pyfstat.py 67.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
""" Classes for various types of searches using ComputeFstatistic """
import os
import sys
import itertools
import logging
import argparse
import copy
import glob
import inspect
from functools import wraps
11
import subprocess
12
from collections import OrderedDict
13
14
15
16
17
18
19
20

import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import emcee
import corner
import dill as pickle
21
import lal
22
23
import lalpulsar

24
plt.rcParams['text.usetex'] = True
25
plt.rcParams['axes.formatter.useoffset'] = False
26

27
28
29
30
31
32
33
config_file = os.path.expanduser('~')+'/.pyfstat.conf'
if os.path.isfile(config_file):
    d = {}
    with open(config_file, 'r') as f:
        for line in f:
            k, v = line.split('=')
            k = k.replace(' ', '')
34
            v = v.replace(' ', '').replace("'", "").replace('"', '').replace('\n', '')
35
36
37
38
39
40
            d[k] = v
    earth_ephem = d['earth_ephem']
    sun_ephem = d['sun_ephem']
else:
    logging.warning('No ~/.pyfstat.conf file found please provide the paths '
                    'when initialising searches')
41
42
43
    earth_ephem = None
    sun_ephem = None

44
45
46
47
48
parser = argparse.ArgumentParser()
parser.add_argument("-q", "--quite", help="Decrease output verbosity",
                    action="store_true")
parser.add_argument("-c", "--clean", help="Don't use cached data",
                    action="store_true")
49
parser.add_argument("-u", "--use-old-data", action="store_true")
50
51
52
53
54
55
56
57
58
59
60
61
62
parser.add_argument('unittest_args', nargs='*')
args, unknown = parser.parse_known_args()
sys.argv[1:] = args.unittest_args

if args.quite:
    log_level = logging.WARNING
else:
    log_level = logging.DEBUG

logging.basicConfig(level=log_level,
                    format='%(asctime)s %(levelname)-8s: %(message)s',
                    datefmt='%H:%M')

63
64

def initializer(func):
65
    """ Automatically assigns the parameters to self """
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    names, varargs, keywords, defaults = inspect.getargspec(func)

    @wraps(func)
    def wrapper(self, *args, **kargs):
        for name, arg in list(zip(names[1:], args)) + list(kargs.items()):
            setattr(self, name, arg)

        for name, default in zip(reversed(names), reversed(defaults)):
            if not hasattr(self, name):
                setattr(self, name, default)

        func(self, *args, **kargs)

    return wrapper


def read_par(label, outdir):
83
    """ Read in a .par file, returns a dictionary of the values """
84
85
86
87
88
89
90
91
92
93
    filename = '{}/{}.par'.format(outdir, label)
    d = {}
    with open(filename, 'r') as f:
        for line in f:
            key, val = line.rstrip('\n').split(' = ')
            d[key] = np.float64(val)
    return d


class BaseSearchClass(object):
94
    """ The base search class, provides ephemeris and general utilities """
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

    def shift_matrix(self, n, dT):
        """ Generate the shift matrix """
        m = np.zeros((n, n))
        factorial = np.math.factorial
        for i in range(n):
            for j in range(n):
                if i == j:
                    m[i, j] = 1.0
                elif i > j:
                    m[i, j] = 0.0
                else:
                    if i == 0:
                        m[i, j] = 2*np.pi*float(dT)**(j-i) / factorial(j-i)
                    else:
                        m[i, j] = float(dT)**(j-i) / factorial(j-i)

        return m

    def shift_coefficients(self, theta, dT):
        """ Shift a set of coefficients by dT

        Parameters
        ----------
        theta: array-like, shape (n,)
            vector of the expansion coefficients to transform starting from the
124
            lowest degree e.g [phi, F0, F1,...].
125
        dT: float
126
            difference between the two reference times as tref_new - tref_old.
127
128
129
130

        Returns
        -------
        theta_new: array-like shape (n,)
131
            vector of the coefficients as evaluate as the new reference time.
132
133
134
135
136
        """
        n = len(theta)
        m = self.shift_matrix(n, dT)
        return np.dot(m, theta)

137
    def calculate_thetas(self, theta, delta_thetas, tbounds, theta0_idx=0):
138
139
140
        """ Calculates the set of coefficients for the post-glitch signal """
        thetas = [theta]
        for i, dt in enumerate(delta_thetas):
141
142
143
144
145
146
147
148
149
150
151
152
153
            if i < theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[0], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch - dt
                thetas.insert(0, self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))

            elif i >= theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[i], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch + dt
                thetas.append(self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))
154
155
156
        return thetas


Gregory Ashton's avatar
Gregory Ashton committed
157
158
159
160
161
162
163
164
class ComputeFstat(object):
    """ Base class providing interface to lalpulsar.ComputeFstat """

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

    @initializer
    def __init__(self, tref, sftlabel=None, sftdir=None,
165
                 minStartTime=None, maxStartTime=None,
Gregory Ashton's avatar
Gregory Ashton committed
166
                 minCoverFreq=None, maxCoverFreq=None,
167
168
                 detector=None, earth_ephem=None, sun_ephem=None,
                 binary=False, transient=True):
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        """
        Parameters
        ----------
        tref: int
            GPS seconds of the reference time.
        sftlabel, sftdir: str
            A label and directory in which to find the relevant sft file
        minCoverFreq, maxCoverFreq: float
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput.
            If None defaults defined in BaseSearchClass will be used.
        binary: bool
            If true, search of binary parameters.
        transient: bool
            If true, allow for the Fstat to be computed over a transient range.

        """
Gregory Ashton's avatar
Gregory Ashton committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        self.init_computefstatistic_single_point()

    def init_computefstatistic_single_point(self):
        """ Initilisation step of run_computefstatistic for a single point """

        logging.info('Initialising SFTCatalog')
        constraints = lalpulsar.SFTConstraints()
        if self.detector:
            constraints.detector = self.detector
208
209
210
211
212
        if self.minStartTime:
            constraints.minStartTime = lal.LIGOTimeGPS(self.minStartTime)
        if self.maxStartTime:
            constraints.maxStartTime = lal.LIGOTimeGPS(self.maxStartTime)

Gregory Ashton's avatar
Gregory Ashton committed
213
214
215
        self.sft_filepath = self.sftdir+'/*_'+self.sftlabel+"*sft"
        SFTCatalog = lalpulsar.SFTdataFind(self.sft_filepath, constraints)
        names = list(set([d.header.name for d in SFTCatalog.data]))
216
217
218
        logging.info(
            'Loaded data from detectors {} matching pattern {}'.format(
                names, self.sft_filepath))
Gregory Ashton's avatar
Gregory Ashton committed
219
220
221
222
223
224

        logging.info('Initialising ephems')
        ephems = lalpulsar.InitBarycenter(self.earth_ephem, self.sun_ephem)

        logging.info('Initialising FstatInput')
        dFreq = 0
225
226
227
228
229
        if self.transient:
            self.whatToCompute = lalpulsar.FSTATQ_ATOMS_PER_DET
        else:
            self.whatToCompute = lalpulsar.FSTATQ_2F

Gregory Ashton's avatar
Gregory Ashton committed
230
231
232
233
234
235
236
237
        FstatOptionalArgs = lalpulsar.FstatOptionalArgsDefaults

        if self.minCoverFreq is None or self.maxCoverFreq is None:
            fA = SFTCatalog.data[0].header.f0
            numBins = SFTCatalog.data[0].numBins
            fB = fA + (numBins-1)*SFTCatalog.data[0].header.deltaF
            self.minCoverFreq = fA + 0.5
            self.maxCoverFreq = fB - 0.5
238
239
240
            logging.info('Min/max cover freqs not provided, using '
                         '{} and {}, est. from SFTs'.format(
                             self.minCoverFreq, self.maxCoverFreq))
Gregory Ashton's avatar
Gregory Ashton committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

        self.FstatInput = lalpulsar.CreateFstatInput(SFTCatalog,
                                                     self.minCoverFreq,
                                                     self.maxCoverFreq,
                                                     dFreq,
                                                     ephems,
                                                     FstatOptionalArgs
                                                     )

        logging.info('Initialising PulsarDoplerParams')
        PulsarDopplerParams = lalpulsar.PulsarDopplerParams()
        PulsarDopplerParams.refTime = self.tref
        PulsarDopplerParams.Alpha = 1
        PulsarDopplerParams.Delta = 1
        PulsarDopplerParams.fkdot = np.array([0, 0, 0, 0, 0, 0, 0])
        self.PulsarDopplerParams = PulsarDopplerParams

        logging.info('Initialising FstatResults')
        self.FstatResults = lalpulsar.FstatResults()

261
262
263
264
265
266
267
        if self.transient:
            self.windowRange = lalpulsar.transientWindowRange_t()
            self.windowRange.type = lalpulsar.TRANSIENT_RECTANGULAR
            self.windowRange.t0Band = 0
            self.windowRange.dt0 = 1
            self.windowRange.tauBand = 0
            self.windowRange.dtau = 1
268

Gregory Ashton's avatar
Gregory Ashton committed
269
    def run_computefstatistic_single_point(self, tstart, tend, F0, F1,
270
271
272
                                           F2, Alpha, Delta, asini=None,
                                           period=None, ecc=None, tp=None,
                                           argp=None):
273
        """ Returns the twoF fully-coherently at a single point """
Gregory Ashton's avatar
Gregory Ashton committed
274
275
276
277

        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
278
279
280
281
282
283
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp
Gregory Ashton's avatar
Gregory Ashton committed
284
285
286
287

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
288
                               1,
Gregory Ashton's avatar
Gregory Ashton committed
289
290
291
                               self.whatToCompute
                               )

292
293
294
        if self.transient is False:
            return self.FstatResults.twoF[0]

295
296
        self.windowRange.t0 = int(tstart)  # TYPE UINT4
        self.windowRange.tau = int(tend - tstart)  # TYPE UINT4
Gregory Ashton's avatar
Gregory Ashton committed
297
        FS = lalpulsar.ComputeTransientFstatMap(
298
            self.FstatResults.multiFatoms[0], self.windowRange, False)
Gregory Ashton's avatar
Gregory Ashton committed
299
300
301
302
        return 2*FS.F_mn.data[0][0]


class SemiCoherentGlitchSearch(BaseSearchClass, ComputeFstat):
303
304
305
306
307
308
309
310
311
    """ A semi-coherent glitch search

    This implements a basic `semi-coherent glitch F-stat in which the data
    is divided into two segments either side of the proposed glitch and the
    fully-coherent F-stat in each segment is averaged to give the semi-coherent
    F-stat
    """

    @initializer
Gregory Ashton's avatar
Gregory Ashton committed
312
    def __init__(self, label, outdir, tref, tstart, tend, nglitch=0,
313
                 sftlabel=None, sftdir=None, theta0_idx=0, minCoverFreq=None,
314
315
                 maxCoverFreq=None, minStartTime=None, maxStartTime=None,
                 detector=None, earth_ephem=None, sun_ephem=None):
316
317
318
319
        """
        Parameters
        ----------
        label, outdir: str
320
321
322
323
324
325
            A label and directory to read/write data from/to.
        tref, tstart, tend: int
            GPS seconds of the reference time, and start and end of the data.
        nglitch: int
            The (fixed) number of glitches; this can zero, but occasionally
            this causes issue (in which case just use ComputeFstat).
326
327
        sftlabel, sftdir: str
            A label and directory in which to find the relevant sft file. If
328
            None use label and outdir.
329
330
331
332
        theta0_idx, int
            Index (zero-based) of which segment the theta refers to - uyseful
            if providing a tight prior on theta to allow the signal to jump
            too theta (and not just from)
333
        minCoverFreq, maxCoverFreq: float
334
335
336
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
337
338
        detector: str
            Two character reference to the data to use, specify None for no
339
            contraint.
340
341
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
342
343
            respectively at evenly spaced times, as passed to CreateFstatInput.
            If None defaults defined in BaseSearchClass will be used.
344
345
346
347
348
349
350
351
352
353
354
        """

        if self.sftlabel is None:
            self.sftlabel = self.label
        if self.sftdir is None:
            self.sftdir = self.outdir
        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
        if self.earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if self.sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default
355
356
        self.transient = True
        self.binary = False
357
358
359
        self.init_computefstatistic_single_point()

    def compute_nglitch_fstat(self, F0, F1, F2, Alpha, Delta, *args):
360
        """ Returns the semi-coherent glitch summed twoF """
361
362
363

        args = list(args)
        tboundaries = [self.tstart] + args[-self.nglitch:] + [self.tend]
364
365
366
367
368
369
370
371
        delta_F0s = args[-3*self.nglitch:-2*self.nglitch]
        delta_F1s = args[-2*self.nglitch:-self.nglitch]
        delta_F2 = np.zeros(len(delta_F0s))
        delta_phi = np.zeros(len(delta_F0s))
        theta = [0, F0, F1, F2]
        delta_thetas = np.atleast_2d(
                np.array([delta_phi, delta_F0s, delta_F1s, delta_F2]).T)

372
373
        thetas = self.calculate_thetas(theta, delta_thetas, tboundaries,
                                       theta0_idx=self.theta0_idx)
374
375

        twoFSum = 0
376
        for i, theta_i_at_tref in enumerate(thetas):
377
378
379
            ts, te = tboundaries[i], tboundaries[i+1]

            twoFVal = self.run_computefstatistic_single_point(
380
381
                ts, te, theta_i_at_tref[1], theta_i_at_tref[2],
                theta_i_at_tref[3], Alpha, Delta)
382
383
            twoFSum += twoFVal

384
385
386
387
        if np.isfinite(twoFSum):
            return twoFSum
        else:
            return 0
388
389
390

    def compute_glitch_fstat_single(self, F0, F1, F2, Alpha, Delta, delta_F0,
                                    delta_F1, tglitch):
391
392
393
394
        """ Returns the semi-coherent glitch summed twoF for nglitch=1

        Note: used for testing
        """
395
396
397
398
399
400
401
402
403
404
405

        theta = [F0, F1, F2]
        delta_theta = [delta_F0, delta_F1, 0]
        tref = self.tref

        theta_at_glitch = self.shift_coefficients(theta, tglitch - tref)
        theta_post_glitch_at_glitch = theta_at_glitch + delta_theta
        theta_post_glitch = self.shift_coefficients(
            theta_post_glitch_at_glitch, tref - tglitch)

        twoFsegA = self.run_computefstatistic_single_point(
Gregory Ashton's avatar
Gregory Ashton committed
406
            self.tstart, tglitch, theta[0], theta[1], theta[2], Alpha,
407
408
409
410
411
412
            Delta)

        if tglitch == self.tend:
            return twoFsegA

        twoFsegB = self.run_computefstatistic_single_point(
Gregory Ashton's avatar
Gregory Ashton committed
413
            tglitch, self.tend, theta_post_glitch[0],
414
415
416
417
418
419
            theta_post_glitch[1], theta_post_glitch[2], Alpha,
            Delta)

        return twoFsegA + twoFsegB


Gregory Ashton's avatar
Gregory Ashton committed
420
421
class MCMCSearch(BaseSearchClass):
    """ MCMC search using ComputeFstat"""
422
    @initializer
423
424
    def __init__(self, label, outdir, sftlabel, sftdir, theta_prior, tref,
                 tstart, tend, nsteps=[100, 100, 100], nwalkers=100, ntemps=1,
425
426
                 log10temperature_min=-5, theta_initial=None, scatter_val=1e-4,
                 binary=False, minCoverFreq=None, maxCoverFreq=None,
Gregory Ashton's avatar
Gregory Ashton committed
427
                 detector=None, earth_ephem=None, sun_ephem=None):
428
429
430
431
432
433
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
        sftlabel, sftdir: str
            A label and directory in which to find the relevant sft file
434
        theta_prior: dict
435
436
437
438
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
439
440
441
442
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
443
444
445
446
447
448
449
        tref, tstart, tend: int
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
450
451
452
453
454
455
456
457
458
459
460
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
        binary: Bool
            If true, search over binary parameters
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
461
462
463
464
465
466
467
468
469
470
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

471
472
473
        self.minStartTime = tstart
        self.maxStartTime = tend

Gregory Ashton's avatar
Gregory Ashton committed
474
475
476
        logging.info(
            'Set-up MCMC search for model {} on data {}'.format(
                self.label, self.sftlabel))
477
478
479
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
480
481
        self.theta_prior['tstart'] = self.tstart
        self.theta_prior['tend'] = self.tend
482
483
        self.unpack_input_theta()
        self.ndim = len(self.theta_keys)
484
        self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
485
        self.sft_filepath = self.sftdir+'/*_'+self.sftlabel+"*sft"
486

487
488
489
490
491
492
493
494
495
496
497
498
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

        self.old_data_is_okay_to_use = self.check_old_data_is_okay_to_use()

    def inititate_search_object(self):
        logging.info('Setting up search object')
Gregory Ashton's avatar
Gregory Ashton committed
499
500
501
        self.search = ComputeFstat(
            tref=self.tref, sftlabel=self.sftlabel,
            sftdir=self.sftdir, minCoverFreq=self.minCoverFreq,
502
            maxCoverFreq=self.maxCoverFreq, earth_ephem=self.earth_ephem,
503
504
505
            sun_ephem=self.sun_ephem, detector=self.detector,
            transient=False,
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime)
506
507

    def logp(self, theta_vals, theta_prior, theta_keys, search):
Gregory Ashton's avatar
Gregory Ashton committed
508
        H = [self.generic_lnprior(**theta_prior[key])(p) for p, key in
509
510
511
512
513
514
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
Gregory Ashton's avatar
Gregory Ashton committed
515
        FS = search.run_computefstatistic_single_point(*self.fixed_theta)
516
517
518
        return FS

    def unpack_input_theta(self):
Gregory Ashton's avatar
Gregory Ashton committed
519
520
        full_theta_keys = ['tstart', 'tend', 'F0', 'F1', 'F2', 'Alpha',
                           'Delta']
521
522
523
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
524
525
        full_theta_keys_copy = copy.copy(full_theta_keys)

Gregory Ashton's avatar
Gregory Ashton committed
526
527
        full_theta_symbols = ['_', '_', '$f$', '$\dot{f}$', '$\ddot{f}$',
                              r'$\alpha$', r'$\delta$']
528
529
530
531
        if self.binary:
            full_theta_symbols += [
                'asini', 'period', 'period', 'ecc', 'tp', 'argp']

532
533
        self.theta_keys = []
        fixed_theta_dict = {}
534
        for key, val in self.theta_prior.iteritems():
535
536
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
537
                self.theta_keys.append(key)
538
539
540
541
542
543
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
544
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

    def check_initial_points(self, p0):
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

                p0 = self.generate_new_p0_to_fix_initial_points(
                    p0, nt, initial_priors)

    def generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

    def run(self):

        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
            d = self.get_saved_data()
            self.sampler = d['sampler']
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
            return

        self.inititate_search_object()

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
            loglargs=(self.search,), betas=self.betas)

Gregory Ashton's avatar
Gregory Ashton committed
617
618
        p0 = self.generate_initial_p0()
        p0 = self.apply_corrections_to_p0(p0)
619
620
621
622
623
624
625
        self.check_initial_points(p0)

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
                j, ninit_steps, n))
            sampler.run_mcmc(p0, n)
626
627
            logging.info("Mean acceptance fraction: {0:.3f}"
                         .format(np.mean(sampler.acceptance_fraction)))
Gregory Ashton's avatar
Gregory Ashton committed
628
            fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols)
629
630
631
            fig.savefig('{}/{}_init_{}_walkers.png'.format(
                self.outdir, self.label, j))

632
            p0 = self.get_new_p0(sampler)
Gregory Ashton's avatar
Gregory Ashton committed
633
            p0 = self.apply_corrections_to_p0(p0)
634
635
636
637
638
639
640
641
            self.check_initial_points(p0)
            sampler.reset()

        nburn = self.nsteps[-2]
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
        sampler.run_mcmc(p0, nburn+nprod)
642
643
        logging.info("Mean acceptance fraction: {0:.3f}"
                     .format(np.mean(sampler.acceptance_fraction)))
644

Gregory Ashton's avatar
Gregory Ashton committed
645
        fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols)
646
647
648
649
650
651
652
653
654
655
656
        fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label))

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
        self.sampler = sampler
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
        self.save_data(sampler, samples, lnprobs, lnlikes)

657
    def plot_corner(self, figsize=(7, 7),  tglitch_ratio=False,
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
                    add_prior=False, nstds=None, label_offset=0.4,
                    dpi=300, rc_context={}, **kwargs):

        with plt.rc_context(rc_context):
            fig, axes = plt.subplots(self.ndim, self.ndim,
                                     figsize=figsize)

            samples_plt = copy.copy(self.samples)
            theta_symbols_plt = copy.copy(self.theta_symbols)
            theta_symbols_plt = [s.replace('_{glitch}', r'_\textrm{glitch}') for s
                                 in theta_symbols_plt]

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
                        samples_plt[:, j] = (s - self.tstart)/(
                                             self.tend - self.tstart)
                        theta_symbols_plt[j] = r'$R_{\textrm{glitch}}$'

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
            else:
                _range = None

            fig_triangle = corner.corner(samples_plt,
                                         labels=theta_symbols_plt,
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
                self.add_prior_to_corner(axes, samples_plt)

            fig_triangle.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
718
719
720
721
722
723

    def add_prior_to_corner(self, axes, samples):
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            xlim = ax.get_xlim()
            s = samples[:, i]
Gregory Ashton's avatar
Gregory Ashton committed
724
            prior = self.generic_lnprior(**self.theta_prior[key])
725
726
727
728
729
730
            x = np.linspace(s.min(), s.max(), 100)
            ax2 = ax.twinx()
            ax2.get_yaxis().set_visible(False)
            ax2.plot(x, [prior(xi) for xi in x], '-r')
            ax.set_xlim(xlim)

Gregory Ashton's avatar
Gregory Ashton committed
731
    def generic_lnprior(self, **kwargs):
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
        """ Return a lambda function of the pdf

        Parameters
        ----------
        kwargs: dict
            A dictionary containing 'type' of pdf and shape parameters

        """

        def logunif(x, a, b):
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

        def halfnorm(x, loc, scale):
            if x < 0:
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
            return lambda x: logunif(x, kwargs['lower'], kwargs['upper'])
        elif kwargs['type'] == 'halfnorm':
            return lambda x: halfnorm(x, kwargs['loc'], kwargs['scale'])
774
775
        elif kwargs['type'] == 'neghalfnorm':
            return lambda x: halfnorm(-x, kwargs['loc'], kwargs['scale'])
776
777
778
779
780
781
782
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

Gregory Ashton's avatar
Gregory Ashton committed
783
    def generate_rv(self, **kwargs):
784
785
786
787
788
789
790
791
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
792
793
794
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
795
796
797
798
799
800
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

Gregory Ashton's avatar
Gregory Ashton committed
801
802
    def plot_walkers(self, sampler, symbols=None, alpha=0.4, color="k", temp=0,
                     start=None, stop=None, draw_vline=None):
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
        """ Plot all the chains from a sampler """

        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
            chain = sampler.chain[:, :, :]
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
            chain = sampler.chain[temp, :, :, :]

        with plt.style.context(('classic')):
            fig, axes = plt.subplots(ndim, 1, sharex=True, figsize=(8, 4*ndim))

            if ndim > 1:
                for i in range(ndim):
823
                    axes[i].ticklabel_format(useOffset=False, axis='y')
824
825
                    cs = chain[:, start:stop, i].T
                    axes[i].plot(cs, color="k", alpha=alpha)
826
827
828
829
                    if symbols:
                        axes[i].set_ylabel(symbols[i])
                    if draw_vline is not None:
                        axes[i].axvline(draw_vline, lw=2, ls="--")
830
831
832
833
834

            else:
                cs = chain[:, start:stop, 0].T
                axes.plot(cs, color='k', alpha=alpha)
                axes.ticklabel_format(useOffset=False, axis='y')
835
836
837

        return fig, axes

Gregory Ashton's avatar
Gregory Ashton committed
838
839
840
841
842
    def apply_corrections_to_p0(self, p0):
        """ Apply any correction to the initial p0 values """
        return p0

    def generate_scattered_p0(self, p):
843
        """ Generate a set of p0s scattered about p """
Gregory Ashton's avatar
Gregory Ashton committed
844
        p0 = [[p + self.scatter_val * p * np.random.randn(self.ndim)
845
846
847
848
               for i in xrange(self.nwalkers)]
              for j in xrange(self.ntemps)]
        return p0

Gregory Ashton's avatar
Gregory Ashton committed
849
    def generate_initial_p0(self):
850
851
852
        """ Generate a set of init vals for the walkers """

        if type(self.theta_initial) == dict:
853
854
855
            logging.info('Generate initial values from initial dictionary')
            if self.nglitch > 1:
                raise ValueError('Initial dict not implemented for nglitch>1')
Gregory Ashton's avatar
Gregory Ashton committed
856
            p0 = [[[self.generate_rv(**self.theta_initial[key])
857
858
859
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
860
861
862
863
864
865
        elif type(self.theta_initial) == list:
            logging.info('Generate initial values from list of theta_initial')
            p0 = [[[self.generate_rv(**val)
                    for val in self.theta_initial]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
866
        elif self.theta_initial is None:
867
            logging.info('Generate initial values from prior dictionary')
Gregory Ashton's avatar
Gregory Ashton committed
868
            p0 = [[[self.generate_rv(**self.theta_prior[key])
869
870
871
872
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
        elif len(self.theta_initial) == self.ndim:
Gregory Ashton's avatar
Gregory Ashton committed
873
            p0 = self.generate_scattered_p0(self.theta_initial)
874
875
876
877
878
        else:
            raise ValueError('theta_initial not understood')

        return p0

879
    def get_new_p0(self, sampler):
880
881
882
883
884
885
886
887
888
889
890
891
        """ Returns new initial positions for walkers are burn0 stage

        This returns new positions for all walkers by scattering points about
        the maximum posterior with scale `scatter_val`.

        """
        if sampler.chain[:, :, -1, :].shape[0] == 1:
            ntemps_temp = 1
        else:
            ntemps_temp = self.ntemps
        pF = sampler.chain[:, :, -1, :].reshape(
            ntemps_temp, self.nwalkers, self.ndim)[0, :, :]
892
893
        lnl = sampler.lnlikelihood[:, :, -1].reshape(
            self.ntemps, self.nwalkers)[0, :]
894
895
        lnp = sampler.lnprobability[:, :, -1].reshape(
            self.ntemps, self.nwalkers)[0, :]
896
897

        # General warnings about the state of lnp
898
        if any(np.isnan(lnp)):
899
900
901
902
903
904
905
906
907
908
909
            logging.warning(
                "Of {} lnprobs {} are nan".format(
                    len(lnp), np.sum(np.isnan(lnp))))
        if any(np.isposinf(lnp)):
            logging.warning(
                "Of {} lnprobs {} are +np.inf".format(
                    len(lnp), np.sum(np.isposinf(lnp))))
        if any(np.isneginf(lnp)):
            logging.warning(
                "Of {} lnprobs {} are -np.inf".format(
                    len(lnp), np.sum(np.isneginf(lnp))))
910

911
912
913
        lnp_finite = copy.copy(lnp)
        lnp_finite[np.isinf(lnp)] = np.nan
        p = pF[np.nanargmax(lnp_finite)]
914
915
        logging.info('Generating new p0 from max lnp which had twoF={}'
                     .format(lnl[np.nanargmax(lnp_finite)]))
916
        p0 = self.generate_scattered_p0(p)
917
918
919
920
921
922

        return p0

    def get_save_data_dictionary(self):
        d = dict(nsteps=self.nsteps, nwalkers=self.nwalkers,
                 ntemps=self.ntemps, theta_keys=self.theta_keys,
Gregory Ashton's avatar
Gregory Ashton committed
923
                 theta_prior=self.theta_prior, scatter_val=self.scatter_val,
924
925
                 log10temperature_min=self.log10temperature_min,
                 theta0_idx=self.theta0_idx)
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
        return d

    def save_data(self, sampler, samples, lnprobs, lnlikes):
        d = self.get_save_data_dictionary()
        d['sampler'] = sampler
        d['samples'] = samples
        d['lnprobs'] = lnprobs
        d['lnlikes'] = lnlikes

        if os.path.isfile(self.pickle_path):
            logging.info('Saving backup of {} as {}.old'.format(
                self.pickle_path, self.pickle_path))
            os.rename(self.pickle_path, self.pickle_path+".old")
        with open(self.pickle_path, "wb") as File:
            pickle.dump(d, File)

    def get_list_of_matching_sfts(self):
        matches = glob.glob(self.sft_filepath)
        if len(matches) > 0:
            return matches
        else:
            raise IOError('No sfts found matching {}'.format(
                self.sft_filepath))

    def get_saved_data(self):
        with open(self.pickle_path, "r") as File:
            d = pickle.load(File)
        return d

    def check_old_data_is_okay_to_use(self):
956
957
958
959
        if args.use_old_data:
            logging.info("Forcing use of old data")
            return True

960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
        if os.path.isfile(self.pickle_path) is False:
            logging.info('No pickled data found')
            return False

        oldest_sft = min([os.path.getmtime(f) for f in
                          self.get_list_of_matching_sfts()])
        if os.path.getmtime(self.pickle_path) < oldest_sft:
            logging.info('Pickled data outdates sft files')
            return False

        old_d = self.get_saved_data().copy()
        new_d = self.get_save_data_dictionary().copy()

        old_d.pop('samples')
        old_d.pop('sampler')
        old_d.pop('lnprobs')
        old_d.pop('lnlikes')

        mod_keys = []
        for key in new_d.keys():
            if key in old_d:
                if new_d[key] != old_d[key]:
                    mod_keys.append((key, old_d[key], new_d[key]))
            else:
984
                raise ValueError('Keys {} not in old dictionary'.format(key))
985
986
987
988
989
990
991
992
993

        if len(mod_keys) == 0:
            return True
        else:
            logging.warning("Saved data differs from requested")
            logging.info("Differences found in following keys:")
            for key in mod_keys:
                if len(key) == 3:
                    if np.isscalar(key[1]) or key[0] == 'nsteps':
994
                        logging.info("    {} : {} -> {}".format(*key))
995
                    else:
996
                        logging.info("    " + key[0])
997
998
999
1000
                else:
                    logging.info(key)
            return False

For faster browsing, not all history is shown. View entire blame