pyfstat.py 66.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
""" Classes for various types of searches using ComputeFstatistic """
import os
import sys
import itertools
import logging
import argparse
import copy
import glob
import inspect
from functools import wraps
11
import subprocess
12
from collections import OrderedDict
13
14
15
16
17
18
19
20
21
22

import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import emcee
import corner
import dill as pickle
import lalpulsar

23
plt.rcParams['text.usetex'] = True
24
plt.rcParams['axes.formatter.useoffset'] = False
25

26
27
28
29
30
31
32
config_file = os.path.expanduser('~')+'/.pyfstat.conf'
if os.path.isfile(config_file):
    d = {}
    with open(config_file, 'r') as f:
        for line in f:
            k, v = line.split('=')
            k = k.replace(' ', '')
33
            v = v.replace(' ', '').replace("'", "").replace('"', '').replace('\n', '')
34
35
36
37
38
39
            d[k] = v
    earth_ephem = d['earth_ephem']
    sun_ephem = d['sun_ephem']
else:
    logging.warning('No ~/.pyfstat.conf file found please provide the paths '
                    'when initialising searches')
40
41
42
    earth_ephem = None
    sun_ephem = None

43
44
45
46
47
parser = argparse.ArgumentParser()
parser.add_argument("-q", "--quite", help="Decrease output verbosity",
                    action="store_true")
parser.add_argument("-c", "--clean", help="Don't use cached data",
                    action="store_true")
48
parser.add_argument("-u", "--use-old-data", action="store_true")
49
50
51
52
53
54
55
56
57
58
59
60
61
parser.add_argument('unittest_args', nargs='*')
args, unknown = parser.parse_known_args()
sys.argv[1:] = args.unittest_args

if args.quite:
    log_level = logging.WARNING
else:
    log_level = logging.DEBUG

logging.basicConfig(level=log_level,
                    format='%(asctime)s %(levelname)-8s: %(message)s',
                    datefmt='%H:%M')

62
63

def initializer(func):
64
    """ Automatically assigns the parameters to self """
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    names, varargs, keywords, defaults = inspect.getargspec(func)

    @wraps(func)
    def wrapper(self, *args, **kargs):
        for name, arg in list(zip(names[1:], args)) + list(kargs.items()):
            setattr(self, name, arg)

        for name, default in zip(reversed(names), reversed(defaults)):
            if not hasattr(self, name):
                setattr(self, name, default)

        func(self, *args, **kargs)

    return wrapper


def read_par(label, outdir):
82
    """ Read in a .par file, returns a dictionary of the values """
83
84
85
86
87
88
89
90
91
92
    filename = '{}/{}.par'.format(outdir, label)
    d = {}
    with open(filename, 'r') as f:
        for line in f:
            key, val = line.rstrip('\n').split(' = ')
            d[key] = np.float64(val)
    return d


class BaseSearchClass(object):
93
    """ The base search class, provides ephemeris and general utilities """
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

    def shift_matrix(self, n, dT):
        """ Generate the shift matrix """
        m = np.zeros((n, n))
        factorial = np.math.factorial
        for i in range(n):
            for j in range(n):
                if i == j:
                    m[i, j] = 1.0
                elif i > j:
                    m[i, j] = 0.0
                else:
                    if i == 0:
                        m[i, j] = 2*np.pi*float(dT)**(j-i) / factorial(j-i)
                    else:
                        m[i, j] = float(dT)**(j-i) / factorial(j-i)

        return m

    def shift_coefficients(self, theta, dT):
        """ Shift a set of coefficients by dT

        Parameters
        ----------
        theta: array-like, shape (n,)
            vector of the expansion coefficients to transform starting from the
123
            lowest degree e.g [phi, F0, F1,...].
124
        dT: float
125
            difference between the two reference times as tref_new - tref_old.
126
127
128
129

        Returns
        -------
        theta_new: array-like shape (n,)
130
            vector of the coefficients as evaluate as the new reference time.
131
132
133
134
135
        """
        n = len(theta)
        m = self.shift_matrix(n, dT)
        return np.dot(m, theta)

136
    def calculate_thetas(self, theta, delta_thetas, tbounds, theta0_idx=0):
137
138
139
        """ Calculates the set of coefficients for the post-glitch signal """
        thetas = [theta]
        for i, dt in enumerate(delta_thetas):
140
141
142
143
144
145
146
147
148
149
150
151
152
            if i < theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[0], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch - dt
                thetas.insert(0, self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))

            elif i >= theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[i], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch + dt
                thetas.append(self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))
153
154
155
        return thetas


Gregory Ashton's avatar
Gregory Ashton committed
156
157
158
159
160
161
162
163
164
class ComputeFstat(object):
    """ Base class providing interface to lalpulsar.ComputeFstat """

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

    @initializer
    def __init__(self, tref, sftlabel=None, sftdir=None,
                 minCoverFreq=None, maxCoverFreq=None,
165
166
                 detector=None, earth_ephem=None, sun_ephem=None,
                 binary=False, transient=True):
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        """
        Parameters
        ----------
        tref: int
            GPS seconds of the reference time.
        sftlabel, sftdir: str
            A label and directory in which to find the relevant sft file
        minCoverFreq, maxCoverFreq: float
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput.
            If None defaults defined in BaseSearchClass will be used.
        binary: bool
            If true, search of binary parameters.
        transient: bool
            If true, allow for the Fstat to be computed over a transient range.

        """
Gregory Ashton's avatar
Gregory Ashton committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        self.init_computefstatistic_single_point()

    def init_computefstatistic_single_point(self):
        """ Initilisation step of run_computefstatistic for a single point """

        logging.info('Initialising SFTCatalog')
        constraints = lalpulsar.SFTConstraints()
        if self.detector:
            constraints.detector = self.detector
        self.sft_filepath = self.sftdir+'/*_'+self.sftlabel+"*sft"
        SFTCatalog = lalpulsar.SFTdataFind(self.sft_filepath, constraints)
        names = list(set([d.header.name for d in SFTCatalog.data]))
209
210
211
        logging.info(
            'Loaded data from detectors {} matching pattern {}'.format(
                names, self.sft_filepath))
Gregory Ashton's avatar
Gregory Ashton committed
212
213
214
215
216
217

        logging.info('Initialising ephems')
        ephems = lalpulsar.InitBarycenter(self.earth_ephem, self.sun_ephem)

        logging.info('Initialising FstatInput')
        dFreq = 0
218
219
220
221
222
        if self.transient:
            self.whatToCompute = lalpulsar.FSTATQ_ATOMS_PER_DET
        else:
            self.whatToCompute = lalpulsar.FSTATQ_2F

Gregory Ashton's avatar
Gregory Ashton committed
223
224
225
226
227
228
229
230
        FstatOptionalArgs = lalpulsar.FstatOptionalArgsDefaults

        if self.minCoverFreq is None or self.maxCoverFreq is None:
            fA = SFTCatalog.data[0].header.f0
            numBins = SFTCatalog.data[0].numBins
            fB = fA + (numBins-1)*SFTCatalog.data[0].header.deltaF
            self.minCoverFreq = fA + 0.5
            self.maxCoverFreq = fB - 0.5
231
232
233
            logging.info('Min/max cover freqs not provided, using '
                         '{} and {}, est. from SFTs'.format(
                             self.minCoverFreq, self.maxCoverFreq))
Gregory Ashton's avatar
Gregory Ashton committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

        self.FstatInput = lalpulsar.CreateFstatInput(SFTCatalog,
                                                     self.minCoverFreq,
                                                     self.maxCoverFreq,
                                                     dFreq,
                                                     ephems,
                                                     FstatOptionalArgs
                                                     )

        logging.info('Initialising PulsarDoplerParams')
        PulsarDopplerParams = lalpulsar.PulsarDopplerParams()
        PulsarDopplerParams.refTime = self.tref
        PulsarDopplerParams.Alpha = 1
        PulsarDopplerParams.Delta = 1
        PulsarDopplerParams.fkdot = np.array([0, 0, 0, 0, 0, 0, 0])
        self.PulsarDopplerParams = PulsarDopplerParams

        logging.info('Initialising FstatResults')
        self.FstatResults = lalpulsar.FstatResults()

254
255
256
257
258
259
260
        if self.transient:
            self.windowRange = lalpulsar.transientWindowRange_t()
            self.windowRange.type = lalpulsar.TRANSIENT_RECTANGULAR
            self.windowRange.t0Band = 0
            self.windowRange.dt0 = 1
            self.windowRange.tauBand = 0
            self.windowRange.dtau = 1
261

Gregory Ashton's avatar
Gregory Ashton committed
262
    def run_computefstatistic_single_point(self, tstart, tend, F0, F1,
263
264
265
                                           F2, Alpha, Delta, asini=None,
                                           period=None, ecc=None, tp=None,
                                           argp=None):
266
        """ Returns the twoF fully-coherently at a single point """
Gregory Ashton's avatar
Gregory Ashton committed
267
268
269
270

        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
271
272
273
274
275
276
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp
Gregory Ashton's avatar
Gregory Ashton committed
277
278
279
280

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
281
                               1,
Gregory Ashton's avatar
Gregory Ashton committed
282
283
284
                               self.whatToCompute
                               )

285
286
287
        if self.transient is False:
            return self.FstatResults.twoF[0]

288
289
        self.windowRange.t0 = int(tstart)  # TYPE UINT4
        self.windowRange.tau = int(tend - tstart)  # TYPE UINT4
Gregory Ashton's avatar
Gregory Ashton committed
290
        FS = lalpulsar.ComputeTransientFstatMap(
291
            self.FstatResults.multiFatoms[0], self.windowRange, False)
Gregory Ashton's avatar
Gregory Ashton committed
292
293
294
295
        return 2*FS.F_mn.data[0][0]


class SemiCoherentGlitchSearch(BaseSearchClass, ComputeFstat):
296
297
298
299
300
301
302
303
304
    """ A semi-coherent glitch search

    This implements a basic `semi-coherent glitch F-stat in which the data
    is divided into two segments either side of the proposed glitch and the
    fully-coherent F-stat in each segment is averaged to give the semi-coherent
    F-stat
    """

    @initializer
Gregory Ashton's avatar
Gregory Ashton committed
305
    def __init__(self, label, outdir, tref, tstart, tend, nglitch=0,
306
                 sftlabel=None, sftdir=None, theta0_idx=0, minCoverFreq=None,
307
308
                 maxCoverFreq=None, detector=None, earth_ephem=None,
                 sun_ephem=None):
309
310
311
312
        """
        Parameters
        ----------
        label, outdir: str
313
314
315
316
317
318
            A label and directory to read/write data from/to.
        tref, tstart, tend: int
            GPS seconds of the reference time, and start and end of the data.
        nglitch: int
            The (fixed) number of glitches; this can zero, but occasionally
            this causes issue (in which case just use ComputeFstat).
319
320
        sftlabel, sftdir: str
            A label and directory in which to find the relevant sft file. If
321
            None use label and outdir.
322
323
324
325
        theta0_idx, int
            Index (zero-based) of which segment the theta refers to - uyseful
            if providing a tight prior on theta to allow the signal to jump
            too theta (and not just from)
326
        minCoverFreq, maxCoverFreq: float
327
328
329
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
330
331
        detector: str
            Two character reference to the data to use, specify None for no
332
            contraint.
333
334
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
335
336
            respectively at evenly spaced times, as passed to CreateFstatInput.
            If None defaults defined in BaseSearchClass will be used.
337
338
339
340
341
342
343
344
345
346
347
        """

        if self.sftlabel is None:
            self.sftlabel = self.label
        if self.sftdir is None:
            self.sftdir = self.outdir
        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
        if self.earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if self.sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default
348
349
        self.transient = True
        self.binary = False
350
351
352
        self.init_computefstatistic_single_point()

    def compute_nglitch_fstat(self, F0, F1, F2, Alpha, Delta, *args):
353
        """ Returns the semi-coherent glitch summed twoF """
354
355
356

        args = list(args)
        tboundaries = [self.tstart] + args[-self.nglitch:] + [self.tend]
357
358
359
360
361
362
363
364
        delta_F0s = args[-3*self.nglitch:-2*self.nglitch]
        delta_F1s = args[-2*self.nglitch:-self.nglitch]
        delta_F2 = np.zeros(len(delta_F0s))
        delta_phi = np.zeros(len(delta_F0s))
        theta = [0, F0, F1, F2]
        delta_thetas = np.atleast_2d(
                np.array([delta_phi, delta_F0s, delta_F1s, delta_F2]).T)

365
366
        thetas = self.calculate_thetas(theta, delta_thetas, tboundaries,
                                       theta0_idx=self.theta0_idx)
367
368

        twoFSum = 0
369
        for i, theta_i_at_tref in enumerate(thetas):
370
371
372
            ts, te = tboundaries[i], tboundaries[i+1]

            twoFVal = self.run_computefstatistic_single_point(
373
374
                ts, te, theta_i_at_tref[1], theta_i_at_tref[2],
                theta_i_at_tref[3], Alpha, Delta)
375
376
            twoFSum += twoFVal

377
378
379
380
        if np.isfinite(twoFSum):
            return twoFSum
        else:
            return 0
381
382
383

    def compute_glitch_fstat_single(self, F0, F1, F2, Alpha, Delta, delta_F0,
                                    delta_F1, tglitch):
384
385
386
387
        """ Returns the semi-coherent glitch summed twoF for nglitch=1

        Note: used for testing
        """
388
389
390
391
392
393
394
395
396
397
398

        theta = [F0, F1, F2]
        delta_theta = [delta_F0, delta_F1, 0]
        tref = self.tref

        theta_at_glitch = self.shift_coefficients(theta, tglitch - tref)
        theta_post_glitch_at_glitch = theta_at_glitch + delta_theta
        theta_post_glitch = self.shift_coefficients(
            theta_post_glitch_at_glitch, tref - tglitch)

        twoFsegA = self.run_computefstatistic_single_point(
Gregory Ashton's avatar
Gregory Ashton committed
399
            self.tstart, tglitch, theta[0], theta[1], theta[2], Alpha,
400
401
402
403
404
405
            Delta)

        if tglitch == self.tend:
            return twoFsegA

        twoFsegB = self.run_computefstatistic_single_point(
Gregory Ashton's avatar
Gregory Ashton committed
406
            tglitch, self.tend, theta_post_glitch[0],
407
408
409
410
411
412
            theta_post_glitch[1], theta_post_glitch[2], Alpha,
            Delta)

        return twoFsegA + twoFsegB


Gregory Ashton's avatar
Gregory Ashton committed
413
414
class MCMCSearch(BaseSearchClass):
    """ MCMC search using ComputeFstat"""
415
    @initializer
416
417
    def __init__(self, label, outdir, sftlabel, sftdir, theta_prior, tref,
                 tstart, tend, nsteps=[100, 100, 100], nwalkers=100, ntemps=1,
418
419
                 log10temperature_min=-5, theta_initial=None, scatter_val=1e-4,
                 binary=False, minCoverFreq=None, maxCoverFreq=None,
Gregory Ashton's avatar
Gregory Ashton committed
420
                 detector=None, earth_ephem=None, sun_ephem=None):
421
422
423
424
425
426
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
        sftlabel, sftdir: str
            A label and directory in which to find the relevant sft file
427
        theta_prior: dict
428
429
430
431
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
432
433
434
435
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
436
437
438
439
440
441
442
        tref, tstart, tend: int
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
443
444
445
446
447
448
449
450
451
452
453
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
        binary: Bool
            If true, search over binary parameters
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
454
455
456
457
458
459
460
461
462
463
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

Gregory Ashton's avatar
Gregory Ashton committed
464
465
466
        logging.info(
            'Set-up MCMC search for model {} on data {}'.format(
                self.label, self.sftlabel))
467
468
469
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
470
471
        self.theta_prior['tstart'] = self.tstart
        self.theta_prior['tend'] = self.tend
472
473
        self.unpack_input_theta()
        self.ndim = len(self.theta_keys)
474
        self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
475
        self.sft_filepath = self.sftdir+'/*_'+self.sftlabel+"*sft"
476

477
478
479
480
481
482
483
484
485
486
487
488
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

        self.old_data_is_okay_to_use = self.check_old_data_is_okay_to_use()

    def inititate_search_object(self):
        logging.info('Setting up search object')
Gregory Ashton's avatar
Gregory Ashton committed
489
490
491
        self.search = ComputeFstat(
            tref=self.tref, sftlabel=self.sftlabel,
            sftdir=self.sftdir, minCoverFreq=self.minCoverFreq,
492
            maxCoverFreq=self.maxCoverFreq, earth_ephem=self.earth_ephem,
493
            sun_ephem=self.sun_ephem, detector=self.detector, transient=False)
494
495

    def logp(self, theta_vals, theta_prior, theta_keys, search):
Gregory Ashton's avatar
Gregory Ashton committed
496
        H = [self.generic_lnprior(**theta_prior[key])(p) for p, key in
497
498
499
500
501
502
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
Gregory Ashton's avatar
Gregory Ashton committed
503
        FS = search.run_computefstatistic_single_point(*self.fixed_theta)
504
505
506
        return FS

    def unpack_input_theta(self):
Gregory Ashton's avatar
Gregory Ashton committed
507
508
        full_theta_keys = ['tstart', 'tend', 'F0', 'F1', 'F2', 'Alpha',
                           'Delta']
509
510
511
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
512
513
        full_theta_keys_copy = copy.copy(full_theta_keys)

Gregory Ashton's avatar
Gregory Ashton committed
514
515
        full_theta_symbols = ['_', '_', '$f$', '$\dot{f}$', '$\ddot{f}$',
                              r'$\alpha$', r'$\delta$']
516
517
518
519
        if self.binary:
            full_theta_symbols += [
                'asini', 'period', 'period', 'ecc', 'tp', 'argp']

520
521
        self.theta_keys = []
        fixed_theta_dict = {}
522
        for key, val in self.theta_prior.iteritems():
523
524
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
525
                self.theta_keys.append(key)
526
527
528
529
530
531
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
532
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

    def check_initial_points(self, p0):
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

                p0 = self.generate_new_p0_to_fix_initial_points(
                    p0, nt, initial_priors)

    def generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

    def run(self):

        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
            d = self.get_saved_data()
            self.sampler = d['sampler']
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
            return

        self.inititate_search_object()

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
            loglargs=(self.search,), betas=self.betas)

Gregory Ashton's avatar
Gregory Ashton committed
605
606
        p0 = self.generate_initial_p0()
        p0 = self.apply_corrections_to_p0(p0)
607
608
609
610
611
612
613
        self.check_initial_points(p0)

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
                j, ninit_steps, n))
            sampler.run_mcmc(p0, n)
614
615
            logging.info("Mean acceptance fraction: {0:.3f}"
                         .format(np.mean(sampler.acceptance_fraction)))
Gregory Ashton's avatar
Gregory Ashton committed
616
            fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols)
617
618
619
            fig.savefig('{}/{}_init_{}_walkers.png'.format(
                self.outdir, self.label, j))

620
            p0 = self.get_new_p0(sampler)
Gregory Ashton's avatar
Gregory Ashton committed
621
            p0 = self.apply_corrections_to_p0(p0)
622
623
624
625
626
627
628
629
            self.check_initial_points(p0)
            sampler.reset()

        nburn = self.nsteps[-2]
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
        sampler.run_mcmc(p0, nburn+nprod)
630
631
        logging.info("Mean acceptance fraction: {0:.3f}"
                     .format(np.mean(sampler.acceptance_fraction)))
632

Gregory Ashton's avatar
Gregory Ashton committed
633
        fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols)
634
635
636
637
638
639
640
641
642
643
644
        fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label))

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
        self.sampler = sampler
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
        self.save_data(sampler, samples, lnprobs, lnlikes)

645
    def plot_corner(self, figsize=(7, 7),  tglitch_ratio=False,
646
647
648
                    add_prior=False, nstds=None, label_offset=0.4, **kwargs):

        fig, axes = plt.subplots(self.ndim, self.ndim,
649
                                 figsize=figsize)
650
651
652
653
654
655

        samples_plt = copy.copy(self.samples)
        theta_symbols_plt = copy.copy(self.theta_symbols)
        theta_symbols_plt = [s.replace('_{glitch}', r'_\textrm{glitch}') for s
                             in theta_symbols_plt]

656
657
658
659
660
661
662
        if tglitch_ratio:
            for j, k in enumerate(self.theta_keys):
                if k == 'tglitch':
                    s = samples_plt[:, j]
                    samples_plt[:, j] = (s - self.tstart)/(
                                         self.tend - self.tstart)
                    theta_symbols_plt[j] = r'$R_{\textrm{glitch}}$'
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709

        if type(nstds) is int and 'range' not in kwargs:
            _range = []
            for j, s in enumerate(samples_plt.T):
                median = np.median(s)
                std = np.std(s)
                _range.append((median - nstds*std, median + nstds*std))
        else:
            _range = None

        fig_triangle = corner.corner(samples_plt,
                                     labels=theta_symbols_plt,
                                     fig=fig,
                                     bins=50,
                                     max_n_ticks=4,
                                     plot_contours=True,
                                     plot_datapoints=True,
                                     label_kwargs={'fontsize': 8},
                                     data_kwargs={'alpha': 0.1,
                                                  'ms': 0.5},
                                     range=_range,
                                     **kwargs)

        axes_list = fig_triangle.get_axes()
        axes = np.array(axes_list).reshape(self.ndim, self.ndim)
        plt.draw()
        for ax in axes[:, 0]:
            ax.yaxis.set_label_coords(-label_offset, 0.5)
        for ax in axes[-1, :]:
            ax.xaxis.set_label_coords(0.5, -label_offset)
        for ax in axes_list:
            ax.set_rasterized(True)
            ax.set_rasterization_zorder(-10)
        plt.tight_layout(h_pad=0.0, w_pad=0.0)
        fig.subplots_adjust(hspace=0.05, wspace=0.05)

        if add_prior:
            self.add_prior_to_corner(axes, samples_plt)

        fig_triangle.savefig('{}/{}_corner.png'.format(
            self.outdir, self.label))

    def add_prior_to_corner(self, axes, samples):
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            xlim = ax.get_xlim()
            s = samples[:, i]
Gregory Ashton's avatar
Gregory Ashton committed
710
            prior = self.generic_lnprior(**self.theta_prior[key])
711
712
713
714
715
716
            x = np.linspace(s.min(), s.max(), 100)
            ax2 = ax.twinx()
            ax2.get_yaxis().set_visible(False)
            ax2.plot(x, [prior(xi) for xi in x], '-r')
            ax.set_xlim(xlim)

Gregory Ashton's avatar
Gregory Ashton committed
717
    def generic_lnprior(self, **kwargs):
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
        """ Return a lambda function of the pdf

        Parameters
        ----------
        kwargs: dict
            A dictionary containing 'type' of pdf and shape parameters

        """

        def logunif(x, a, b):
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

        def halfnorm(x, loc, scale):
            if x < 0:
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
            return lambda x: logunif(x, kwargs['lower'], kwargs['upper'])
        elif kwargs['type'] == 'halfnorm':
            return lambda x: halfnorm(x, kwargs['loc'], kwargs['scale'])
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

Gregory Ashton's avatar
Gregory Ashton committed
767
    def generate_rv(self, **kwargs):
768
769
770
771
772
773
774
775
776
777
778
779
780
781
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

Gregory Ashton's avatar
Gregory Ashton committed
782
783
    def plot_walkers(self, sampler, symbols=None, alpha=0.4, color="k", temp=0,
                     start=None, stop=None, draw_vline=None):
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
        """ Plot all the chains from a sampler """

        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
            chain = sampler.chain[:, :, :]
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
            chain = sampler.chain[temp, :, :, :]

        with plt.style.context(('classic')):
            fig, axes = plt.subplots(ndim, 1, sharex=True, figsize=(8, 4*ndim))

            if ndim > 1:
                for i in range(ndim):
804
                    axes[i].ticklabel_format(useOffset=False, axis='y')
805
806
                    cs = chain[:, start:stop, i].T
                    axes[i].plot(cs, color="k", alpha=alpha)
807
808
809
810
                    if symbols:
                        axes[i].set_ylabel(symbols[i])
                    if draw_vline is not None:
                        axes[i].axvline(draw_vline, lw=2, ls="--")
811
812
813
814
815

            else:
                cs = chain[:, start:stop, 0].T
                axes.plot(cs, color='k', alpha=alpha)
                axes.ticklabel_format(useOffset=False, axis='y')
816
817
818

        return fig, axes

Gregory Ashton's avatar
Gregory Ashton committed
819
820
821
822
823
    def apply_corrections_to_p0(self, p0):
        """ Apply any correction to the initial p0 values """
        return p0

    def generate_scattered_p0(self, p):
824
        """ Generate a set of p0s scattered about p """
Gregory Ashton's avatar
Gregory Ashton committed
825
        p0 = [[p + self.scatter_val * p * np.random.randn(self.ndim)
826
827
828
829
               for i in xrange(self.nwalkers)]
              for j in xrange(self.ntemps)]
        return p0

Gregory Ashton's avatar
Gregory Ashton committed
830
    def generate_initial_p0(self):
831
832
833
        """ Generate a set of init vals for the walkers """

        if type(self.theta_initial) == dict:
834
835
836
            logging.info('Generate initial values from initial dictionary')
            if self.nglitch > 1:
                raise ValueError('Initial dict not implemented for nglitch>1')
Gregory Ashton's avatar
Gregory Ashton committed
837
            p0 = [[[self.generate_rv(**self.theta_initial[key])
838
839
840
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
841
842
843
844
845
846
        elif type(self.theta_initial) == list:
            logging.info('Generate initial values from list of theta_initial')
            p0 = [[[self.generate_rv(**val)
                    for val in self.theta_initial]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
847
        elif self.theta_initial is None:
848
            logging.info('Generate initial values from prior dictionary')
Gregory Ashton's avatar
Gregory Ashton committed
849
            p0 = [[[self.generate_rv(**self.theta_prior[key])
850
851
852
853
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
        elif len(self.theta_initial) == self.ndim:
Gregory Ashton's avatar
Gregory Ashton committed
854
            p0 = self.generate_scattered_p0(self.theta_initial)
855
856
857
858
859
        else:
            raise ValueError('theta_initial not understood')

        return p0

860
    def get_new_p0(self, sampler):
861
862
863
864
865
866
867
868
869
870
871
872
        """ Returns new initial positions for walkers are burn0 stage

        This returns new positions for all walkers by scattering points about
        the maximum posterior with scale `scatter_val`.

        """
        if sampler.chain[:, :, -1, :].shape[0] == 1:
            ntemps_temp = 1
        else:
            ntemps_temp = self.ntemps
        pF = sampler.chain[:, :, -1, :].reshape(
            ntemps_temp, self.nwalkers, self.ndim)[0, :, :]
873
874
        lnl = sampler.lnlikelihood[:, :, -1].reshape(
            self.ntemps, self.nwalkers)[0, :]
875
876
        lnp = sampler.lnprobability[:, :, -1].reshape(
            self.ntemps, self.nwalkers)[0, :]
877
878

        # General warnings about the state of lnp
879
        if any(np.isnan(lnp)):
880
881
882
883
884
885
886
887
888
889
890
            logging.warning(
                "Of {} lnprobs {} are nan".format(
                    len(lnp), np.sum(np.isnan(lnp))))
        if any(np.isposinf(lnp)):
            logging.warning(
                "Of {} lnprobs {} are +np.inf".format(
                    len(lnp), np.sum(np.isposinf(lnp))))
        if any(np.isneginf(lnp)):
            logging.warning(
                "Of {} lnprobs {} are -np.inf".format(
                    len(lnp), np.sum(np.isneginf(lnp))))
891

892
893
894
        lnp_finite = copy.copy(lnp)
        lnp_finite[np.isinf(lnp)] = np.nan
        p = pF[np.nanargmax(lnp_finite)]
895
896
        logging.info('Generating new p0 from max lnp which had twoF={}'
                     .format(lnl[np.nanargmax(lnp_finite)]))
897
        p0 = self.generate_scattered_p0(p)
898
899
900
901
902
903

        return p0

    def get_save_data_dictionary(self):
        d = dict(nsteps=self.nsteps, nwalkers=self.nwalkers,
                 ntemps=self.ntemps, theta_keys=self.theta_keys,
Gregory Ashton's avatar
Gregory Ashton committed
904
                 theta_prior=self.theta_prior, scatter_val=self.scatter_val,
905
906
                 log10temperature_min=self.log10temperature_min,
                 theta0_idx=self.theta0_idx)
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
        return d

    def save_data(self, sampler, samples, lnprobs, lnlikes):
        d = self.get_save_data_dictionary()
        d['sampler'] = sampler
        d['samples'] = samples
        d['lnprobs'] = lnprobs
        d['lnlikes'] = lnlikes

        if os.path.isfile(self.pickle_path):
            logging.info('Saving backup of {} as {}.old'.format(
                self.pickle_path, self.pickle_path))
            os.rename(self.pickle_path, self.pickle_path+".old")
        with open(self.pickle_path, "wb") as File:
            pickle.dump(d, File)

    def get_list_of_matching_sfts(self):
        matches = glob.glob(self.sft_filepath)
        if len(matches) > 0:
            return matches
        else:
            raise IOError('No sfts found matching {}'.format(
                self.sft_filepath))

    def get_saved_data(self):
        with open(self.pickle_path, "r") as File:
            d = pickle.load(File)
        return d

    def check_old_data_is_okay_to_use(self):
937
938
939
940
        if args.use_old_data:
            logging.info("Forcing use of old data")
            return True

941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
        if os.path.isfile(self.pickle_path) is False:
            logging.info('No pickled data found')
            return False

        oldest_sft = min([os.path.getmtime(f) for f in
                          self.get_list_of_matching_sfts()])
        if os.path.getmtime(self.pickle_path) < oldest_sft:
            logging.info('Pickled data outdates sft files')
            return False

        old_d = self.get_saved_data().copy()
        new_d = self.get_save_data_dictionary().copy()

        old_d.pop('samples')
        old_d.pop('sampler')
        old_d.pop('lnprobs')
        old_d.pop('lnlikes')

        mod_keys = []
        for key in new_d.keys():
            if key in old_d:
                if new_d[key] != old_d[key]:
                    mod_keys.append((key, old_d[key], new_d[key]))
            else:
965
                raise ValueError('Keys {} not in old dictionary'.format(key))
966
967
968
969
970
971
972
973
974

        if len(mod_keys) == 0:
            return True
        else:
            logging.warning("Saved data differs from requested")
            logging.info("Differences found in following keys:")
            for key in mod_keys:
                if len(key) == 3:
                    if np.isscalar(key[1]) or key[0] == 'nsteps':
975
                        logging.info("    {} : {} -> {}".format(*key))
976
                    else:
977
                        logging.info("    " + key[0])
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
                else:
                    logging.info(key)
            return False

    def get_max_twoF(self, threshold=0.05):
        """ Returns the max 2F sample and the corresponding 2F value

        Note: the sample is returned as a dictionary along with an estimate of
        the standard deviation calculated from the std of all samples with a
        twoF within `threshold` (relative) to the max twoF

        """
        if any(np.isposinf(self.lnlikes)):
            logging.info('twoF values contain positive infinite values')
        if any(np.isneginf(self.lnlikes)):
            logging.info('twoF values contain negative infinite values')
        if any(np.isnan(self.lnlikes)):
            logging.info('twoF values contain nan')
        idxs = np.isfinite(self.lnlikes)
        jmax = np.nanargmax(self.lnlikes[idxs])
        maxtwoF = self.lnlikes[jmax]
999
        d = OrderedDict()
1000

For faster browsing, not all history is shown. View entire blame