core.py 47.7 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" The core tools used in pyfstat """
2
3
from __future__ import division, absolute_import, print_function

Gregory Ashton's avatar
Gregory Ashton committed
4
5
6
7
import os
import logging
import copy

8
import glob
Gregory Ashton's avatar
Gregory Ashton committed
9
import numpy as np
10
11
12
13
14
import scipy.special
import scipy.optimize

import lal
import lalpulsar
15
import pyfstat.helper_functions as helper_functions
16
import pyfstat.tcw_fstat_map_funcs as tcw
17
18

# workaround for matplotlib on X-less remote logins
19
if 'DISPLAY' in os.environ:
20
21
    import matplotlib.pyplot as plt
else:
22
23
    logging.info('No $DISPLAY environment variable found, so importing \
                  matplotlib.pyplot with non-interactive "Agg" backend.')
24
25
26
27
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt

Gregory Ashton's avatar
Gregory Ashton committed
28
helper_functions.set_up_matplotlib_defaults()
29
args, tqdm = helper_functions.set_up_command_line_arguments()
30
detector_colors = {'h1': 'C0', 'l1': 'C1'}
Gregory Ashton's avatar
Gregory Ashton committed
31
32


Gregory Ashton's avatar
Gregory Ashton committed
33
class Bunch(object):
34
35
    """ Turns dictionary into object with attribute-style access

36
37
    Parameters
    ----------
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    dict
        Input dictionary

    Examples
    --------
    >>> data = Bunch(dict(x=1, y=[1, 2, 3], z=True))
    >>> print(data.x)
    1
    >>> print(data.y)
    [1, 2, 3]
    >>> print(data.z)
    True

    """
Gregory Ashton's avatar
Gregory Ashton committed
52
53
54
55
56
    def __init__(self, dictionary):
        self.__dict__.update(dictionary)


def read_par(filename=None, label=None, outdir=None, suffix='par',
57
58
             return_type='dict', comments=['%', '#'], raise_error=False):
    """ Read in a .par or .loudest file, returns a dict or Bunch of the data
59

Gregory Ashton's avatar
Gregory Ashton committed
60
61
    Parameters
    ----------
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    filename : str
        Filename (path) containing rows of `key=val` data to read in.
    label, outdir, suffix : str, optional
        If filename is None, form the file to read as `outdir/label.suffix`.
    return_type : {'dict', 'bunch'}, optional
        If `dict`, return a dictionary, if 'bunch' return a Bunch
    comments : str or list of strings, optional
        Characters denoting that a row is a comment.
    raise_error : bool, optional
        If True, raise an error for lines which are not comments, but cannot
        be read.

    Notes
    -----
    This can also be used to read in .loudest files, or any file which has
    rows of `key=val` data (in which the val can be understood using eval(val)
Gregory Ashton's avatar
Gregory Ashton committed
78
79
80
81
82

    Returns
    -------
    d: Bunch or dict
        The par values as either a `Bunch` or dict type
83

84
85
86
87
    """
    if filename is None:
        filename = '{}/{}.{}'.format(outdir, label, suffix)
    if os.path.isfile(filename) is False:
88
        raise ValueError("No file {} found".format(filename))
Gregory Ashton's avatar
Gregory Ashton committed
89
90
    d = {}
    with open(filename, 'r') as f:
91
        d = _get_dictionary_from_lines(f, comments, raise_error)
Gregory Ashton's avatar
Gregory Ashton committed
92
93
94
95
96
97
    if return_type in ['bunch', 'Bunch']:
        return Bunch(d)
    elif return_type in ['dict', 'dictionary']:
        return d
    else:
        raise ValueError('return_type {} not understood'.format(return_type))
Gregory Ashton's avatar
Gregory Ashton committed
98
99


100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
def _get_dictionary_from_lines(lines, comments, raise_error):
    """ Return dictionary of key=val pairs for each line in lines

    Parameters
    ----------
    comments : str or list of strings
        Characters denoting that a row is a comment.
    raise_error : bool
        If True, raise an error for lines which are not comments, but cannot
        be read.

    Returns
    -------
    d: Bunch or dict
        The par values as either a `Bunch` or dict type

    """
117
118
    d = {}
    for line in lines:
119
        if line[0] not in comments and len(line.split('=')) == 2:
120
121
122
            try:
                key, val = line.rstrip('\n').split('=')
                key = key.strip()
Gregory Ashton's avatar
Gregory Ashton committed
123
124
125
126
                try:
                    d[key] = np.float64(eval(val.rstrip('; ')))
                except NameError:
                    d[key] = val.rstrip('; ')
127
            except SyntaxError:
128
129
                if raise_error:
                    raise IOError('Line {} not understood'.format(line))
130
131
132
133
134
                pass
    return d


def predict_fstat(h0, cosi, psi, Alpha, Delta, Freq, sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
135
136
                  minStartTime, maxStartTime, IFO=None, assumeSqrtSX=None,
                  **kwargs):
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    """ Wrapper to lalapps_PredictFstat

    Parameters
    ----------
    h0, cosi, psi, Alpha, Delta, Freq : float
        Signal properties, see `lalapps_PredictFstat --help` for more info.
    sftfilepattern : str
        Pattern matching the sftfiles to use.
    minStartTime, maxStartTime : int
    IFO : str
        See `lalapps_PredictFstat --help`
    assumeSqrtSX : float or None
        See `lalapps_PredictFstat --help`, if None this option is not used

    Returns
    -------
    twoF_expected, twoF_sigma : float
        The expectation and standard deviation of 2F

    """
157
158
    tempory_filename = 'fs.tmp'

159
160
161
162
163
164
165
166
167
168
    cl_pfs = []
    cl_pfs.append("lalapps_PredictFstat")
    cl_pfs.append("--h0={}".format(h0))
    cl_pfs.append("--cosi={}".format(cosi))
    cl_pfs.append("--psi={}".format(psi))
    cl_pfs.append("--Alpha={}".format(Alpha))
    cl_pfs.append("--Delta={}".format(Delta))
    cl_pfs.append("--Freq={}".format(Freq))

    cl_pfs.append("--DataFiles='{}'".format(sftfilepattern))
169
    if assumeSqrtSX:
170
        cl_pfs.append("--assumeSqrtSX={}".format(assumeSqrtSX))
171
    if IFO:
172
173
174
175
176
        if ',' in IFO:
            logging.warning('Multiple detector selection not available, using'
                            ' all available data')
        else:
            cl_pfs.append("--IFO={}".format(IFO))
177

178
179
    cl_pfs.append("--minStartTime={}".format(int(minStartTime)))
    cl_pfs.append("--maxStartTime={}".format(int(maxStartTime)))
180
    cl_pfs.append("--outputFstat={}".format(tempory_filename))
181

182
183
    cl_pfs = " ".join(cl_pfs)
    helper_functions.run_commandline(cl_pfs)
184
185
    d = read_par(filename=tempory_filename)
    os.remove(tempory_filename)
186
187
188
    return float(d['twoF_expected']), float(d['twoF_sigma'])


Gregory Ashton's avatar
Gregory Ashton committed
189
class BaseSearchClass(object):
190
    """ The base search class providing parent methods to other searches """
Gregory Ashton's avatar
Gregory Ashton committed
191

192
    def _add_log_file(self):
Gregory Ashton's avatar
Gregory Ashton committed
193
194
195
196
197
198
199
200
201
        """ Log output to a file, requires class to have outdir and label """
        logfilename = '{}/{}.log'.format(self.outdir, self.label)
        fh = logging.FileHandler(logfilename)
        fh.setLevel(logging.INFO)
        fh.setFormatter(logging.Formatter(
            '%(asctime)s %(levelname)-8s: %(message)s',
            datefmt='%y-%m-%d %H:%M'))
        logging.getLogger().addHandler(fh)

202
    def _shift_matrix(self, n, dT):
Gregory Ashton's avatar
Gregory Ashton committed
203
204
205
206
        """ Generate the shift matrix

        Parameters
        ----------
207
        n : int
Gregory Ashton's avatar
Gregory Ashton committed
208
            The dimension of the shift-matrix to generate
209
        dT : float
Gregory Ashton's avatar
Gregory Ashton committed
210
211
212
213
            The time delta of the shift matrix

        Returns
        -------
214
215
        m : ndarray, shape (n,)
            The shift matrix.
Gregory Ashton's avatar
Gregory Ashton committed
216

217
        """
Gregory Ashton's avatar
Gregory Ashton committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
        m = np.zeros((n, n))
        factorial = np.math.factorial
        for i in range(n):
            for j in range(n):
                if i == j:
                    m[i, j] = 1.0
                elif i > j:
                    m[i, j] = 0.0
                else:
                    if i == 0:
                        m[i, j] = 2*np.pi*float(dT)**(j-i) / factorial(j-i)
                    else:
                        m[i, j] = float(dT)**(j-i) / factorial(j-i)
        return m

233
    def _shift_coefficients(self, theta, dT):
Gregory Ashton's avatar
Gregory Ashton committed
234
235
236
237
        """ Shift a set of coefficients by dT

        Parameters
        ----------
238
239
        theta : array-like, shape (n,)
            Vector of the expansion coefficients to transform starting from the
Gregory Ashton's avatar
Gregory Ashton committed
240
            lowest degree e.g [phi, F0, F1,...].
241
242
        dT : float
            Difference between the two reference times as tref_new - tref_old.
Gregory Ashton's avatar
Gregory Ashton committed
243
244
245

        Returns
        -------
246
247
        theta_new : ndarray, shape (n,)
            Vector of the coefficients as evaluated as the new reference time.
Gregory Ashton's avatar
Gregory Ashton committed
248
249
        """
        n = len(theta)
250
        m = self._shift_matrix(n, dT)
Gregory Ashton's avatar
Gregory Ashton committed
251
252
        return np.dot(m, theta)

253
    def _calculate_thetas(self, theta, delta_thetas, tbounds, theta0_idx=0):
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
        """ Calculates the set of thetas given delta_thetas, the jumps

        This is used when generating data containing glitches or timing noise.
        Specifically, the source parameters of the signal are not constant in
        time, but jump by `delta_theta` at `tbounds`.

        Parameters
        ----------
        theta : array_like
            The source parameters of size (n,).
        delta_thetas : array_like
            The jumps in the source parameters of size (m, n) where m is the
            number of jumps.
        tbounds : array_like
            Time boundaries of the jumps of size (m+2,).
        theta0_idx : int
            Index of the segment for which the theta are defined.

        Returns
        -------
        ndarray
            The set of thetas, shape (m+1, n).

        """
Gregory Ashton's avatar
Gregory Ashton committed
278
279
280
        thetas = [theta]
        for i, dt in enumerate(delta_thetas):
            if i < theta0_idx:
281
                pre_theta_at_ith_glitch = self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
282
283
                    thetas[0], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch - dt
284
                thetas.insert(0, self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
285
286
287
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))

            elif i >= theta0_idx:
288
                pre_theta_at_ith_glitch = self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
289
290
                    thetas[i], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch + dt
291
                thetas.append(self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
292
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))
293
        self.thetas_at_tref = thetas
Gregory Ashton's avatar
Gregory Ashton committed
294
295
        return thetas

296
    def _get_list_of_matching_sfts(self):
297
        """ Returns a list of sfts matching the attribute sftfilepattern """
298
299
        sftfilepatternlist = np.atleast_1d(self.sftfilepattern.split(';'))
        matches = [glob.glob(p) for p in sftfilepatternlist]
300
        matches = [item for sublist in matches for item in sublist]
301
302
303
304
        if len(matches) > 0:
            return matches
        else:
            raise IOError('No sfts found matching {}'.format(
305
                self.sftfilepattern))
306

307
308
    def set_ephemeris_files(self, earth_ephem=None, sun_ephem=None):
        """ Set the ephemeris files to use for the Earth and Sun
Gregory Ashton's avatar
Gregory Ashton committed
309

310
311
312
313
314
        Parameters
        ----------
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
Gregory Ashton's avatar
Gregory Ashton committed
315

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
        Note: If not manually set, default values in ~/.pyfstat are used

        """

        earth_ephem_default, sun_ephem_default = (
                helper_functions.get_ephemeris_files())

        if earth_ephem is None:
            self.earth_ephem = earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = sun_ephem_default


class ComputeFstat(BaseSearchClass):
    """ Base class providing interface to `lalpulsar.ComputeFstat` """
Gregory Ashton's avatar
Gregory Ashton committed
331
332

    @helper_functions.initializer
333
    def __init__(self, tref, sftfilepattern=None, minStartTime=None,
David Keitel's avatar
David Keitel committed
334
335
                 maxStartTime=None, binary=False, BSGL=False,
                 transientWindowType=None, t0Band=None, tauBand=None,
336
                 dt0=None, dtau=None,
337
                 detectors=None, minCoverFreq=None, maxCoverFreq=None,
338
                 injectSources=None, injectSqrtSX=None, assumeSqrtSX=None,
339
340
                 SSBprec=None,
                 tCWFstatMapVersion='lal'):
Gregory Ashton's avatar
Gregory Ashton committed
341
342
343
        """
        Parameters
        ----------
344
        tref : int
Gregory Ashton's avatar
Gregory Ashton committed
345
            GPS seconds of the reference time.
346
        sftfilepattern : str
347
348
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
349
        minStartTime, maxStartTime : float GPStime
Gregory Ashton's avatar
Gregory Ashton committed
350
351
            Only use SFTs with timestemps starting from (including, excluding)
            this epoch
352
        binary : bool
Gregory Ashton's avatar
Gregory Ashton committed
353
            If true, search of binary parameters.
Gregory Ashton's avatar
Gregory Ashton committed
354
355
        BSGL : bool
            If true, compute the BSGL rather than the twoF value.
David Keitel's avatar
David Keitel committed
356
357
358
        transientWindowType: str
            If 'rect' or 'exp',
            allow for the Fstat to be computed over a transient range.
Gregory Ashton's avatar
Gregory Ashton committed
359
360
            ('none' instead of None explicitly calls the transient-window
            function, but with the full range, for debugging)
361
362
363
364
365
        t0Band, tauBand: int
            if >0, search t0 in (minStartTime,minStartTime+t0Band)
                   and tau in (2*Tsft,2*Tsft+tauBand).
            if =0, only compute CW Fstat with t0=minStartTime,
                   tau=maxStartTime-minStartTime.
366
367
368
        dt0, dtau: int
            grid resolutions in transient start-time and duration,
            both default to Tsft
369
        detectors : str
Gregory Ashton's avatar
Gregory Ashton committed
370
            Two character reference to the data to use, specify None for no
371
            contraint. If multiple-separate by comma.
372
        minCoverFreq, maxCoverFreq : float
Gregory Ashton's avatar
Gregory Ashton committed
373
374
375
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
376
        injectSources : dict or str
377
378
            Either a dictionary of the values to inject, or a string pointing
            to the .cff file to inject
379
        injectSqrtSX :
380
            Not yet implemented
381
        assumeSqrtSX : float
382
383
384
            Don't estimate noise-floors but assume (stationary) per-IFO
            sqrt{SX} (if single value: use for all IFOs). If signal only,
            set sqrtSX=1
385
        SSBprec : int
386
387
            Flag to set the SSB calculation: 0=Newtonian, 1=relativistic,
            2=relativisitic optimised, 3=DMoff, 4=NO_SPIN
388
389
390
        tCWFstatMapVersion: str
            Choose between standard 'lal' implementation,
            'pycuda' for gpu, and some others for devel/debug.
Gregory Ashton's avatar
Gregory Ashton committed
391
392
393

        """

394
        self.set_ephemeris_files()
Gregory Ashton's avatar
Gregory Ashton committed
395
396
        self.init_computefstatistic_single_point()

397
398
399
400
401
402
403
404
405
406
407
    def _get_SFTCatalog(self):
        """ Load the SFTCatalog

        If sftfilepattern is specified, load the data. If not, attempt to
        create data on the fly.

        Returns
        -------
        SFTCatalog: lalpulsar.SFTCatalog

        """
Gregory Ashton's avatar
Gregory Ashton committed
408
409
        if hasattr(self, 'SFTCatalog'):
            return
410
        if self.sftfilepattern is None:
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
            for k in ['minStartTime', 'maxStartTime', 'detectors']:
                if getattr(self, k) is None:
                    raise ValueError('You must provide "{}" to injectSources'
                                     .format(k))
            C1 = getattr(self, 'injectSources', None) is None
            C2 = getattr(self, 'injectSqrtSX', None) is None
            if C1 and C2:
                raise ValueError('You must specify either one of injectSources'
                                 ' or injectSqrtSX')
            SFTCatalog = lalpulsar.SFTCatalog()
            Tsft = 1800
            Toverlap = 0
            Tspan = self.maxStartTime - self.minStartTime
            detNames = lal.CreateStringVector(
                *[d for d in self.detectors.split(',')])
            multiTimestamps = lalpulsar.MakeMultiTimestamps(
                self.minStartTime, Tspan, Tsft, Toverlap, detNames.length)
            SFTCatalog = lalpulsar.MultiAddToFakeSFTCatalog(
                SFTCatalog, detNames, multiTimestamps)
            return SFTCatalog

Gregory Ashton's avatar
Gregory Ashton committed
432
433
        logging.info('Initialising SFTCatalog')
        constraints = lalpulsar.SFTConstraints()
434
        if self.detectors:
435
            if ',' in self.detectors:
436
437
                logging.warning('Multiple detector selection not available,'
                                ' using all available data')
438
439
            else:
                constraints.detector = self.detectors
Gregory Ashton's avatar
Gregory Ashton committed
440
441
442
443
444
        if self.minStartTime:
            constraints.minStartTime = lal.LIGOTimeGPS(self.minStartTime)
        if self.maxStartTime:
            constraints.maxStartTime = lal.LIGOTimeGPS(self.maxStartTime)
        logging.info('Loading data matching pattern {}'.format(
445
446
                     self.sftfilepattern))
        SFTCatalog = lalpulsar.SFTdataFind(self.sftfilepattern, constraints)
447

Gregory Ashton's avatar
Gregory Ashton committed
448
        SFT_timestamps = [d.header.epoch for d in SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
449
        self.SFT_timestamps = [float(s) for s in SFT_timestamps]
450
451
        if len(SFT_timestamps) == 0:
            raise ValueError('Failed to load any data')
Gregory Ashton's avatar
Gregory Ashton committed
452
453
454
455
456
        if args.quite is False and args.no_interactive is False:
            try:
                from bashplotlib.histogram import plot_hist
                print('Data timestamps histogram:')
                plot_hist(SFT_timestamps, height=5, bincount=50)
Gregory Ashton's avatar
Gregory Ashton committed
457
            except ImportError:
Gregory Ashton's avatar
Gregory Ashton committed
458
                pass
459

460
        cl_tconv1 = 'lalapps_tconvert {}'.format(int(SFT_timestamps[0]))
461
462
        output = helper_functions.run_commandline(cl_tconv1,
                                                  log_level=logging.DEBUG)
463
464
        tconvert1 = output.rstrip('\n')
        cl_tconv2 = 'lalapps_tconvert {}'.format(int(SFT_timestamps[-1]))
465
466
        output = helper_functions.run_commandline(cl_tconv2,
                                                  log_level=logging.DEBUG)
467
        tconvert2 = output.rstrip('\n')
Gregory Ashton's avatar
Gregory Ashton committed
468
469
        logging.info('Data spans from {} ({}) to {} ({})'.format(
            int(SFT_timestamps[0]),
470
            tconvert1,
Gregory Ashton's avatar
Gregory Ashton committed
471
            int(SFT_timestamps[-1]),
472
            tconvert2))
473
474
475
476
477
478
479
480
481
482
483
484
485

        if self.minStartTime is None:
            self.minStartTime = int(SFT_timestamps[0])
        if self.maxStartTime is None:
            self.maxStartTime = int(SFT_timestamps[-1])

        detector_names = list(set([d.header.name for d in SFTCatalog.data]))
        self.detector_names = detector_names
        if len(detector_names) == 0:
            raise ValueError('No data loaded.')
        logging.info('Loaded {} data files from detectors {}'.format(
            len(SFT_timestamps), detector_names))

486
        return SFTCatalog
Gregory Ashton's avatar
Gregory Ashton committed
487
488
489
490

    def init_computefstatistic_single_point(self):
        """ Initilisation step of run_computefstatistic for a single point """

491
        SFTCatalog = self._get_SFTCatalog()
Gregory Ashton's avatar
Gregory Ashton committed
492
493
494
495
496
497

        logging.info('Initialising ephems')
        ephems = lalpulsar.InitBarycenter(self.earth_ephem, self.sun_ephem)

        logging.info('Initialising FstatInput')
        dFreq = 0
David Keitel's avatar
David Keitel committed
498
        if self.transientWindowType:
Gregory Ashton's avatar
Gregory Ashton committed
499
500
501
502
503
504
            self.whatToCompute = lalpulsar.FSTATQ_ATOMS_PER_DET
        else:
            self.whatToCompute = lalpulsar.FSTATQ_2F

        FstatOAs = lalpulsar.FstatOptionalArgs()
        FstatOAs.randSeed = lalpulsar.FstatOptionalArgsDefaults.randSeed
505
506
507
508
509
        if self.SSBprec:
            logging.info('Using SSBprec={}'.format(self.SSBprec))
            FstatOAs.SSBprec = self.SSBprec
        else:
            FstatOAs.SSBprec = lalpulsar.FstatOptionalArgsDefaults.SSBprec
Gregory Ashton's avatar
Gregory Ashton committed
510
511
512
        FstatOAs.Dterms = lalpulsar.FstatOptionalArgsDefaults.Dterms
        FstatOAs.runningMedianWindow = lalpulsar.FstatOptionalArgsDefaults.runningMedianWindow
        FstatOAs.FstatMethod = lalpulsar.FstatOptionalArgsDefaults.FstatMethod
513
514
515
516
517
518
519
520
        if self.assumeSqrtSX is None:
            FstatOAs.assumeSqrtSX = lalpulsar.FstatOptionalArgsDefaults.assumeSqrtSX
        else:
            mnf = lalpulsar.MultiNoiseFloor()
            assumeSqrtSX = np.atleast_1d(self.assumeSqrtSX)
            mnf.sqrtSn[:len(assumeSqrtSX)] = assumeSqrtSX
            mnf.length = len(assumeSqrtSX)
            FstatOAs.assumeSqrtSX = mnf
Gregory Ashton's avatar
Gregory Ashton committed
521
522
523
        FstatOAs.prevInput = lalpulsar.FstatOptionalArgsDefaults.prevInput
        FstatOAs.collectTiming = lalpulsar.FstatOptionalArgsDefaults.collectTiming

Gregory Ashton's avatar
Gregory Ashton committed
524
        if hasattr(self, 'injectSources') and type(self.injectSources) == dict:
Gregory Ashton's avatar
Gregory Ashton committed
525
526
527
528
529
530
531
532
533
534
            logging.info('Injecting source with params: {}'.format(
                self.injectSources))
            PPV = lalpulsar.CreatePulsarParamsVector(1)
            PP = PPV.data[0]
            PP.Amp.h0 = self.injectSources['h0']
            PP.Amp.cosi = self.injectSources['cosi']
            PP.Amp.phi0 = self.injectSources['phi0']
            PP.Amp.psi = self.injectSources['psi']
            PP.Doppler.Alpha = self.injectSources['Alpha']
            PP.Doppler.Delta = self.injectSources['Delta']
Gregory Ashton's avatar
Gregory Ashton committed
535
536
537
538
539
540
            if 'fkdot' in self.injectSources:
                PP.Doppler.fkdot = np.array(self.injectSources['fkdot'])
            else:
                PP.Doppler.fkdot = np.zeros(lalpulsar.PULSAR_MAX_SPINS)
                for i, key in enumerate(['F0', 'F1', 'F2']):
                    PP.Doppler.fkdot[i] = self.injectSources[key]
Gregory Ashton's avatar
Gregory Ashton committed
541
542
543
544
            PP.Doppler.refTime = self.tref
            if 't0' not in self.injectSources:
                PP.Transient.type = lalpulsar.TRANSIENT_NONE
            FstatOAs.injectSources = PPV
Gregory Ashton's avatar
Gregory Ashton committed
545
        elif hasattr(self, 'injectSources') and type(self.injectSources) == str:
546
547
548
549
            logging.info('Injecting source from param file: {}'.format(
                self.injectSources))
            PPV = lalpulsar.PulsarParamsFromFile(self.injectSources, self.tref)
            FstatOAs.injectSources = PPV
Gregory Ashton's avatar
Gregory Ashton committed
550
551
        else:
            FstatOAs.injectSources = lalpulsar.FstatOptionalArgsDefaults.injectSources
552
553
554
555
        if hasattr(self, 'injectSqrtSX') and self.injectSqrtSX is not None:
            raise ValueError('injectSqrtSX not implemented')
        else:
            FstatOAs.InjectSqrtSX = lalpulsar.FstatOptionalArgsDefaults.injectSqrtSX
Gregory Ashton's avatar
Gregory Ashton committed
556
        if self.minCoverFreq is None or self.maxCoverFreq is None:
557
            fAs = [d.header.f0 for d in SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
558
            fBs = [d.header.f0 + (d.numBins-1)*d.header.deltaF
559
                   for d in SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
560
561
562
563
564
565
            self.minCoverFreq = np.min(fAs) + 0.5
            self.maxCoverFreq = np.max(fBs) - 0.5
            logging.info('Min/max cover freqs not provided, using '
                         '{} and {}, est. from SFTs'.format(
                             self.minCoverFreq, self.maxCoverFreq))

566
        self.FstatInput = lalpulsar.CreateFstatInput(SFTCatalog,
Gregory Ashton's avatar
Gregory Ashton committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
                                                     self.minCoverFreq,
                                                     self.maxCoverFreq,
                                                     dFreq,
                                                     ephems,
                                                     FstatOAs
                                                     )

        logging.info('Initialising PulsarDoplerParams')
        PulsarDopplerParams = lalpulsar.PulsarDopplerParams()
        PulsarDopplerParams.refTime = self.tref
        PulsarDopplerParams.Alpha = 1
        PulsarDopplerParams.Delta = 1
        PulsarDopplerParams.fkdot = np.array([0, 0, 0, 0, 0, 0, 0])
        self.PulsarDopplerParams = PulsarDopplerParams

        logging.info('Initialising FstatResults')
        self.FstatResults = lalpulsar.FstatResults()

        if self.BSGL:
            if len(self.detector_names) < 2:
587
                raise ValueError("Can't use BSGL with single detectors data")
Gregory Ashton's avatar
Gregory Ashton committed
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
            else:
                logging.info('Initialising BSGL')

            # Tuning parameters - to be reviewed
            numDetectors = 2
            if hasattr(self, 'nsegs'):
                p_val_threshold = 1e-6
                Fstar0s = np.linspace(0, 1000, 10000)
                p_vals = scipy.special.gammaincc(2*self.nsegs, Fstar0s)
                Fstar0 = Fstar0s[np.argmin(np.abs(p_vals - p_val_threshold))]
                if Fstar0 == Fstar0s[-1]:
                    raise ValueError('Max Fstar0 exceeded')
            else:
                Fstar0 = 15.
            logging.info('Using Fstar0 of {:1.2f}'.format(Fstar0))
            oLGX = np.zeros(10)
            oLGX[:numDetectors] = 1./numDetectors
            self.BSGLSetup = lalpulsar.CreateBSGLSetup(numDetectors,
                                                       Fstar0,
                                                       oLGX,
                                                       True,
                                                       1)
            self.twoFX = np.zeros(10)
            self.whatToCompute = (self.whatToCompute +
                                  lalpulsar.FSTATQ_2F_PER_DET)

David Keitel's avatar
David Keitel committed
614
        if self.transientWindowType:
Gregory Ashton's avatar
Gregory Ashton committed
615
616
            logging.info('Initialising transient parameters')
            self.windowRange = lalpulsar.transientWindowRange_t()
David Keitel's avatar
David Keitel committed
617
618
619
620
621
622
            transientWindowTypes = {'none': lalpulsar.TRANSIENT_NONE,
                                    'rect': lalpulsar.TRANSIENT_RECTANGULAR,
                                    'exp':  lalpulsar.TRANSIENT_EXPONENTIAL}
            if self.transientWindowType in transientWindowTypes:
                self.windowRange.type = transientWindowTypes[self.transientWindowType]
            else:
Gregory Ashton's avatar
Gregory Ashton committed
623
624
625
626
                raise ValueError(
                    'Unknown window-type ({}) passed as input, [{}] allows.'
                    .format(self.transientWindowType,
                            ', '.join(transientWindowTypes)))
David Keitel's avatar
David Keitel committed
627

628
            # default spacing
David Keitel's avatar
David Keitel committed
629
            self.Tsft = int(1.0/SFTCatalog.data[0].header.deltaF)
630
631
632
633
634
635
            self.windowRange.dt0 = self.Tsft
            self.windowRange.dtau = self.Tsft

            # special treatment of window_type = none ==> replace by rectangular window spanning all the data
            if self.windowRange.type == lalpulsar.TRANSIENT_NONE:
                self.windowRange.t0 = int(self.minStartTime)
Gregory Ashton's avatar
Gregory Ashton committed
636
                self.windowRange.t0Band = 0
637
                self.windowRange.tau = int(self.maxStartTime-self.minStartTime)
David Keitel's avatar
David Keitel committed
638
                self.windowRange.tauBand = 0
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
            else: # user-set bands and spacings
                if self.t0Band is None:
                    self.windowRange.t0Band = 0
                else:
                    if not isinstance(self.t0Band, int):
                        logging.warn('Casting non-integer t0Band={} to int...'
                                     .format(self.t0Band))
                        self.t0Band = int(self.t0Band)
                    self.windowRange.t0Band = self.t0Band
                    if self.dt0:
                        self.windowRange.dt0 = self.dt0
                if self.tauBand is None:
                    self.windowRange.tauBand = 0
                else:
                    if not isinstance(self.tauBand, int):
                        logging.warn('Casting non-integer tauBand={} to int...'
                                     .format(self.tauBand))
                        self.tauBand = int(self.tauBand)
                    self.windowRange.tauBand = self.tauBand
                    if self.dtau:
                        self.windowRange.dtau = self.dtau
Gregory Ashton's avatar
Gregory Ashton committed
660

661
662
            self.tCWFstatMapFeatures = tcw.init_transient_fstat_map_features()

663
664
665
    def get_fullycoherent_twoF(self, tstart, tend, F0, F1, F2, Alpha, Delta,
                               asini=None, period=None, ecc=None, tp=None,
                               argp=None):
Gregory Ashton's avatar
Gregory Ashton committed
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
        """ Returns twoF or ln(BSGL) fully-coherently at a single point """
        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
                               1,
                               self.whatToCompute
                               )

David Keitel's avatar
David Keitel committed
684
        if not self.transientWindowType:
Gregory Ashton's avatar
Gregory Ashton committed
685
686
687
688
689
690
691
692
693
694
695
            if self.BSGL is False:
                return self.FstatResults.twoF[0]

            twoF = np.float(self.FstatResults.twoF[0])
            self.twoFX[0] = self.FstatResults.twoFPerDet(0)
            self.twoFX[1] = self.FstatResults.twoFPerDet(1)
            log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
                                               self.BSGLSetup)
            return log10_BSGL/np.log10(np.exp(1))

        self.windowRange.t0 = int(tstart)  # TYPE UINT4
David Keitel's avatar
David Keitel committed
696
697
698
699
700
        if self.windowRange.tauBand == 0:
            # true single-template search also in transient params:
            # actual (t0,tau) window was set with tstart, tend before
            self.windowRange.tau = int(tend - tstart)  # TYPE UINT4
        else:
Gregory Ashton's avatar
Gregory Ashton committed
701
702
            # grid search: start at minimum tau required for nondegenerate
            # F-stat computation
David Keitel's avatar
David Keitel committed
703
            self.windowRange.tau = int(2*self.Tsft)
Gregory Ashton's avatar
Gregory Ashton committed
704

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
        #logging.debug('Calling "%s" version of ComputeTransientFstatMap() with windowRange: (type=%d (%s), t0=%f, t0Band=%f, dt0=%f, tau=%f, tauBand=%f, dtau=%f)...' % (self.tCWFstatMapVersion, self.windowRange.type, self.transientWindowType, self.windowRange.t0, self.windowRange.t0Band, self.windowRange.dt0, self.windowRange.tau, self.windowRange.tauBand, self.windowRange.dtau))
        self.FstatMap = tcw.call_compute_transient_fstat_map( self.tCWFstatMapVersion,
                                                         self.tCWFstatMapFeatures,
                                                         self.FstatResults.multiFatoms[0],
                                                         self.windowRange
                                                       )
        if self.tCWFstatMapVersion == 'lal':
            F_mn = self.FstatMap.F_mn.data
        else:
            F_mn = self.FstatMap.F_mn

        #logging.debug('maxF:   {}'.format(FstatMap.maxF))
        #logging.debug('t0_ML:  %ds=T0+%fd' % (FstatMap.t0_ML, (FstatMap.t0_ML-tstart)/(3600.*24.)))
        #logging.debug('tau_ML: %ds=%fd' % (FstatMap.tau_ML, FstatMap.tau_ML/(3600.*24.)))
        #logging.debug('F_mn:   {}'.format(F_mn))
Gregory Ashton's avatar
Gregory Ashton committed
720

721
        twoF = 2*np.max(F_mn)
Gregory Ashton's avatar
Gregory Ashton committed
722
        if self.BSGL is False:
723
724
725
726
            if np.isnan(twoF):
                return 0
            else:
                return twoF
Gregory Ashton's avatar
Gregory Ashton committed
727
728
729
730
731
732
733
734
735
736

        FstatResults_single = copy.copy(self.FstatResults)
        FstatResults_single.lenth = 1
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
        FS0 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
        FS1 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)

737
738
739
740
741
        # for now, use the Doppler parameter with
        # multi-detector F maximised over t0,tau
        # to return BSGL
        # FIXME: should we instead compute BSGL over the whole F_mn
        # and return the maximum of that?
742
        idx_maxTwoF = np.argmax(F_mn)
743
744
745

        self.twoFX[0] = 2*FS0.F_mn.data[idx_maxTwoF]
        self.twoFX[1] = 2*FS1.F_mn.data[idx_maxTwoF]
Gregory Ashton's avatar
Gregory Ashton committed
746
        log10_BSGL = lalpulsar.ComputeBSGL(
747
                twoF, self.twoFX, self.BSGLSetup)
Gregory Ashton's avatar
Gregory Ashton committed
748
749
750
751
752
753

        return log10_BSGL/np.log10(np.exp(1))

    def calculate_twoF_cumulative(self, F0, F1, F2, Alpha, Delta, asini=None,
                                  period=None, ecc=None, tp=None, argp=None,
                                  tstart=None, tend=None, npoints=1000,
754
755
                                  ):
        """ Calculate the cumulative twoF along the obseration span
756
757
758

        Parameters
        ----------
759
760
        F0, F1, F2, Alpha, Delta: float
            Parameters at which to compute the cumulative twoF
761
762
        asini, period, ecc, tp, argp: float, optional
            Binary parameters at which to compute the cumulative 2F
763
764
765
766
767
768
        tstart, tend: int
            GPS times to restrict the range of data used - automatically
            truncated to the span of data available
        npoints: int
            Number of points to compute twoF along the span

769
770
771
        Notes
        -----
        The minimum cumulatibe twoF is hard-coded to be computed over
772
773
774
775
776
777
        the first 6 hours from either the first timestampe in the data (if
        tstart is smaller than it) or tstart.

        """
        SFTminStartTime = self.SFT_timestamps[0]
        SFTmaxStartTime = self.SFT_timestamps[-1]
Gregory Ashton's avatar
Gregory Ashton committed
778
        tstart = np.max([SFTminStartTime, tstart])
779
780
781
        min_tau = np.max([SFTminStartTime - tstart, 0]) + 3600*6
        max_tau = SFTmaxStartTime - tstart
        taus = np.linspace(min_tau, max_tau, npoints)
Gregory Ashton's avatar
Gregory Ashton committed
782
        twoFs = []
David Keitel's avatar
David Keitel committed
783
784
785
        if not self.transientWindowType:
            # still call the transient-Fstat-map function, but using the full range
            self.transientWindowType = 'none'
Gregory Ashton's avatar
Gregory Ashton committed
786
787
            self.init_computefstatistic_single_point()
        for tau in taus:
788
            detstat = self.get_fullycoherent_twoF(
Gregory Ashton's avatar
Gregory Ashton committed
789
790
                tstart=tstart, tend=tstart+tau, F0=F0, F1=F1, F2=F2,
                Alpha=Alpha, Delta=Delta, asini=asini, period=period, ecc=ecc,
791
792
                tp=tp, argp=argp)
            twoFs.append(detstat)
Gregory Ashton's avatar
Gregory Ashton committed
793
794
795

        return taus, np.array(twoFs)

796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
    def _calculate_predict_fstat_cumulative(self, N, label=None, outdir=None,
                                            IFO=None, pfs_input=None):
        """ Calculates the predicted 2F and standard deviation cumulatively

        Parameters
        ----------
        N : int
            Number of timesteps to use between minStartTime and maxStartTime.
        label, outdir : str, optional
            The label and directory to read in the .loudest file from
        IFO : str
        pfs_input : dict, optional
            Input kwargs to predict_fstat (alternative to giving label and
            outdir).

        Returns
        -------
        times, pfs, pfs_sigma : ndarray, size (N,)

        """
Gregory Ashton's avatar
Gregory Ashton committed
816
817
818
819
820

        if pfs_input is None:
            if os.path.isfile('{}/{}.loudest'.format(outdir, label)) is False:
                raise ValueError(
                    'Need a loudest file to add the predicted Fstat')
821
            loudest = read_par(label=label, outdir=outdir, suffix='loudest')
Gregory Ashton's avatar
Gregory Ashton committed
822
823
            pfs_input = {key: loudest[key] for key in
                         ['h0', 'cosi', 'psi', 'Alpha', 'Delta', 'Freq']}
824
825
826
        times = np.linspace(self.minStartTime, self.maxStartTime, N+1)[1:]
        times = np.insert(times, 0, self.minStartTime + 86400/2.)
        out = [predict_fstat(minStartTime=self.minStartTime, maxStartTime=t,
827
                             sftfilepattern=self.sftfilepattern, IFO=IFO,
828
829
830
831
                             **pfs_input) for t in times]
        pfs, pfs_sigma = np.array(out).T
        return times, pfs, pfs_sigma

832
833
    def plot_twoF_cumulative(self, label, outdir, add_pfs=False, N=15,
                             injectSources=None, ax=None, c='k', savefig=True,
834
                             title=None, plt_label=None, **kwargs):
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
        """ Plot the twoF value cumulatively

        Parameters
        ----------
        label, outdir : str
        add_pfs : bool
            If true, plot the predicted 2F and standard deviation
        N : int
            Number of points to use
        injectSources : dict
            See `ComputeFstat`
        ax : matplotlib.axes._subplots_AxesSubplot, optional
            Axis to add the plot to.
        c : str
            Colour
        savefig : bool
            If true, save the figure in outdir
852
853
        title, plt_label: str
            Figure title and label
854
855
856
857
858
859
860
861
862

        Returns
        -------
        tauS, tauF : ndarray shape (N,)
            If savefig, the times and twoF (cumulative) values
        ax : matplotlib.axes._subplots_AxesSubplot, optional
            If savefig is False

        """
Gregory Ashton's avatar
Gregory Ashton committed
863
864
        if ax is None:
            fig, ax = plt.subplots()
Gregory Ashton's avatar
Gregory Ashton committed
865
866
867
868
869
870
871
        if injectSources:
            pfs_input = dict(
                h0=injectSources['h0'], cosi=injectSources['cosi'],
                psi=injectSources['psi'], Alpha=injectSources['Alpha'],
                Delta=injectSources['Delta'], Freq=injectSources['fkdot'][0])
        else:
            pfs_input = None
872
873

        taus, twoFs = self.calculate_twoF_cumulative(**kwargs)
874
        ax.plot(taus/86400., twoFs, label=plt_label, color=c)
875
        if len(self.detector_names) > 1:
876
877
            detector_names = self.detector_names
            detectors = self.detectors
878
879
880
881
            for d in self.detector_names:
                self.detectors = d
                self.init_computefstatistic_single_point()
                taus, twoFs = self.calculate_twoF_cumulative(**kwargs)
882
883
884
885
886
887
                ax.plot(taus/86400., twoFs, label='{}'.format(d),
                        color=detector_colors[d.lower()])
            self.detectors = detectors
            self.detector_names = detector_names

        if add_pfs:
888
889
            times, pfs, pfs_sigma = self._calculate_predict_fstat_cumulative(
                N=N, label=label, outdir=outdir, pfs_input=pfs_input)
890
891
            ax.fill_between(
                (times-self.minStartTime)/86400., pfs-pfs_sigma, pfs+pfs_sigma,
Gregory Ashton's avatar
Gregory Ashton committed
892
                color=c,
893
894
                label=(r'Predicted $\langle 2\mathcal{F} '
                       r'\rangle\pm $ 1-$\sigma$ band'),
895
896
897
                zorder=-10, alpha=0.2)
            if len(self.detector_names) > 1:
                for d in self.detector_names:
898
899
900
901
                    out = self._calculate_predict_fstat_cumulative(
                        N=N, label=label, outdir=outdir, IFO=d.upper(),
                        pfs_input=pfs_input)
                    times, pfs, pfs_sigma = out
902
903
904
905
906
907
908
909
                    ax.fill_between(
                        (times-self.minStartTime)/86400., pfs-pfs_sigma,
                        pfs+pfs_sigma, color=detector_colors[d.lower()],
                        alpha=0.5,
                        label=(
                            'Predicted $2\mathcal{{F}}$ 1-$\sigma$ band ({})'
                            .format(d.upper())),
                        zorder=-10)
910

Gregory Ashton's avatar
Gregory Ashton committed
911
912
913
914
915
916
917
        ax.set_xlabel(r'Days from $t_{{\rm start}}={:.0f}$'.format(
            kwargs['tstart']))
        if self.BSGL:
            ax.set_ylabel(r'$\log_{10}(\mathrm{BSGL})_{\rm cumulative}$')
        else:
            ax.set_ylabel(r'$\widetilde{2\mathcal{F}}_{\rm cumulative}$')
        ax.set_xlim(0, taus[-1]/86400)
918
919
        if plt_label:
            ax.legend(frameon=False, loc=2, fontsize=6)
Gregory Ashton's avatar
Gregory Ashton committed
920
921
922
923
924
925
926
927
928
        if title:
            ax.set_title(title)
        if savefig:
            plt.tight_layout()
            plt.savefig('{}/{}_twoFcumulative.png'.format(outdir, label))
            return taus, twoFs
        else:
            return ax

929
930
931
932
933
934
935
936
937
938
939
940
    def write_atoms_to_file(self, fnamebase=''):
        multiFatoms = getattr(self.FstatResults, 'multiFatoms', None)
        if multiFatoms and multiFatoms[0]:
            dopplerName = lalpulsar.PulsarDopplerParams2String ( self.PulsarDopplerParams )
            #fnameAtoms = os.path.join(self.outdir,'Fstatatoms_%s.dat' % dopplerName)
            fnameAtoms = fnamebase + '_Fstatatoms_%s.dat' % dopplerName
            fo = lal.FileOpen(fnameAtoms, 'w')
            lalpulsar.write_MultiFstatAtoms_to_fp ( fo, multiFatoms[0] )
            del fo # instead of lal.FileClose() which is not SWIG-exported
        else:
            raise RuntimeError('Cannot print atoms vector to file: no FstatResults.multiFatoms, or it is None!')

Gregory Ashton's avatar
Gregory Ashton committed
941

942
class SemiCoherentSearch(ComputeFstat):
Gregory Ashton's avatar
Gregory Ashton committed
943
944
945
    """ A semi-coherent search """

    @helper_functions.initializer
946
    def __init__(self, label, outdir, tref, nsegs=None, sftfilepattern=None,
Gregory Ashton's avatar
Gregory Ashton committed
947
948
                 binary=False, BSGL=False, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
949
950
                 detectors=None, injectSources=None, assumeSqrtSX=None,
                 SSBprec=None):
Gregory Ashton's avatar
Gregory Ashton committed
951
952
953
954
955
956
957
958
959
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, and start and end of the data.
        nsegs: int
            The (fixed) number of segments
960
961
962
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
963
964
965
966
967

        For all other parameters, see pyfstat.ComputeFStat.
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
968
        self.set_ephemeris_files()
David Keitel's avatar
David Keitel committed
969
970
971
        self.transientWindowType = 'rect'
        self.t0Band  = None
        self.tauBand = None
972
        self.tCWFstatMapVersion = 'lal'
Gregory Ashton's avatar
Gregory Ashton committed
973
974
975
976
977
978
979
        self.init_computefstatistic_single_point()
        self.init_semicoherent_parameters()

    def init_semicoherent_parameters(self):
        logging.info(('Initialising semicoherent parameters from {} to {} in'
                      ' {} segments').format(
            self.minStartTime, self.maxStartTime, self.nsegs))
David Keitel's avatar
David Keitel committed
980
        self.transientWindowType = 'rect'
Gregory Ashton's avatar
Gregory Ashton committed
981
982
983
        self.whatToCompute = lalpulsar.FSTATQ_2F+lalpulsar.FSTATQ_ATOMS_PER_DET
        self.tboundaries = np.linspace(self.minStartTime, self.maxStartTime,
                                       self.nsegs+1)
984
        self.Tcoh = self.tboundaries[1] - self.tboundaries[0]
Gregory Ashton's avatar
Gregory Ashton committed
985

986
987
988
989
990
991
992
993
994
        if hasattr(self, 'SFT_timestamps'):
            if self.tboundaries[0] < self.SFT_timestamps[0]:
                logging.debug(
                    'Semi-coherent start time {} before first SFT timestamp {}'
                    .format(self.tboundaries[0], self.SFT_timestamps[0]))
            if self.tboundaries[-1] > self.SFT_timestamps[-1]:
                logging.debug(
                    'Semi-coherent end time {} after last SFT timestamp {}'
                    .format(self.tboundaries[-1], self.SFT_timestamps[-1]))
Gregory Ashton's avatar
Gregory Ashton committed
995

996
    def get_semicoherent_twoF(
997
998
999
1000
1001
            self, F0, F1, F2, Alpha, Delta, asini=None,
            period=None, ecc=None, tp=None, argp=None,
            record_segments=False):
        """ Returns twoF or ln(BSGL) semi-coherently at a single point """

Gregory Ashton's avatar
Gregory Ashton committed
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
                               1,
                               self.whatToCompute
                               )

David Keitel's avatar
David Keitel committed
1019
        #if not self.transientWindowType:
1020
1021
1022
1023
1024
1025
1026
1027
        #    if self.BSGL is False:
        #        return self.FstatResults.twoF[0]
        #    twoF = np.float(self.FstatResults.twoF[0])
        #    self.twoFX[0] = self.FstatResults.twoFPerDet(0)
        #    self.twoFX[1] = self.FstatResults.twoFPerDet(1)
        #    log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
        #                                       self.BSGLSetup)
        #    return log10_BSGL/np.log10(np.exp(1))
Gregory Ashton's avatar
Gregory Ashton committed
1028
1029

        detStat = 0
1030
1031
        if record_segments:
            self.detStat_per_segment = []
Gregory Ashton's avatar
Gregory Ashton committed
1032

1033
1034
1035
        self.windowRange.tau = int(self.Tcoh)  # TYPE UINT4
        for tstart in self.tboundaries[:-1]:
            d_detStat = self._get_per_segment_det_stat(tstart)
1036
1037
1038
            detStat += d_detStat
            if record_segments:
                self.detStat_per_segment.append(d_detStat)
Gregory Ashton's avatar
Gregory Ashton committed
1039
1040
1041

        return detStat

1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
    def _get_per_segment_det_stat(self, tstart):
        self.windowRange.t0 = int(tstart)  # TYPE UINT4

        FS = lalpulsar.ComputeTransientFstatMap(
            self.FstatResults.multiFatoms[0], self.windowRange, False)

        if self.BSGL is False:
            d_detStat = 2*FS.F_mn.data[0][0]
        else:
            FstatResults_single = copy.copy(self.FstatResults)
            FstatResults_single.lenth = 1
            FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
            FS0 = lalpulsar.ComputeTransientFstatMap(
                FstatResults_single.multiFatoms[0], self.windowRange, False)
            FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
            FS1 = lalpulsar.ComputeTransientFstatMap(
                FstatResults_single.multiFatoms[0], self.windowRange, False)

            self.twoFX[0] = 2*FS0.F_mn.data[0][0]
            self.twoFX[1] = 2*FS1.F_mn.data[0][0]
            log10_BSGL = lalpulsar.ComputeBSGL(
                    2*FS.F_mn.data[0][0], self.twoFX, self.BSGLSetup)
            d_detStat = log10_BSGL/np.log10(np.exp(1))
        if np.isnan(d_detStat):
            logging.debug('NaNs in semi-coherent twoF treated as zero')
            d_detStat = 0

        return d_detStat

Gregory Ashton's avatar
Gregory Ashton committed
1071

1072
class SemiCoherentGlitchSearch(ComputeFstat):
Gregory Ashton's avatar
Gregory Ashton committed
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
    """ A semi-coherent glitch search

    This implements a basic `semi-coherent glitch F-stat in which the data
    is divided into segments either side of the proposed glitches and the
    fully-coherent F-stat in each segment is summed to give the semi-coherent
    F-stat
    """

    @helper_functions.initializer
    def __init__(self, label, outdir, tref, minStartTime, maxStartTime,
1083
                 nglitch=1, sftfilepattern=None, theta0_idx=0, BSGL=False,
1084
                 minCoverFreq=None, maxCoverFreq=None, assumeSqrtSX=None,
1085
                 detectors=None, SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, and start and end of the data.
        nglitch: int
            The (fixed) number of glitches; this can zero, but occasionally
            this causes issue (in which case just use ComputeFstat).
1096
1097
1098
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
1099
1100
1101
1102
1103
1104
1105
1106
1107
        theta0_idx, int
            Index (zero-based) of which segment the theta refers to - uyseful
            if providing a tight prior on theta to allow the signal to jump
            too theta (and not just from)

        For all other parameters, see pyfstat.ComputeFStat.
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
1108
        self.set_ephemeris_files()
David Keitel's avatar
David Keitel committed
1109
1110
1111
        self.transientWindowType = 'rect'
        self.t0Band  = None
        self.tauBand = None
1112
        self.tCWFstatMapVersion = 'lal'
David Keitel's avatar
David Keitel committed
1113
        self.binary  = False
Gregory Ashton's avatar
Gregory Ashton committed
1114
1115
        self.init_computefstatistic_single_point()

1116
    def get_semicoherent_nglitch_twoF(self, F0, F1, F2, Alpha, Delta, *args):
Gregory Ashton's avatar
Gregory Ashton committed
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
        """ Returns the semi-coherent glitch summed twoF """

        args = list(args)
        tboundaries = ([self.minStartTime] + args[-self.nglitch:]
                       + [self.maxStartTime])
        delta_F0s = args[-3*self.nglitch:-2*self.nglitch]
        delta_F1s = args[-2*self.nglitch:-self.nglitch]
        delta_F2 = np.zeros(len(delta_F0s))
        delta_phi = np.zeros(len(delta_F0s))
        theta = [0, F0, F1, F2]
        delta_thetas = np.atleast_2d(
                np.array([delta_phi, delta_F0s, delta_F1s, delta_F2]).T)

1130
        thetas = self._calculate_thetas(theta, delta_thetas, tboundaries,
1131
                                        theta0_idx=self.theta0_idx)
Gregory Ashton's avatar
Gregory Ashton committed
1132
1133
1134
1135

        twoFSum = 0
        for i, theta_i_at_tref in enumerate(thetas):
            ts, te = tboundaries[i], tboundaries[i+1]
1136
            if te - ts > 1800:
1137
1138
1139
1140
                twoFVal = self.get_fullycoherent_twoF(
                    ts, te, theta_i_at_tref[1], theta_i_at_tref[2],
                    theta_i_at_tref[3], Alpha, Delta)
                twoFSum += twoFVal
Gregory Ashton's avatar
Gregory Ashton committed
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157

        if np.isfinite(twoFSum):
            return twoFSum
        else:
            return -np.inf

    def compute_glitch_fstat_single(self, F0, F1, F2, Alpha, Delta, delta_F0,
                                    delta_F1, tglitch):
        """ Returns the semi-coherent glitch summed twoF for nglitch=1

        Note: OBSOLETE, used only for testing
        """

        theta = [F0, F1, F2]
        delta_theta = [delta_F0, delta_F1, 0]
        tref = self.tref

1158
        theta_at_glitch = self._shift_coefficients(theta, tglitch - tref)
Gregory Ashton's avatar
Gregory Ashton committed
1159
        theta_post_glitch_at_glitch = theta_at_glitch + delta_theta
1160
        theta_post_glitch = self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
1161
1162
            theta_post_glitch_at_glitch, tref - tglitch)

1163
        twoFsegA = self.get_fullycoherent_twoF(
Gregory Ashton's avatar
Gregory Ashton committed
1164
1165
1166
1167
1168
1169
            self.minStartTime, tglitch, theta[0], theta[1], theta[2], Alpha,
            Delta)

        if tglitch == self.maxStartTime:
            return twoFsegA

1170
        twoFsegB = self.get_fullycoherent_twoF(
Gregory Ashton's avatar
Gregory Ashton committed
1171
1172
1173
1174
1175
            tglitch, self.maxStartTime, theta_post_glitch[0],
            theta_post_glitch[1], theta_post_glitch[2], Alpha,
            Delta)

        return twoFsegA + twoFsegB