
            m = self.convert_F1_to_mismatch(y, yhat, Tseg)
            axY.set_ylim(m[0], m[-1])

Gregory Ashton's avatar
Gregory Ashton committed
214
215
    def plot_1D(self, xkey, ax=None, x0=None, xrescale=1, savefig=True,
                xlabel=None, ylabel='$\widetilde{2\mathcal{F}}$'):
Gregory Ashton's avatar
Gregory Ashton committed
216
217
        if ax is None:
            fig, ax = plt.subplots()
Gregory Ashton's avatar
Gregory Ashton committed
218
219
        xidx = self.keys.index(xkey)
        x = np.unique(self.data[:, xidx])
220
221
        if x0:
            x = x - x0
Gregory Ashton's avatar
Gregory Ashton committed
222
        x = x * xrescale
Gregory Ashton's avatar
Gregory Ashton committed
223
        z = self.data[:, -1]
Gregory Ashton's avatar
Gregory Ashton committed
224
225
226
227
228
        ax.plot(x, z)
        if x0:
            ax.set_xlabel(self.tex_labels[xkey]+self.tex_labels0[xkey])
        else:
            ax.set_xlabel(self.tex_labels[xkey])
Gregory Ashton's avatar
Gregory Ashton committed
229
230
231
232
233

        if xlabel:
            ax.set_xlabel(xlabel)

        ax.set_ylabel(ylabel)
Gregory Ashton's avatar
Gregory Ashton committed
234
        if savefig:
Gregory Ashton's avatar
Gregory Ashton committed
235
            fig.tight_layout()
Gregory Ashton's avatar
Gregory Ashton committed
236
237
            fig.savefig('{}/{}_1D.png'.format(self.outdir, self.label))
        else:
Gregory Ashton's avatar
Gregory Ashton committed
238
            return fig, ax
Gregory Ashton's avatar
Gregory Ashton committed
239
240
241

    def plot_2D(self, xkey, ykey, ax=None, save=True, vmin=None, vmax=None,
                add_mismatch=None, xN=None, yN=None, flat_keys=[],
Gregory Ashton's avatar
Gregory Ashton committed
242
                rel_flat_idxs=[], flatten_method=np.max, title=None,
Gregory Ashton's avatar
Gregory Ashton committed
243
244
                predicted_twoF=None, cm=None, cbarkwargs={}, x0=None, y0=None,
                colorbar=False):
Gregory Ashton's avatar
Gregory Ashton committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
        """ Plots a 2D grid of 2F values

        Parameters
        ----------
        add_mismatch: tuple (xhat, yhat, Tseg)
            If not None, add a secondary axis with the metric mismatch from the
            point xhat, yhat with duration Tseg
        flatten_method: np.max
            Function to use in flattening the flat_keys
        """
        if ax is None:
            fig, ax = plt.subplots()
        xidx = self.keys.index(xkey)
        yidx = self.keys.index(ykey)
        flat_idxs = [self.keys.index(k) for k in flat_keys]

        x = np.unique(self.data[:, xidx])
262
263
        if x0:
            x = x-x0
Gregory Ashton's avatar
Gregory Ashton committed
264
        y = np.unique(self.data[:, yidx])
265
266
        if y0:
            y = y-y0
Gregory Ashton's avatar
Gregory Ashton committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
        flat_vals = [np.unique(self.data[:, j]) for j in flat_idxs]
        z = self.data[:, -1]

        Y, X = np.meshgrid(y, x)
        shape = [len(x), len(y)] + [len(v) for v in flat_vals]
        Z = z.reshape(shape)

        if len(rel_flat_idxs) > 0:
            Z = flatten_method(Z, axis=tuple(rel_flat_idxs))

        if predicted_twoF:
            Z = (predicted_twoF - Z) / (predicted_twoF + 4)
            if cm is None:
                cm = plt.cm.viridis_r
        else:
            if cm is None:
                cm = plt.cm.viridis

        pax = ax.pcolormesh(X, Y, Z, cmap=cm, vmin=vmin, vmax=vmax)
Gregory Ashton's avatar
Gregory Ashton committed
286
287
288
        if colorbar:
            cb = plt.colorbar(pax, ax=ax, **cbarkwargs)
            cb.set_label('$2\mathcal{F}$')
Gregory Ashton's avatar
Gregory Ashton committed
289
290
291
292
293
294

        if add_mismatch:
            self.add_mismatch_to_ax(ax, x, y, xkey, ykey, *add_mismatch)

        ax.set_xlim(x[0], x[-1])
        ax.set_ylim(y[0], y[-1])
295
        if x0:
Gregory Ashton's avatar
Gregory Ashton committed
296
            ax.set_xlabel(self.tex_labels[xkey]+self.tex_labels0[xkey])
297
        else:
Gregory Ashton's avatar
Gregory Ashton committed
298
            ax.set_xlabel(self.tex_labels[xkey])
299
        if y0:
Gregory Ashton's avatar
Gregory Ashton committed
300
            ax.set_ylabel(self.tex_labels[ykey]+self.tex_labels0[ykey])
301
        else:
Gregory Ashton's avatar
Gregory Ashton committed
302
            ax.set_ylabel(self.tex_labels[ykey])
Gregory Ashton's avatar
Gregory Ashton committed
303

Gregory Ashton's avatar
Gregory Ashton committed
304
305
306
        if title:
            ax.set_title(title)

Gregory Ashton's avatar
Gregory Ashton committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
        if xN:
            ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(xN))
        if yN:
            ax.yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(yN))

        if save:
            fig.tight_layout()
            fig.savefig('{}/{}_2D.png'.format(self.outdir, self.label))
        else:
            return ax

    def get_max_twoF(self):
        twoF = self.data[:, -1]
        idx = np.argmax(twoF)
        v = self.data[idx, :]
        d = OrderedDict(minStartTime=v[0], maxStartTime=v[1], F0=v[2], F1=v[3],
                        F2=v[4], Alpha=v[5], Delta=v[6], twoF=v[7])
        return d

    def print_max_twoF(self):
        d = self.get_max_twoF()
        print('Max twoF values for {}:'.format(self.label))
        for k, v in d.iteritems():
            print('  {}={}'.format(k, v))

332
    def set_out_file(self, extra_label=None):
333
334
335
336
        if self.detectors:
            dets = self.detectors.replace(',', '')
        else:
            dets = 'NA'
337
338
339
340
341
342
343
344
        if extra_label:
            self.out_file = '{}/{}_{}_{}_{}.txt'.format(
                self.outdir, self.label, dets, type(self).__name__,
                extra_label)
        else:
            self.out_file = '{}/{}_{}_{}.txt'.format(
                self.outdir, self.label, dets, type(self).__name__)

Gregory Ashton's avatar
Gregory Ashton committed
345

Gregory Ashton's avatar
Gregory Ashton committed
346
347
348
class SliceGridSearch(GridSearch):
    """ Slice gridded search using ComputeFstat """
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
349
350
351
352
353
    def __init__(self, label, outdir, sftfilepattern, F0s, F1s, F2s, Alphas,
                 Deltas, tref=None, minStartTime=None, maxStartTime=None,
                 nsegs=1, BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, SSBprec=None, injectSources=None,
                 input_arrays=False, assumeSqrtSX=None, Lambda0=None):
Gregory Ashton's avatar
Gregory Ashton committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
        input_arrays: bool
            if true, use the F0s, F1s, etc as is

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.set_out_file()
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
378
379
380
        self.ndim = 0
        self.thetas = [F0s, F1s, Alphas, Deltas]
        self.ndim = 4
Gregory Ashton's avatar
Gregory Ashton committed
381

Gregory Ashton's avatar
Gregory Ashton committed
382
        self.search_keys = ['F0', 'F1', 'Alpha', 'Delta']
Gregory Ashton's avatar
Gregory Ashton committed
383
        self.Lambda0 = np.array(Lambda0)
Gregory Ashton's avatar
Gregory Ashton committed
384
        if len(self.Lambda0) != len(self.search_keys):
Gregory Ashton's avatar
Gregory Ashton committed
385
            raise ValueError(
Gregory Ashton's avatar
Gregory Ashton committed
386
387
                'Lambda0 must be of length {}'.format(len(self.search_keys)))

388
389
    def run(self, factor=2, max_n_ticks=4, whspace=0.07, save=True,
            **kwargs):
Gregory Ashton's avatar
Gregory Ashton committed
390
        lbdim = 0.5 * factor   # size of left/bottom margin
391
        trdim = 0.4 * factor   # size of top/right margin
Gregory Ashton's avatar
Gregory Ashton committed
392
393
394
395
396
397
398
399
400
401
402
403
404
405
        plotdim = factor * self.ndim + factor * (self.ndim - 1.) * whspace
        dim = lbdim + plotdim + trdim

        fig, axes = plt.subplots(self.ndim, self.ndim, figsize=(dim, dim))

        # Format the figure.
        lb = lbdim / dim
        tr = (lbdim + plotdim) / dim
        fig.subplots_adjust(left=lb, bottom=lb, right=tr, top=tr,
                            wspace=whspace, hspace=whspace)

        search = GridSearch(
            self.label, self.outdir, self.sftfilepattern,
            F0s=self.Lambda0[0], F1s=self.Lambda0[1], F2s=self.F2s[0],
406
407
            Alphas=self.Lambda0[2], Deltas=self.Lambda0[3], tref=self.tref,
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime)
Gregory Ashton's avatar
Gregory Ashton committed
408
409
410

        for i, ikey in enumerate(self.search_keys):
            setattr(search, ikey+'s', self.thetas[i])
411
412
            search.label = '{}_{}'.format(self.label, ikey)
            search.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
413
            search.run()
414
415
416
            axes[i, i] = search.plot_1D(ikey, ax=axes[i, i], savefig=False,
                                        x0=self.Lambda0[i]
                                        )
Gregory Ashton's avatar
Gregory Ashton committed
417
            setattr(search, ikey+'s', [self.Lambda0[i]])
418
419
420
            axes[i, i].yaxis.tick_right()
            axes[i, i].yaxis.set_label_position("right")
            axes[i, i].set_xlabel('')
Gregory Ashton's avatar
Gregory Ashton committed
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

            for j, jkey in enumerate(self.search_keys):
                ax = axes[i, j]

                if j > i:
                    ax.set_frame_on(False)
                    ax.set_xticks([])
                    ax.set_yticks([])
                    continue

                ax.get_shared_x_axes().join(axes[self.ndim-1, j], ax)
                if i < self.ndim - 1:
                    ax.set_xticklabels([])
                if j < i:
                    ax.get_shared_y_axes().join(axes[i, i-1], ax)
                    if j > 0:
                        ax.set_yticklabels([])
                if j == i:
                    continue

                ax.xaxis.set_major_locator(
                    matplotlib.ticker.MaxNLocator(max_n_ticks, prune="upper"))
                ax.yaxis.set_major_locator(
                    matplotlib.ticker.MaxNLocator(max_n_ticks, prune="upper"))

                setattr(search, ikey+'s', self.thetas[i])
                setattr(search, jkey+'s', self.thetas[j])
448
449
                search.label = '{}_{}'.format(self.label, ikey+jkey)
                search.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
450
                search.run()
451
                ax = search.plot_2D(jkey, ikey, ax=ax, save=False,
452
453
                                    y0=self.Lambda0[i], x0=self.Lambda0[j],
                                    **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
454
455
456
                setattr(search, ikey+'s', [self.Lambda0[i]])
                setattr(search, jkey+'s', [self.Lambda0[j]])

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
                ax.grid(lw=0.2, ls='--', zorder=10)
                ax.set_xlabel('')
                ax.set_ylabel('')

        for i, ikey in enumerate(self.search_keys):
            axes[-1, i].set_xlabel(
                self.tex_labels[ikey]+self.tex_labels0[ikey])
            if i > 0:
                axes[i, 0].set_ylabel(
                    self.tex_labels[ikey]+self.tex_labels0[ikey])
            axes[i, i].set_ylabel("$2\mathcal{F}$")

        if save:
            fig.savefig(
                '{}/{}_slice_projection.png'.format(self.outdir, self.label))
        else:
            return fig, axes
Gregory Ashton's avatar
Gregory Ashton committed
474
475


Gregory Ashton's avatar
Gregory Ashton committed
476
class GridUniformPriorSearch():
477
    @helper_functions.initializer
478
    def __init__(self, theta_prior, NF0, NF1, label, outdir, sftfilepattern,
479
                 tref, minStartTime, maxStartTime, minCoverFreq=None,
480
                 maxCoverFreq=None, BSGL=False, detectors=None, nsegs=1,
481
                 SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
482
483
484
485
        dF0 = (theta_prior['F0']['upper'] - theta_prior['F0']['lower'])/NF0
        dF1 = (theta_prior['F1']['upper'] - theta_prior['F1']['lower'])/NF1
        F0s = [theta_prior['F0']['lower'], theta_prior['F0']['upper'], dF0]
        F1s = [theta_prior['F1']['lower'], theta_prior['F1']['upper'], dF1]
486
        self.search = GridSearch(
487
            label, outdir, sftfilepattern, F0s=F0s, F1s=F1s, tref=tref,
Gregory Ashton's avatar
Gregory Ashton committed
488
489
            Alphas=[theta_prior['Alpha']], Deltas=[theta_prior['Delta']],
            minStartTime=minStartTime, maxStartTime=maxStartTime, BSGL=BSGL,
490
            detectors=detectors, minCoverFreq=minCoverFreq,
491
492
            injectSources=injectSources, maxCoverFreq=maxCoverFreq,
            nsegs=nsegs, SSBprec=SSBprec)
493

494
    def run(self):
495
        self.search.run()
496
497

    def get_2D_plot(self, **kwargs):
498
        return self.search.plot_2D('F0', 'F1', **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
499
500


Gregory Ashton's avatar
Gregory Ashton committed
501
502
503
class GridGlitchSearch(GridSearch):
    """ Grid search using the SemiCoherentGlitchSearch """
    @helper_functions.initializer
504
    def __init__(self, label, outdir, sftfilepattern=None, F0s=[0],
Gregory Ashton's avatar
Gregory Ashton committed
505
506
507
                 F1s=[0], F2s=[0], delta_F0s=[0], delta_F1s=[0], tglitchs=None,
                 Alphas=[0], Deltas=[0], tref=None, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
508
                 write_after=1000):
Gregory Ashton's avatar
Gregory Ashton committed
509
510
511
512
513
514

        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
515
516
517
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
518
519
520
521
522
523
524
525
526
527
528
529
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0].
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see pyfstat.ComputeFStat.
        """
        if tglitchs is None:
            self.tglitchs = [self.maxStartTime]

        self.search = SemiCoherentGlitchSearch(
530
            label=label, outdir=outdir, sftfilepattern=self.sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
531
532
533
534
535
536
            tref=tref, minStartTime=minStartTime, maxStartTime=maxStartTime,
            minCoverFreq=minCoverFreq, maxCoverFreq=maxCoverFreq,
            BSGL=self.BSGL)

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
537
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
        self.keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta', 'delta_F0',
                     'delta_F1', 'tglitch']

    def get_input_data_array(self):
        arrays = []
        for tup in (self.F0s, self.F1s, self.F2s, self.Alphas, self.Deltas,
                    self.delta_F0s, self.delta_F1s, self.tglitchs):
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        self.arrays = arrays
        self.input_data = np.array(input_data)


Gregory Ashton's avatar
Gregory Ashton committed
555
556
557
class FrequencySlidingWindow(GridSearch):
    """ A sliding-window search over the Frequency """
    @helper_functions.initializer
558
    def __init__(self, label, outdir, sftfilepattern, F0s, F1, F2,
Gregory Ashton's avatar
Gregory Ashton committed
559
560
561
                 Alpha, Delta, tref, minStartTime=None,
                 maxStartTime=None, window_size=10*86400, window_delta=86400,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
562
                 detectors=None, SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
563
564
565
566
567
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
568
569
570
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
571
572
573
574
575
576
577
578
579
580
581
582
        F0s: array
            Frequency range
        F1, F2, Alpha, Delta: float
            Fixed values to compute twoF(F) over
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
583
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
584
585
586
587
588
        self.nsegs = 1
        self.F1s = [F1]
        self.F2s = [F2]
        self.Alphas = [Alpha]
        self.Deltas = [Delta]
589
        self.input_arrays = False
Gregory Ashton's avatar
Gregory Ashton committed
590

Gregory Ashton's avatar
Gregory Ashton committed
591
592
593
    def inititate_search_object(self):
        logging.info('Setting up search object')
        self.search = ComputeFstat(
594
            tref=self.tref, sftfilepattern=self.sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
595
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
David Keitel's avatar
David Keitel committed
596
            detectors=self.detectors, transientWindowType=self.transientWindowType,
Gregory Ashton's avatar
Gregory Ashton committed
597
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
Gregory Ashton's avatar
Gregory Ashton committed
598
599
            BSGL=self.BSGL, SSBprec=self.SSBprec,
            injectSources=self.injectSources)
Gregory Ashton's avatar
Gregory Ashton committed
600
        self.search.get_det_stat = (
601
            self.search.get_fullycoherent_twoF)
Gregory Ashton's avatar
Gregory Ashton committed
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

    def get_input_data_array(self):
        arrays = []
        tstarts = [self.minStartTime]
        while tstarts[-1] + self.window_size < self.maxStartTime:
            tstarts.append(tstarts[-1]+self.window_delta)
        arrays = [tstarts]
        for tup in (self.F0s, self.F1s, self.F2s,
                    self.Alphas, self.Deltas):
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        input_data = np.array(input_data)
        input_data = np.insert(
            input_data, 1, input_data[:, 0] + self.window_size, axis=1)

        self.arrays = arrays
        self.input_data = np.array(input_data)

    def plot_sliding_window(self, F0=None, ax=None, savefig=True,
625
                            colorbar=True, timestamps=False):
Gregory Ashton's avatar
Gregory Ashton committed
626
627
628
629
630
631
632
633
634
635
636
        data = self.data
        if ax is None:
            ax = plt.subplot()
        tstarts = np.unique(data[:, 0])
        tends = np.unique(data[:, 1])
        frequencies = np.unique(data[:, 2])
        twoF = data[:, -1]
        tmids = (tstarts + tends) / 2.0
        dts = (tmids - self.minStartTime) / 86400.
        if F0:
            frequencies = frequencies - F0
637
            ax.set_ylabel('Frequency - $f_0$ [Hz] \n $f_0={:0.2f}$'.format(F0))
Gregory Ashton's avatar
Gregory Ashton committed
638
639
640
641
642
643
644
645
646
        else:
            ax.set_ylabel('Frequency [Hz]')
        twoF = twoF.reshape((len(tmids), len(frequencies)))
        Y, X = np.meshgrid(frequencies, dts)
        pax = ax.pcolormesh(X, Y, twoF)
        if colorbar:
            cb = plt.colorbar(pax, ax=ax)
            cb.set_label('$2\mathcal{F}$')
        ax.set_xlabel(
647
648
            r'Mid-point (days after $t_\mathrm{{start}}$={})'.format(
                self.minStartTime))
Gregory Ashton's avatar
Gregory Ashton committed
649
650
        ax.set_title(
            'Sliding window length = {} days in increments of {} days'
651
652
653
654
655
656
657
            .format(self.window_size/86400, self.window_delta/86400),
            )
        if timestamps:
            axT = ax.twiny()
            axT.set_xlim(tmids[0]*1e-9, tmids[-1]*1e-9)
            axT.set_xlabel('Mid-point timestamp [GPS $10^{9}$ s]')
            ax.set_title(ax.get_title(), y=1.18)
Gregory Ashton's avatar
Gregory Ashton committed
658
659
660
661
662
663
        if savefig:
            plt.tight_layout()
            plt.savefig(
                '{}/{}_sliding_window.png'.format(self.outdir, self.label))
        else:
            return ax
664
665


Gregory Ashton's avatar
Gregory Ashton committed
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
class EarthTest(GridSearch):
    """ """
    tex_labels = {'deltaRadius': '$\Delta R$ [m]',
                  'phaseOffset': 'phase-offset [rad]',
                  'deltaPspin': '$\Delta P_\mathrm{spin}$ [s]'}

    @helper_functions.initializer
    def __init__(self, label, outdir, sftfilepattern, deltaRadius,
                 phaseOffset, deltaPspin, F0, F1, F2, Alpha,
                 Delta, tref=None, minStartTime=None, maxStartTime=None,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detectors=None, injectSources=None,
                 assumeSqrtSX=None):
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
        F0, F1, F2, Alpha, Delta: float
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """
693
694
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
Gregory Ashton's avatar
Gregory Ashton committed
695
696
697
698
699
700
        self.nsegs = 1
        self.F0s = [F0]
        self.F1s = [F1]
        self.F2s = [F2]
        self.Alphas = [Alpha]
        self.Deltas = [Delta]
701
        self.duration = maxStartTime - minStartTime
Gregory Ashton's avatar
Gregory Ashton committed
702
703
        self.deltaRadius = np.atleast_1d(deltaRadius)
        self.phaseOffset = np.atleast_1d(phaseOffset)
704
        self.phaseOffset = self.phaseOffset + 1e-12  # Hack to stop cached data being used
Gregory Ashton's avatar
Gregory Ashton committed
705
706
707
708
709
        self.deltaPspin = np.atleast_1d(deltaPspin)
        self.set_out_file()
        self.SSBprec = lalpulsar.SSBPREC_RELATIVISTIC
        self.keys = ['deltaRadius', 'phaseOffset', 'deltaPspin']

710
711
712
713
714
715
716
717
        self.prior_widths = [
            np.max(self.deltaRadius)-np.min(self.deltaRadius),
            np.max(self.phaseOffset)-np.min(self.phaseOffset),
            np.max(self.deltaPspin)-np.min(self.deltaPspin)]

        if hasattr(self, 'search') is False:
            self.inititate_search_object()

Gregory Ashton's avatar
Gregory Ashton committed
718
719
720
721
722
723
724
725
726
    def get_input_data_array(self):
        logging.info("Generating input data array")
        coord_arrays = [self.deltaRadius, self.phaseOffset, self.deltaPspin]
        input_data = []
        for vals in itertools.product(*coord_arrays):
                input_data.append(vals)
        self.input_data = np.array(input_data)
        self.coord_arrays = coord_arrays

727
728
729
730
731
732
733
734
735
736
737
738
    def run_special(self):
        vals = [self.minStartTime, self.maxStartTime, self.F0, self.F1,
                self.F2, self.Alpha, self.Delta]
        self.special_data = {'zero': [0, 0, 0]}
        for key, (dR, dphi, dP) in self.special_data.iteritems():
            rescaleRadius = (1 + dR / lal.REARTH_SI)
            rescalePeriod = (1 + dP / lal.DAYSID_SI)
            lalpulsar.BarycenterModifyEarthRotation(
                rescaleRadius, dphi, rescalePeriod, self.tref)
            FS = self.search.get_det_stat(*vals)
            self.special_data[key] = list([dR, dphi, dP]) + [FS]

Gregory Ashton's avatar
Gregory Ashton committed
739
    def run(self):
740
        self.run_special()
Gregory Ashton's avatar
Gregory Ashton committed
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
        self.get_input_data_array()
        old_data = self.check_old_data_is_okay_to_use()
        if old_data is not False:
            self.data = old_data
            return

        data = []
        vals = [self.minStartTime, self.maxStartTime, self.F0, self.F1,
                self.F2, self.Alpha, self.Delta]
        for (dR, dphi, dP) in tqdm(self.input_data):
            rescaleRadius = (1 + dR / lal.REARTH_SI)
            rescalePeriod = (1 + dP / lal.DAYSID_SI)
            lalpulsar.BarycenterModifyEarthRotation(
                rescaleRadius, dphi, rescalePeriod, self.tref)
            FS = self.search.get_det_stat(*vals)
            data.append(list([dR, dphi, dP]) + [FS])

        data = np.array(data, dtype=np.float)
        logging.info('Saving data to {}'.format(self.out_file))
        np.savetxt(self.out_file, data, delimiter=' ')
        self.data = data

763
764
765
766
    def marginalised_bayes_factor(self, prior_widths=None):
        if prior_widths is None:
            prior_widths = self.prior_widths

767
        ndims = self.data.shape[1] - 1
768
        params = np.array([np.unique(self.data[:, j]) for j in range(ndims)])
769
770
771
772
773
        twoF = self.data[:, -1].reshape(tuple([len(p) for p in params]))
        F = twoF / 2.0
        for i, x in enumerate(params[::-1]):
            if len(x) > 1:
                dx = x[1] - x[0]
774
                F = logsumexp(F, axis=-1)+np.log(dx)-np.log(prior_widths[-1-i])
775
776
            else:
                F = np.squeeze(F, axis=-1)
777
778
779
780
781
782
783
784
785
786
787
        marginalised_F = np.atleast_1d(F)[0]
        F_at_zero = self.special_data['zero'][-1]/2.0

        max_idx = np.argmax(self.data[:, -1])
        max_F = self.data[max_idx, -1]/2.0
        max_F_params = self.data[max_idx, :-1]
        logging.info('F at zero = {:.1f}, marginalised_F = {:.1f},'
                     ' max_F = {:.1f} ({})'.format(
                         F_at_zero, marginalised_F, max_F, max_F_params))
        return F_at_zero - marginalised_F, (F_at_zero - max_F) / F_at_zero

788
789
    def plot_corner(self, prior_widths=None, fig=None, axes=None,
                    projection='log_mean'):
790
791
792
793
794
795
796
797
798
799
800
801
        Bsa, FmaxMismatch = self.marginalised_bayes_factor(prior_widths)

        data = self.data[:, -1].reshape(
            (len(self.deltaRadius), len(self.phaseOffset),
             len(self.deltaPspin)))
        xyz = [self.deltaRadius/lal.REARTH_SI, self.phaseOffset/(np.pi),
               self.deltaPspin/60.]
        labels = [r'$\frac{\Delta R}{R_\mathrm{Earth}}$',
                  r'$\frac{\Delta \phi}{\pi}$',
                  r'$\Delta P_\mathrm{spin}$ [min]',
                  r'$2\mathcal{F}$']

802
803
804
805
806
807
808
809
810
        try:
            from gridcorner import gridcorner
        except ImportError:
            raise ImportError(
                "Python module 'gridcorner' not found, please install from "
                "https://gitlab.aei.uni-hannover.de/GregAshton/gridcorner")

        fig, axes = gridcorner(data, xyz, projection=projection, factor=1.6,
                               labels=labels)
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
        axes[-1][-1].axvline((lal.DAYJUL_SI - lal.DAYSID_SI)/60.0, color='C3')
        plt.suptitle(
            'T={:.1f} days, $f$={:.2f} Hz, $\log\mathcal{{B}}_{{S/A}}$={:.1f},'
            r' $\frac{{\mathcal{{F}}_0-\mathcal{{F}}_\mathrm{{max}}}}'
            r'{{\mathcal{{F}}_0}}={:.1e}$'
            .format(self.duration/86400, self.F0, Bsa, FmaxMismatch), y=0.99,
            size=14)
        fig.savefig('{}/{}_projection_matrix.png'.format(
            self.outdir, self.label))

    def plot(self, key, prior_widths=None):
        Bsa, FmaxMismatch = self.marginalised_bayes_factor(prior_widths)

        rescales_defaults = {'deltaRadius': 1/lal.REARTH_SI,
                             'phaseOffset': 1/np.pi,
                             'deltaPspin': 1}
        labels = {'deltaRadius': r'$\frac{\Delta R}{R_\mathrm{Earth}}$',
                  'phaseOffset': r'$\frac{\Delta \phi}{\pi}$',
                  'deltaPspin': r'$\Delta P_\mathrm{spin}$ [s]'
                  }

        fig, ax = self.plot_1D(key, xrescale=rescales_defaults[key],
                               xlabel=labels[key], savefig=False)
        ax.set_title(
            'T={} days, $f$={} Hz, $\log\mathcal{{B}}_{{S/A}}$={:.1f}'
            .format(self.duration/86400, self.F0, Bsa))
        fig.tight_layout()
        fig.savefig('{}/{}_1D.png'.format(self.outdir, self.label))
839

Gregory Ashton's avatar
Gregory Ashton committed
840

841
842
843
class DMoff_NO_SPIN(GridSearch):
    """ DMoff test using SSBPREC_NO_SPIN """
    @helper_functions.initializer
844
    def __init__(self, par, label, outdir, sftfilepattern, minStartTime=None,
845
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
846
                 detectors=None, injectSources=None, assumeSqrtSX=None):
847
848
849
        """
        Parameters
        ----------
850
851
852
        par: dict, str
            Either a par dictionary (containing 'F0', 'F1', 'Alpha', 'Delta'
            and 'tref') or a path to a .par file to read in the F0, F1 etc
853
854
        label, outdir: str
            A label and directory to read/write data from/to
855
856
857
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
858
859
860
861
862
863
864
865
866
        minStartTime, maxStartTime: int
            GPS seconds of the start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)

867
868
869
870
        if type(par) == dict:
            self.par = par
        elif type(par) == str and os.path.isfile(par):
            self.par = read_par(filename=par)
871
872
873
874
875
876
877
878
879
880
881
882
883
        else:
            raise ValueError('The .par file does not exist')

        self.nsegs = 1
        self.BSGL = False

        self.tref = self.par['tref']
        self.F1s = [self.par.get('F1', 0)]
        self.F2s = [self.par.get('F2', 0)]
        self.Alphas = [self.par['Alpha']]
        self.Deltas = [self.par['Delta']]
        self.Re = 6.371e6
        self.c = 2.998e8
884
        a0 = self.Re/self.c  # *np.cos(self.par['Delta'])
885
        self.m0 = np.max([4, int(np.ceil(2*np.pi*self.par['F0']*a0))])
886
887
        logging.info(
            'Setting up DMoff_NO_SPIN search with m0 = {}'.format(self.m0))
888
889
890
891
892
893
894
895
896

    def get_results(self):
        """ Compute the three summed detection statistics

        Returns
        -------
            m0, twoF_SUM, twoFstar_SUM_SIDEREAL, twoFstar_SUM_TERRESTRIAL

        """
Gregory Ashton's avatar
Gregory Ashton committed
897
898
899
        self.SSBprec = lalpulsar.SSBPREC_RELATIVISTIC
        self.set_out_file('SSBPREC_RELATIVISTIC')
        self.F0s = [self.par['F0']+j/lal.DAYSID_SI for j in range(-4, 5)]
900
901
902
        self.run()
        twoF_SUM = np.sum(self.data[:, -1])

Gregory Ashton's avatar
Gregory Ashton committed
903
904
905
        self.SSBprec = lalpulsar.SSBPREC_NO_SPIN
        self.set_out_file('SSBPREC_NO_SPIN')
        self.F0s = [self.par['F0']+j/lal.DAYSID_SI
906
907
908
909
                    for j in range(-self.m0, self.m0+1)]
        self.run()
        twoFstar_SUM = np.sum(self.data[:, -1])

Gregory Ashton's avatar
Gregory Ashton committed
910
911
        self.set_out_file('SSBPREC_NO_SPIN_TERRESTRIAL')
        self.F0s = [self.par['F0']+j/lal.DAYJUL_SI
912
913
914
915
916
                    for j in range(-self.m0, self.m0+1)]
        self.run()
        twoFstar_SUM_terrestrial = np.sum(self.data[:, -1])

        return self.m0, twoF_SUM, twoFstar_SUM, twoFstar_SUM_terrestrial