grid_based_searches.py 20.4 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" Searches using grid-based methods """
2
from __future__ import division, absolute_import, print_function
Gregory Ashton's avatar
Gregory Ashton committed
3
4
5
6
7
8
9
10
11
12

import os
import logging
import itertools
from collections import OrderedDict

import numpy as np
import matplotlib
import matplotlib.pyplot as plt

13
14
15
import pyfstat.helper_functions as helper_functions
from pyfstat.core import (BaseSearchClass, ComputeFstat,
                          SemiCoherentGlitchSearch, SemiCoherentSearch, tqdm,
16
                          args, read_par)
Gregory Ashton's avatar
Gregory Ashton committed
17
18
import lalpulsar
import lal
Gregory Ashton's avatar
Gregory Ashton committed
19
20
21
22
23


class GridSearch(BaseSearchClass):
    """ Gridded search using ComputeFstat """
    @helper_functions.initializer
24
    def __init__(self, label, outdir, sftfilepattern, F0s=[0], F1s=[0], F2s=[0],
Gregory Ashton's avatar
Gregory Ashton committed
25
26
                 Alphas=[0], Deltas=[0], tref=None, minStartTime=None,
                 maxStartTime=None, nsegs=1, BSGL=False, minCoverFreq=None,
27
28
                 maxCoverFreq=None, detectors=None, SSBprec=None,
                 injectSources=None, input_arrays=False, assumeSqrtSX=None):
Gregory Ashton's avatar
Gregory Ashton committed
29
30
31
32
33
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
34
35
36
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
37
38
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
39
40
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
Gregory Ashton's avatar
Gregory Ashton committed
41
42
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
43
44
        input_arrays: bool
            if true, use the F0s, F1s, etc as is
Gregory Ashton's avatar
Gregory Ashton committed
45
46
47
48
49
50

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
51
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
52
53
54
55
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']

    def inititate_search_object(self):
        logging.info('Setting up search object')
56
57
        if self.nsegs == 1:
            self.search = ComputeFstat(
58
                tref=self.tref, sftfilepattern=self.sftfilepattern,
59
60
61
                minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
                detectors=self.detectors, transient=False,
                minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
62
                BSGL=self.BSGL, SSBprec=self.SSBprec,
63
64
                injectSources=self.injectSources,
                assumeSqrtSX=self.assumeSqrtSX)
65
            self.search.get_det_stat = self.search.get_fullycoherent_twoF
66
67
68
        else:
            self.search = SemiCoherentSearch(
                label=self.label, outdir=self.outdir, tref=self.tref,
69
                nsegs=self.nsegs, sftfilepattern=self.sftfilepattern,
70
71
72
                BSGL=self.BSGL, minStartTime=self.minStartTime,
                maxStartTime=self.maxStartTime, minCoverFreq=self.minCoverFreq,
                maxCoverFreq=self.maxCoverFreq, detectors=self.detectors,
Gregory Ashton's avatar
Gregory Ashton committed
73
                injectSources=self.injectSources)
74
75

            def cut_out_tstart_tend(*vals):
76
                return self.search.get_semicoherent_twoF(*vals[2:])
77
            self.search.get_det_stat = cut_out_tstart_tend
Gregory Ashton's avatar
Gregory Ashton committed
78
79
80
81

    def get_array_from_tuple(self, x):
        if len(x) == 1:
            return np.array(x)
82
        elif len(x) == 3 and self.input_arrays is False:
Gregory Ashton's avatar
Gregory Ashton committed
83
            return np.arange(x[0], x[1], x[2])
Gregory Ashton's avatar
Gregory Ashton committed
84
        else:
Gregory Ashton's avatar
Gregory Ashton committed
85
86
            logging.info('Using tuple as is')
            return np.array(x)
Gregory Ashton's avatar
Gregory Ashton committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

    def get_input_data_array(self):
        arrays = []
        for tup in ([self.minStartTime], [self.maxStartTime], self.F0s, self.F1s, self.F2s,
                    self.Alphas, self.Deltas):
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        self.arrays = arrays
        self.input_data = np.array(input_data)

    def check_old_data_is_okay_to_use(self):
        if args.clean:
            return False
        if os.path.isfile(self.out_file) is False:
            logging.info('No old data found, continuing with grid search')
            return False
107
        if self.sftfilepattern is not None:
108
109
110
111
112
113
            oldest_sft = min([os.path.getmtime(f) for f in
                              self._get_list_of_matching_sfts()])
            if os.path.getmtime(self.out_file) < oldest_sft:
                logging.info('Search output data outdates sft files,'
                             + ' continuing with grid search')
                return False
Gregory Ashton's avatar
Gregory Ashton committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        data = np.atleast_2d(np.genfromtxt(self.out_file, delimiter=' '))
        if np.all(data[:, 0:-1] == self.input_data):
            logging.info(
                'Old data found with matching input, no search performed')
            return data
        else:
            logging.info(
                'Old data found, input differs, continuing with grid search')
            return False

    def run(self, return_data=False):
        self.get_input_data_array()
        old_data = self.check_old_data_is_okay_to_use()
        if old_data is not False:
            self.data = old_data
            return

        self.inititate_search_object()

        logging.info('Total number of grid points is {}'.format(
            len(self.input_data)))

        data = []
        for vals in tqdm(self.input_data):
138
            FS = self.search.get_det_stat(*vals)
Gregory Ashton's avatar
Gregory Ashton committed
139
140
            data.append(list(vals) + [FS])

141
        data = np.array(data, dtype=np.float)
Gregory Ashton's avatar
Gregory Ashton committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
        if return_data:
            return data
        else:
            logging.info('Saving data to {}'.format(self.out_file))
            np.savetxt(self.out_file, data, delimiter=' ')
            self.data = data

    def convert_F0_to_mismatch(self, F0, F0hat, Tseg):
        DeltaF0 = F0[1] - F0[0]
        m_spacing = (np.pi*Tseg*DeltaF0)**2 / 12.
        N = len(F0)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def convert_F1_to_mismatch(self, F1, F1hat, Tseg):
        DeltaF1 = F1[1] - F1[0]
        m_spacing = (np.pi*Tseg**2*DeltaF1)**2 / 720.
        N = len(F1)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def add_mismatch_to_ax(self, ax, x, y, xkey, ykey, xhat, yhat, Tseg):
        axX = ax.twiny()
        axX.zorder = -10
        axY = ax.twinx()
        axY.zorder = -10

        if xkey == 'F0':
            m = self.convert_F0_to_mismatch(x, xhat, Tseg)
            axX.set_xlim(m[0], m[-1])

        if ykey == 'F1':
            m = self.convert_F1_to_mismatch(y, yhat, Tseg)
            axY.set_ylim(m[0], m[-1])

    def plot_1D(self, xkey):
        fig, ax = plt.subplots()
        xidx = self.keys.index(xkey)
        x = np.unique(self.data[:, xidx])
        z = self.data[:, -1]
        plt.plot(x, z)
        fig.savefig('{}/{}_1D.png'.format(self.outdir, self.label))

    def plot_2D(self, xkey, ykey, ax=None, save=True, vmin=None, vmax=None,
                add_mismatch=None, xN=None, yN=None, flat_keys=[],
Gregory Ashton's avatar
Gregory Ashton committed
185
                rel_flat_idxs=[], flatten_method=np.max, title=None,
Gregory Ashton's avatar
Gregory Ashton committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
                predicted_twoF=None, cm=None, cbarkwargs={}):
        """ Plots a 2D grid of 2F values

        Parameters
        ----------
        add_mismatch: tuple (xhat, yhat, Tseg)
            If not None, add a secondary axis with the metric mismatch from the
            point xhat, yhat with duration Tseg
        flatten_method: np.max
            Function to use in flattening the flat_keys
        """
        if ax is None:
            fig, ax = plt.subplots()
        xidx = self.keys.index(xkey)
        yidx = self.keys.index(ykey)
        flat_idxs = [self.keys.index(k) for k in flat_keys]

        x = np.unique(self.data[:, xidx])
        y = np.unique(self.data[:, yidx])
        flat_vals = [np.unique(self.data[:, j]) for j in flat_idxs]
        z = self.data[:, -1]

        Y, X = np.meshgrid(y, x)
        shape = [len(x), len(y)] + [len(v) for v in flat_vals]
        Z = z.reshape(shape)

        if len(rel_flat_idxs) > 0:
            Z = flatten_method(Z, axis=tuple(rel_flat_idxs))

        if predicted_twoF:
            Z = (predicted_twoF - Z) / (predicted_twoF + 4)
            if cm is None:
                cm = plt.cm.viridis_r
        else:
            if cm is None:
                cm = plt.cm.viridis

        pax = ax.pcolormesh(X, Y, Z, cmap=cm, vmin=vmin, vmax=vmax)
        cb = plt.colorbar(pax, ax=ax, **cbarkwargs)
        cb.set_label('$2\mathcal{F}$')

        if add_mismatch:
            self.add_mismatch_to_ax(ax, x, y, xkey, ykey, *add_mismatch)

        ax.set_xlim(x[0], x[-1])
        ax.set_ylim(y[0], y[-1])
        labels = {'F0': '$f$', 'F1': '$\dot{f}$'}
        ax.set_xlabel(labels[xkey])
        ax.set_ylabel(labels[ykey])

Gregory Ashton's avatar
Gregory Ashton committed
236
237
238
        if title:
            ax.set_title(title)

Gregory Ashton's avatar
Gregory Ashton committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        if xN:
            ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(xN))
        if yN:
            ax.yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(yN))

        if save:
            fig.tight_layout()
            fig.savefig('{}/{}_2D.png'.format(self.outdir, self.label))
        else:
            return ax

    def get_max_twoF(self):
        twoF = self.data[:, -1]
        idx = np.argmax(twoF)
        v = self.data[idx, :]
        d = OrderedDict(minStartTime=v[0], maxStartTime=v[1], F0=v[2], F1=v[3],
                        F2=v[4], Alpha=v[5], Delta=v[6], twoF=v[7])
        return d

    def print_max_twoF(self):
        d = self.get_max_twoF()
        print('Max twoF values for {}:'.format(self.label))
        for k, v in d.iteritems():
            print('  {}={}'.format(k, v))

264
    def set_out_file(self, extra_label=None):
265
266
267
268
        if self.detectors:
            dets = self.detectors.replace(',', '')
        else:
            dets = 'NA'
269
270
271
272
273
274
275
276
        if extra_label:
            self.out_file = '{}/{}_{}_{}_{}.txt'.format(
                self.outdir, self.label, dets, type(self).__name__,
                extra_label)
        else:
            self.out_file = '{}/{}_{}_{}.txt'.format(
                self.outdir, self.label, dets, type(self).__name__)

Gregory Ashton's avatar
Gregory Ashton committed
277

Gregory Ashton's avatar
Gregory Ashton committed
278
class GridUniformPriorSearch():
279
    @helper_functions.initializer
280
    def __init__(self, theta_prior, NF0, NF1, label, outdir, sftfilepattern,
281
                 tref, minStartTime, maxStartTime, minCoverFreq=None,
282
                 maxCoverFreq=None, BSGL=False, detectors=None, nsegs=1,
283
                 SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
284
285
286
287
        dF0 = (theta_prior['F0']['upper'] - theta_prior['F0']['lower'])/NF0
        dF1 = (theta_prior['F1']['upper'] - theta_prior['F1']['lower'])/NF1
        F0s = [theta_prior['F0']['lower'], theta_prior['F0']['upper'], dF0]
        F1s = [theta_prior['F1']['lower'], theta_prior['F1']['upper'], dF1]
288
        self.search = GridSearch(
289
            label, outdir, sftfilepattern, F0s=F0s, F1s=F1s, tref=tref,
Gregory Ashton's avatar
Gregory Ashton committed
290
291
            Alphas=[theta_prior['Alpha']], Deltas=[theta_prior['Delta']],
            minStartTime=minStartTime, maxStartTime=maxStartTime, BSGL=BSGL,
292
            detectors=detectors, minCoverFreq=minCoverFreq,
293
294
            injectSources=injectSources, maxCoverFreq=maxCoverFreq,
            nsegs=nsegs, SSBprec=SSBprec)
295

296
    def run(self):
297
        self.search.run()
298
299

    def get_2D_plot(self, **kwargs):
300
        return self.search.plot_2D('F0', 'F1', **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
301
302


Gregory Ashton's avatar
Gregory Ashton committed
303
304
305
class GridGlitchSearch(GridSearch):
    """ Grid search using the SemiCoherentGlitchSearch """
    @helper_functions.initializer
306
    def __init__(self, label, outdir, sftfilepattern=None, F0s=[0],
Gregory Ashton's avatar
Gregory Ashton committed
307
308
309
                 F1s=[0], F2s=[0], delta_F0s=[0], delta_F1s=[0], tglitchs=None,
                 Alphas=[0], Deltas=[0], tref=None, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
310
                 write_after=1000):
Gregory Ashton's avatar
Gregory Ashton committed
311
312
313
314
315
316

        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
317
318
319
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
320
321
322
323
324
325
326
327
328
329
330
331
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0].
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see pyfstat.ComputeFStat.
        """
        if tglitchs is None:
            self.tglitchs = [self.maxStartTime]

        self.search = SemiCoherentGlitchSearch(
332
            label=label, outdir=outdir, sftfilepattern=self.sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
333
334
335
336
337
338
            tref=tref, minStartTime=minStartTime, maxStartTime=maxStartTime,
            minCoverFreq=minCoverFreq, maxCoverFreq=maxCoverFreq,
            BSGL=self.BSGL)

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
339
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
        self.keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta', 'delta_F0',
                     'delta_F1', 'tglitch']

    def get_input_data_array(self):
        arrays = []
        for tup in (self.F0s, self.F1s, self.F2s, self.Alphas, self.Deltas,
                    self.delta_F0s, self.delta_F1s, self.tglitchs):
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        self.arrays = arrays
        self.input_data = np.array(input_data)


Gregory Ashton's avatar
Gregory Ashton committed
357
358
359
class FrequencySlidingWindow(GridSearch):
    """ A sliding-window search over the Frequency """
    @helper_functions.initializer
360
    def __init__(self, label, outdir, sftfilepattern, F0s, F1, F2,
Gregory Ashton's avatar
Gregory Ashton committed
361
362
363
                 Alpha, Delta, tref, minStartTime=None,
                 maxStartTime=None, window_size=10*86400, window_delta=86400,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
364
                 detectors=None, SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
365
366
367
368
369
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
370
371
372
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
373
374
375
376
377
378
379
380
381
382
383
384
        F0s: array
            Frequency range
        F1, F2, Alpha, Delta: float
            Fixed values to compute twoF(F) over
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
385
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
386
387
388
389
390
        self.nsegs = 1
        self.F1s = [F1]
        self.F2s = [F2]
        self.Alphas = [Alpha]
        self.Deltas = [Delta]
Gregory Ashton's avatar
Gregory Ashton committed
391

Gregory Ashton's avatar
Gregory Ashton committed
392
393
394
    def inititate_search_object(self):
        logging.info('Setting up search object')
        self.search = ComputeFstat(
395
            tref=self.tref, sftfilepattern=self.sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
396
397
398
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            detectors=self.detectors, transient=True,
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
Gregory Ashton's avatar
Gregory Ashton committed
399
400
            BSGL=self.BSGL, SSBprec=self.SSBprec,
            injectSources=self.injectSources)
Gregory Ashton's avatar
Gregory Ashton committed
401
        self.search.get_det_stat = (
402
            self.search.get_fullycoherent_twoF)
Gregory Ashton's avatar
Gregory Ashton committed
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

    def get_input_data_array(self):
        arrays = []
        tstarts = [self.minStartTime]
        while tstarts[-1] + self.window_size < self.maxStartTime:
            tstarts.append(tstarts[-1]+self.window_delta)
        arrays = [tstarts]
        for tup in (self.F0s, self.F1s, self.F2s,
                    self.Alphas, self.Deltas):
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        input_data = np.array(input_data)
        input_data = np.insert(
            input_data, 1, input_data[:, 0] + self.window_size, axis=1)

        self.arrays = arrays
        self.input_data = np.array(input_data)

    def plot_sliding_window(self, F0=None, ax=None, savefig=True,
426
                            colorbar=True, timestamps=False):
Gregory Ashton's avatar
Gregory Ashton committed
427
428
429
430
431
432
433
434
435
436
437
        data = self.data
        if ax is None:
            ax = plt.subplot()
        tstarts = np.unique(data[:, 0])
        tends = np.unique(data[:, 1])
        frequencies = np.unique(data[:, 2])
        twoF = data[:, -1]
        tmids = (tstarts + tends) / 2.0
        dts = (tmids - self.minStartTime) / 86400.
        if F0:
            frequencies = frequencies - F0
438
            ax.set_ylabel('Frequency - $f_0$ [Hz] \n $f_0={:0.2f}$'.format(F0))
Gregory Ashton's avatar
Gregory Ashton committed
439
440
441
442
443
444
445
446
447
        else:
            ax.set_ylabel('Frequency [Hz]')
        twoF = twoF.reshape((len(tmids), len(frequencies)))
        Y, X = np.meshgrid(frequencies, dts)
        pax = ax.pcolormesh(X, Y, twoF)
        if colorbar:
            cb = plt.colorbar(pax, ax=ax)
            cb.set_label('$2\mathcal{F}$')
        ax.set_xlabel(
448
449
            r'Mid-point (days after $t_\mathrm{{start}}$={})'.format(
                self.minStartTime))
Gregory Ashton's avatar
Gregory Ashton committed
450
451
        ax.set_title(
            'Sliding window length = {} days in increments of {} days'
452
453
454
455
456
457
458
            .format(self.window_size/86400, self.window_delta/86400),
            )
        if timestamps:
            axT = ax.twiny()
            axT.set_xlim(tmids[0]*1e-9, tmids[-1]*1e-9)
            axT.set_xlabel('Mid-point timestamp [GPS $10^{9}$ s]')
            ax.set_title(ax.get_title(), y=1.18)
Gregory Ashton's avatar
Gregory Ashton committed
459
460
461
462
463
464
        if savefig:
            plt.tight_layout()
            plt.savefig(
                '{}/{}_sliding_window.png'.format(self.outdir, self.label))
        else:
            return ax
465
466
467
468
469


class DMoff_NO_SPIN(GridSearch):
    """ DMoff test using SSBPREC_NO_SPIN """
    @helper_functions.initializer
470
    def __init__(self, par, label, outdir, sftfilepattern, minStartTime=None,
471
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
472
                 detectors=None, injectSources=None, assumeSqrtSX=None):
473
474
475
        """
        Parameters
        ----------
476
477
478
        par: dict, str
            Either a par dictionary (containing 'F0', 'F1', 'Alpha', 'Delta'
            and 'tref') or a path to a .par file to read in the F0, F1 etc
479
480
        label, outdir: str
            A label and directory to read/write data from/to
481
482
483
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
484
485
486
487
488
489
490
491
492
        minStartTime, maxStartTime: int
            GPS seconds of the start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)

493
494
495
496
        if type(par) == dict:
            self.par = par
        elif type(par) == str and os.path.isfile(par):
            self.par = read_par(filename=par)
497
498
499
500
501
502
503
504
505
506
507
508
509
        else:
            raise ValueError('The .par file does not exist')

        self.nsegs = 1
        self.BSGL = False

        self.tref = self.par['tref']
        self.F1s = [self.par.get('F1', 0)]
        self.F2s = [self.par.get('F2', 0)]
        self.Alphas = [self.par['Alpha']]
        self.Deltas = [self.par['Delta']]
        self.Re = 6.371e6
        self.c = 2.998e8
510
        a0 = self.Re/self.c  # *np.cos(self.par['Delta'])
511
        self.m0 = np.max([4, int(np.ceil(2*np.pi*self.par['F0']*a0))])
512
513
        logging.info(
            'Setting up DMoff_NO_SPIN search with m0 = {}'.format(self.m0))
514
515
516
517
518
519
520
521
522

    def get_results(self):
        """ Compute the three summed detection statistics

        Returns
        -------
            m0, twoF_SUM, twoFstar_SUM_SIDEREAL, twoFstar_SUM_TERRESTRIAL

        """
Gregory Ashton's avatar
Gregory Ashton committed
523
524
525
        self.SSBprec = lalpulsar.SSBPREC_RELATIVISTIC
        self.set_out_file('SSBPREC_RELATIVISTIC')
        self.F0s = [self.par['F0']+j/lal.DAYSID_SI for j in range(-4, 5)]
526
527
528
        self.run()
        twoF_SUM = np.sum(self.data[:, -1])

Gregory Ashton's avatar
Gregory Ashton committed
529
530
531
        self.SSBprec = lalpulsar.SSBPREC_NO_SPIN
        self.set_out_file('SSBPREC_NO_SPIN')
        self.F0s = [self.par['F0']+j/lal.DAYSID_SI
532
533
534
535
                    for j in range(-self.m0, self.m0+1)]
        self.run()
        twoFstar_SUM = np.sum(self.data[:, -1])

Gregory Ashton's avatar
Gregory Ashton committed
536
537
        self.set_out_file('SSBPREC_NO_SPIN_TERRESTRIAL')
        self.F0s = [self.par['F0']+j/lal.DAYJUL_SI
538
539
540
541
542
                    for j in range(-self.m0, self.m0+1)]
        self.run()
        twoFstar_SUM_terrestrial = np.sum(self.data[:, -1])

        return self.m0, twoF_SUM, twoFstar_SUM, twoFstar_SUM_terrestrial