pyfstat.py 89.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
""" Classes for various types of searches using ComputeFstatistic """
import os
import sys
import itertools
import logging
import argparse
import copy
import glob
import inspect
from functools import wraps
11
import subprocess
12
from collections import OrderedDict
13
14
15

import numpy as np
import matplotlib
16
matplotlib.use('Agg')
17
18
19
20
import matplotlib.pyplot as plt
import emcee
import corner
import dill as pickle
21
import lal
22
23
import lalpulsar

24
25
26
27
28
29
try:
    from tqdm import tqdm
except ImportError:
    def tqdm(x):
        return x

30
plt.rcParams['text.usetex'] = True
31
plt.rcParams['axes.formatter.useoffset'] = False
32

33
34
35
36
37
38
39
config_file = os.path.expanduser('~')+'/.pyfstat.conf'
if os.path.isfile(config_file):
    d = {}
    with open(config_file, 'r') as f:
        for line in f:
            k, v = line.split('=')
            k = k.replace(' ', '')
40
            v = v.replace(' ', '').replace("'", "").replace('"', '').replace('\n', '')
41
42
43
44
45
46
            d[k] = v
    earth_ephem = d['earth_ephem']
    sun_ephem = d['sun_ephem']
else:
    logging.warning('No ~/.pyfstat.conf file found please provide the paths '
                    'when initialising searches')
47
48
49
    earth_ephem = None
    sun_ephem = None

50
51
52
53
54
parser = argparse.ArgumentParser()
parser.add_argument("-q", "--quite", help="Decrease output verbosity",
                    action="store_true")
parser.add_argument("-c", "--clean", help="Don't use cached data",
                    action="store_true")
55
parser.add_argument("-u", "--use-old-data", action="store_true")
56
57
58
59
parser.add_argument('unittest_args', nargs='*')
args, unknown = parser.parse_known_args()
sys.argv[1:] = args.unittest_args

Gregory Ashton's avatar
Gregory Ashton committed
60
61
62
63

logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
stream_handler = logging.StreamHandler()
64
if args.quite:
Gregory Ashton's avatar
Gregory Ashton committed
65
    stream_handler.setLevel(logging.WARNING)
66
else:
Gregory Ashton's avatar
Gregory Ashton committed
67
68
69
70
    stream_handler.setLevel(logging.DEBUG)
stream_handler.setFormatter(logging.Formatter(
    '%(asctime)s %(levelname)-8s: %(message)s', datefmt='%H:%M'))
logger.addHandler(stream_handler)
71

72
73

def initializer(func):
74
    """ Decorator function to automatically assign the parameters to self """
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    names, varargs, keywords, defaults = inspect.getargspec(func)

    @wraps(func)
    def wrapper(self, *args, **kargs):
        for name, arg in list(zip(names[1:], args)) + list(kargs.items()):
            setattr(self, name, arg)

        for name, default in zip(reversed(names), reversed(defaults)):
            if not hasattr(self, name):
                setattr(self, name, default)

        func(self, *args, **kargs)

    return wrapper


def read_par(label, outdir):
92
    """ Read in a .par file, returns a dictionary of the values """
93
94
95
96
    filename = '{}/{}.par'.format(outdir, label)
    d = {}
    with open(filename, 'r') as f:
        for line in f:
97
98
99
            if len(line.split('=')) > 1:
                key, val = line.rstrip('\n').split(' = ')
                key = key.strip()
100
                d[key] = np.float64(eval(val.rstrip('; ')))
101
102
103
104
    return d


class BaseSearchClass(object):
105
    """ The base search class, provides general functions """
106
107
108
109

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

110
    def add_log_file(self):
111
        """ Log output to a file, requires class to have outdir and label """
112
113
        logfilename = '{}/{}.log'.format(self.outdir, self.label)
        fh = logging.FileHandler(logfilename)
Gregory Ashton's avatar
Gregory Ashton committed
114
        fh.setLevel(logging.INFO)
115
116
117
118
119
        fh.setFormatter(logging.Formatter(
            '%(asctime)s %(levelname)-8s: %(message)s',
            datefmt='%y-%m-%d %H:%M'))
        logging.getLogger().addHandler(fh)

120
    def shift_matrix(self, n, dT):
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        """ Generate the shift matrix

        Parameters
        ----------
        n: int
            The dimension of the shift-matrix to generate
        dT: float
            The time delta of the shift matrix

        Returns
        -------
        m: array (n, n)
            The shift matrix
        """

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        m = np.zeros((n, n))
        factorial = np.math.factorial
        for i in range(n):
            for j in range(n):
                if i == j:
                    m[i, j] = 1.0
                elif i > j:
                    m[i, j] = 0.0
                else:
                    if i == 0:
                        m[i, j] = 2*np.pi*float(dT)**(j-i) / factorial(j-i)
                    else:
                        m[i, j] = float(dT)**(j-i) / factorial(j-i)
        return m

    def shift_coefficients(self, theta, dT):
        """ Shift a set of coefficients by dT

        Parameters
        ----------
        theta: array-like, shape (n,)
            vector of the expansion coefficients to transform starting from the
158
            lowest degree e.g [phi, F0, F1,...].
159
        dT: float
160
            difference between the two reference times as tref_new - tref_old.
161
162
163
164

        Returns
        -------
        theta_new: array-like shape (n,)
165
            vector of the coefficients as evaluate as the new reference time.
166
        """
167

168
169
170
171
        n = len(theta)
        m = self.shift_matrix(n, dT)
        return np.dot(m, theta)

172
    def calculate_thetas(self, theta, delta_thetas, tbounds, theta0_idx=0):
173
174
175
        """ Calculates the set of coefficients for the post-glitch signal """
        thetas = [theta]
        for i, dt in enumerate(delta_thetas):
176
177
178
179
180
181
182
183
184
185
186
187
188
            if i < theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[0], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch - dt
                thetas.insert(0, self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))

            elif i >= theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[i], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch + dt
                thetas.append(self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))
189
190
191
        return thetas


Gregory Ashton's avatar
Gregory Ashton committed
192
class ComputeFstat(object):
193
    """ Base class providing interface to `lalpulsar.ComputeFstat` """
Gregory Ashton's avatar
Gregory Ashton committed
194
195
196
197
198

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

    @initializer
199
200
    def __init__(self, tref, sftfilepath=None, minStartTime=None,
                 maxStartTime=None, binary=False, transient=True, BSGL=False,
Gregory Ashton's avatar
Gregory Ashton committed
201
202
203
                 BSGL_PREFACTOR=1, BSGL_FLOOR=None, detector=None,
                 minCoverFreq=None, maxCoverFreq=None, earth_ephem=None,
                 sun_ephem=None,
204
                 ):
205
206
207
208
209
        """
        Parameters
        ----------
        tref: int
            GPS seconds of the reference time.
210
211
        sftfilepath: str
            File patern to match SFTs
212
213
214
215
216
217
218
219
220
221
222
223
224
        minStartTime, maxStartTime: float GPStime
            Only use SFTs with timestemps starting from (including, excluding)
            this epoch
        binary: bool
            If true, search of binary parameters.
        transient: bool
            If true, allow for the Fstat to be computed over a transient range.
        BSGL: bool
            If true, compute the BSGL rather than the twoF value.
        BSGL_PREFACTOR: float
            If BSGL is True, one can specify a prefactor to multiply the
            computed BSGL value by, useful in MCMC searches to amplify the
            peaks.
Gregory Ashton's avatar
Gregory Ashton committed
225
226
        BSGL_FLOOR: float
            IF BSGL < BSGL_FLOOR -> BSGL_FLOOR
227
228
229
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
230
231
232
233
234
235
236
237
238
239
        minCoverFreq, maxCoverFreq: float
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput.
            If None defaults defined in BaseSearchClass will be used.

        """
Gregory Ashton's avatar
Gregory Ashton committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        self.init_computefstatistic_single_point()

    def init_computefstatistic_single_point(self):
        """ Initilisation step of run_computefstatistic for a single point """

        logging.info('Initialising SFTCatalog')
        constraints = lalpulsar.SFTConstraints()
        if self.detector:
            constraints.detector = self.detector
255
256
257
258
259
        if self.minStartTime:
            constraints.minStartTime = lal.LIGOTimeGPS(self.minStartTime)
        if self.maxStartTime:
            constraints.maxStartTime = lal.LIGOTimeGPS(self.maxStartTime)

260
        logging.info('Loading data matching pattern {}'.format(
261
262
                     self.sftfilepath))
        SFTCatalog = lalpulsar.SFTdataFind(self.sftfilepath, constraints)
Gregory Ashton's avatar
Gregory Ashton committed
263
        names = list(set([d.header.name for d in SFTCatalog.data]))
264
        SFT_timestamps = [d.header.epoch for d in SFTCatalog.data]
265
        logging.info(
266
            'Loaded {} data files from detectors {} spanning {} to {}'.format(
267
268
                len(SFT_timestamps), names, int(SFT_timestamps[0]),
                int(SFT_timestamps[-1])))
Gregory Ashton's avatar
Gregory Ashton committed
269
270
271
272
273
274

        logging.info('Initialising ephems')
        ephems = lalpulsar.InitBarycenter(self.earth_ephem, self.sun_ephem)

        logging.info('Initialising FstatInput')
        dFreq = 0
275
276
277
278
279
        if self.transient:
            self.whatToCompute = lalpulsar.FSTATQ_ATOMS_PER_DET
        else:
            self.whatToCompute = lalpulsar.FSTATQ_2F

Gregory Ashton's avatar
Gregory Ashton committed
280
281
282
283
284
285
286
287
        FstatOptionalArgs = lalpulsar.FstatOptionalArgsDefaults

        if self.minCoverFreq is None or self.maxCoverFreq is None:
            fA = SFTCatalog.data[0].header.f0
            numBins = SFTCatalog.data[0].numBins
            fB = fA + (numBins-1)*SFTCatalog.data[0].header.deltaF
            self.minCoverFreq = fA + 0.5
            self.maxCoverFreq = fB - 0.5
288
289
290
            logging.info('Min/max cover freqs not provided, using '
                         '{} and {}, est. from SFTs'.format(
                             self.minCoverFreq, self.maxCoverFreq))
Gregory Ashton's avatar
Gregory Ashton committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

        self.FstatInput = lalpulsar.CreateFstatInput(SFTCatalog,
                                                     self.minCoverFreq,
                                                     self.maxCoverFreq,
                                                     dFreq,
                                                     ephems,
                                                     FstatOptionalArgs
                                                     )

        logging.info('Initialising PulsarDoplerParams')
        PulsarDopplerParams = lalpulsar.PulsarDopplerParams()
        PulsarDopplerParams.refTime = self.tref
        PulsarDopplerParams.Alpha = 1
        PulsarDopplerParams.Delta = 1
        PulsarDopplerParams.fkdot = np.array([0, 0, 0, 0, 0, 0, 0])
        self.PulsarDopplerParams = PulsarDopplerParams

        logging.info('Initialising FstatResults')
        self.FstatResults = lalpulsar.FstatResults()

311
        if self.BSGL:
Gregory Ashton's avatar
Gregory Ashton committed
312
313
            if len(names) < 2:
                raise ValueError("Can't use BSGL with single detector data")
314
315
316
317
318
319
320
321
322
323
            if self.BSGL_FLOOR is None:
                logging.info('Initialising BSGL with prefactor {:2.2f}'
                             .format(self.BSGL_PREFACTOR)
                             )
            else:
                logging.info('Initialising BSGL with prefactor {:0.2f} and '
                             'floor {}'.format(self.BSGL_PREFACTOR,
                                               self.BSGL_FLOOR)
                             )

324
325
            # Tuning parameters - to be reviewed
            numDetectors = 2
Gregory Ashton's avatar
Gregory Ashton committed
326
            Fstar0sc = 15.
327
            oLGX = np.zeros(10)
Gregory Ashton's avatar
Gregory Ashton committed
328
            oLGX[:numDetectors] = 1./numDetectors
329
330
331
            self.BSGLSetup = lalpulsar.CreateBSGLSetup(numDetectors,
                                                       Fstar0sc,
                                                       oLGX,
332
                                                       True,
333
334
                                                       1)
            self.twoFX = np.zeros(10)
Gregory Ashton's avatar
Gregory Ashton committed
335
            self.whatToCompute = (self.whatToCompute +
336
337
                                  lalpulsar.FSTATQ_2F_PER_DET)

338
        if self.transient:
339
            logging.info('Initialising transient parameters')
340
341
342
343
344
345
            self.windowRange = lalpulsar.transientWindowRange_t()
            self.windowRange.type = lalpulsar.TRANSIENT_RECTANGULAR
            self.windowRange.t0Band = 0
            self.windowRange.dt0 = 1
            self.windowRange.tauBand = 0
            self.windowRange.dtau = 1
346

Gregory Ashton's avatar
Gregory Ashton committed
347
    def run_computefstatistic_single_point(self, tstart, tend, F0, F1,
348
349
350
                                           F2, Alpha, Delta, asini=None,
                                           period=None, ecc=None, tp=None,
                                           argp=None):
351
        """ Returns the twoF fully-coherently at a single point """
Gregory Ashton's avatar
Gregory Ashton committed
352
353
354
355

        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
356
357
358
359
360
361
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp
Gregory Ashton's avatar
Gregory Ashton committed
362
363
364
365

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
366
                               1,
Gregory Ashton's avatar
Gregory Ashton committed
367
368
369
                               self.whatToCompute
                               )

370
        if self.transient is False:
371
372
373
374
375
376
377
378
            if self.BSGL is False:
                return self.FstatResults.twoF[0]

            twoF = np.float(self.FstatResults.twoF[0])
            self.twoFX[0] = self.FstatResults.twoFPerDet(0)
            self.twoFX[1] = self.FstatResults.twoFPerDet(1)
            BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
                                         self.BSGLSetup)
379
380
            if self.BSGL_FLOOR is not None and BSGL < self.BSGL_FLOOR:
                return self.BSGL_FLOOR
Gregory Ashton's avatar
Gregory Ashton committed
381
382
            else:
                return self.BSGL_PREFACTOR * BSGL/np.log10(np.exp(1))
383

384
385
        self.windowRange.t0 = int(tstart)  # TYPE UINT4
        self.windowRange.tau = int(tend - tstart)  # TYPE UINT4
386

Gregory Ashton's avatar
Gregory Ashton committed
387
        FS = lalpulsar.ComputeTransientFstatMap(
388
            self.FstatResults.multiFatoms[0], self.windowRange, False)
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

        if self.BSGL is False:
            return 2*FS.F_mn.data[0][0]

        FstatResults_single = copy.copy(self.FstatResults)
        FstatResults_single.lenth = 1
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
        FS0 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
        FS1 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)

        self.twoFX[0] = 2*FS0.F_mn.data[0][0]
        self.twoFX[1] = 2*FS1.F_mn.data[0][0]
        BSGL = lalpulsar.ComputeBSGL(2*FS.F_mn.data[0][0], self.twoFX,
                                     self.BSGLSetup)

Gregory Ashton's avatar
Gregory Ashton committed
407
408
409
410
        if self.BSGL_FLOOR and BSGL < self.BSGL_FLOOR:
            return self.BSGL_FLOOR
        else:
            return self.BSGL_PREFACTOR * BSGL/np.log10(np.exp(1))
Gregory Ashton's avatar
Gregory Ashton committed
411

412
413
414
415
416
417
418
419
    def calculate_twoF_cumulative(self, F0, F1, F2, Alpha, Delta, asini=None,
                                  period=None, ecc=None, tp=None, argp=None,
                                  tstart=None, tend=None, Npoints=1000,
                                  minfraction=0.01):
        """ Calculate the cumulative twoF along the obseration span """
        duration = tend - tstart
        taus = np.linspace(minfraction*duration, duration, Npoints)
        twoFs = []
Gregory Ashton's avatar
Gregory Ashton committed
420
421
422
        if self.transient is False:
            self.transient = True
            self.init_computefstatistic_single_point()
423
424
425
426
427
428
429
430
431
        for tau in taus:
            twoFs.append(self.run_computefstatistic_single_point(
                tstart=tstart, tend=tstart+tau, F0=F0, F1=F1, F2=F2,
                Alpha=Alpha, Delta=Delta, asini=asini, period=period, ecc=ecc,
                tp=tp, argp=argp))

        return taus, np.array(twoFs)

    def plot_twoF_cumulative(self, label, outdir, ax=None, c='k', savefig=True,
432
                             title=None, **kwargs):
433
434
435
436
437
438
        taus, twoFs = self.calculate_twoF_cumulative(**kwargs)
        if ax is None:
            fig, ax = plt.subplots()
        ax.plot(taus/86400., twoFs, label=label, color=c)
        ax.set_xlabel(r'Days from $t_{{\rm start}}={:.0f}$'.format(
            kwargs['tstart']))
Gregory Ashton's avatar
Gregory Ashton committed
439
440
441
442
        if self.BSGL:
            ax.set_ylabel(r'$\log_{10}(\mathrm{BSGL})_{\rm cumulative}$')
        else:
            ax.set_ylabel(r'$\widetilde{2\mathcal{F}}_{\rm cumulative}$')
443
        ax.set_xlim(0, taus[-1]/86400)
444
        ax.set_title(title)
445
446
        if savefig:
            plt.savefig('{}/{}_twoFcumulative.png'.format(outdir, label))
Gregory Ashton's avatar
Gregory Ashton committed
447
            return taus, twoFs
448
449
450
        else:
            return ax

Gregory Ashton's avatar
Gregory Ashton committed
451
452

class SemiCoherentGlitchSearch(BaseSearchClass, ComputeFstat):
453
454
455
456
457
458
459
460
461
    """ A semi-coherent glitch search

    This implements a basic `semi-coherent glitch F-stat in which the data
    is divided into two segments either side of the proposed glitch and the
    fully-coherent F-stat in each segment is averaged to give the semi-coherent
    F-stat
    """

    @initializer
Gregory Ashton's avatar
Gregory Ashton committed
462
    def __init__(self, label, outdir, tref, tstart, tend, nglitch=0,
463
                 sftfilepath=None, theta0_idx=0, BSGL=False, BSGL_PREFACTOR=1,
Gregory Ashton's avatar
Gregory Ashton committed
464
465
466
                 BSGL_FLOOR=None, minStartTime=None, maxStartTime=None,
                 minCoverFreq=None, maxCoverFreq=None, detector=None,
                 earth_ephem=None, sun_ephem=None):
467
468
469
470
        """
        Parameters
        ----------
        label, outdir: str
471
472
473
474
475
476
            A label and directory to read/write data from/to.
        tref, tstart, tend: int
            GPS seconds of the reference time, and start and end of the data.
        nglitch: int
            The (fixed) number of glitches; this can zero, but occasionally
            this causes issue (in which case just use ComputeFstat).
477
478
        sftfilepath: str
            File patern to match SFTs
479
480
481
482
        theta0_idx, int
            Index (zero-based) of which segment the theta refers to - uyseful
            if providing a tight prior on theta to allow the signal to jump
            too theta (and not just from)
483
484

        For all other parameters, see pyfstat.ComputeFStat.
485
486
487
488
489
490
491
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
        if self.earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if self.sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default
492
493
        self.transient = True
        self.binary = False
494
495
496
        self.init_computefstatistic_single_point()

    def compute_nglitch_fstat(self, F0, F1, F2, Alpha, Delta, *args):
497
        """ Returns the semi-coherent glitch summed twoF """
498
499
500

        args = list(args)
        tboundaries = [self.tstart] + args[-self.nglitch:] + [self.tend]
501
502
503
504
505
506
507
508
        delta_F0s = args[-3*self.nglitch:-2*self.nglitch]
        delta_F1s = args[-2*self.nglitch:-self.nglitch]
        delta_F2 = np.zeros(len(delta_F0s))
        delta_phi = np.zeros(len(delta_F0s))
        theta = [0, F0, F1, F2]
        delta_thetas = np.atleast_2d(
                np.array([delta_phi, delta_F0s, delta_F1s, delta_F2]).T)

509
510
        thetas = self.calculate_thetas(theta, delta_thetas, tboundaries,
                                       theta0_idx=self.theta0_idx)
511
512

        twoFSum = 0
513
        for i, theta_i_at_tref in enumerate(thetas):
514
515
516
            ts, te = tboundaries[i], tboundaries[i+1]

            twoFVal = self.run_computefstatistic_single_point(
517
518
                ts, te, theta_i_at_tref[1], theta_i_at_tref[2],
                theta_i_at_tref[3], Alpha, Delta)
519
520
            twoFSum += twoFVal

521
522
523
        if np.isfinite(twoFSum):
            return twoFSum
        else:
524
            return -np.inf
525
526
527

    def compute_glitch_fstat_single(self, F0, F1, F2, Alpha, Delta, delta_F0,
                                    delta_F1, tglitch):
528
529
530
531
        """ Returns the semi-coherent glitch summed twoF for nglitch=1

        Note: used for testing
        """
532
533
534
535
536
537
538
539
540
541
542

        theta = [F0, F1, F2]
        delta_theta = [delta_F0, delta_F1, 0]
        tref = self.tref

        theta_at_glitch = self.shift_coefficients(theta, tglitch - tref)
        theta_post_glitch_at_glitch = theta_at_glitch + delta_theta
        theta_post_glitch = self.shift_coefficients(
            theta_post_glitch_at_glitch, tref - tglitch)

        twoFsegA = self.run_computefstatistic_single_point(
Gregory Ashton's avatar
Gregory Ashton committed
543
            self.tstart, tglitch, theta[0], theta[1], theta[2], Alpha,
544
545
546
547
548
549
            Delta)

        if tglitch == self.tend:
            return twoFsegA

        twoFsegB = self.run_computefstatistic_single_point(
Gregory Ashton's avatar
Gregory Ashton committed
550
            tglitch, self.tend, theta_post_glitch[0],
551
552
553
554
555
556
            theta_post_glitch[1], theta_post_glitch[2], Alpha,
            Delta)

        return twoFsegA + twoFsegB


Gregory Ashton's avatar
Gregory Ashton committed
557
558
class MCMCSearch(BaseSearchClass):
    """ MCMC search using ComputeFstat"""
559
    @initializer
560
    def __init__(self, label, outdir, sftfilepath, theta_prior, tref,
561
                 tstart, tend, nsteps=[100, 100, 100], nwalkers=100, ntemps=1,
562
                 log10temperature_min=-5, theta_initial=None, scatter_val=1e-10,
563
564
                 binary=False, BSGL=False, minCoverFreq=None,
                 maxCoverFreq=None, detector=None, earth_ephem=None,
565
                 sun_ephem=None, theta0_idx=0,
Gregory Ashton's avatar
Gregory Ashton committed
566
                 BSGL_PREFACTOR=1, BSGL_FLOOR=None):
567
568
569
570
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
571
572
        sftfilepath: str
            File patern to match SFTs
573
        theta_prior: dict
574
575
576
577
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
578
579
580
581
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
582
583
584
585
586
587
588
        tref, tstart, tend: int
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
589
590
591
592
593
594
595
596
597
598
599
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
        binary: Bool
            If true, search over binary parameters
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
600
601
602
603
604
605
606
607
608
609
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

610
611
612
        self.minStartTime = tstart
        self.maxStartTime = tend

Gregory Ashton's avatar
Gregory Ashton committed
613
614
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
615
        self.add_log_file()
Gregory Ashton's avatar
Gregory Ashton committed
616
617
        logging.info(
            'Set-up MCMC search for model {} on data {}'.format(
618
                self.label, self.sftfilepath))
619
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
620
621
        self.theta_prior['tstart'] = self.tstart
        self.theta_prior['tend'] = self.tend
622
623
        self.unpack_input_theta()
        self.ndim = len(self.theta_keys)
624
625
626
627
        if self.log10temperature_min:
            self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
        else:
            self.betas = None
628

629
630
631
632
633
634
635
636
637
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

        self.old_data_is_okay_to_use = self.check_old_data_is_okay_to_use()
638
639
640
        self.log_input()

    def log_input(self):
641
        logging.info('theta_prior = {}'.format(self.theta_prior))
642
        logging.info('nwalkers={}'.format(self.nwalkers))
643
644
645
646
        logging.info('scatter_val = {}'.format(self.scatter_val))
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
        logging.info('log10temperature_min = {}'.format(
647
            self.log10temperature_min))
648
649
650

    def inititate_search_object(self):
        logging.info('Setting up search object')
Gregory Ashton's avatar
Gregory Ashton committed
651
        self.search = ComputeFstat(
652
653
654
655
            tref=self.tref, sftfilepath=self.sftfilepath,
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
            detector=self.detector, BSGL=self.BSGL, transient=False,
656
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
Gregory Ashton's avatar
Gregory Ashton committed
657
            BSGL_PREFACTOR=self.BSGL_PREFACTOR, BSGL_FLOOR=self.BSGL_FLOOR)
658
659

    def logp(self, theta_vals, theta_prior, theta_keys, search):
Gregory Ashton's avatar
Gregory Ashton committed
660
        H = [self.generic_lnprior(**theta_prior[key])(p) for p, key in
661
662
663
664
665
666
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
Gregory Ashton's avatar
Gregory Ashton committed
667
        FS = search.run_computefstatistic_single_point(*self.fixed_theta)
668
669
670
        return FS

    def unpack_input_theta(self):
Gregory Ashton's avatar
Gregory Ashton committed
671
672
        full_theta_keys = ['tstart', 'tend', 'F0', 'F1', 'F2', 'Alpha',
                           'Delta']
673
674
675
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
676
677
        full_theta_keys_copy = copy.copy(full_theta_keys)

Gregory Ashton's avatar
Gregory Ashton committed
678
679
        full_theta_symbols = ['_', '_', '$f$', '$\dot{f}$', '$\ddot{f}$',
                              r'$\alpha$', r'$\delta$']
680
681
682
683
        if self.binary:
            full_theta_symbols += [
                'asini', 'period', 'period', 'ecc', 'tp', 'argp']

684
685
        self.theta_keys = []
        fixed_theta_dict = {}
686
        for key, val in self.theta_prior.iteritems():
687
688
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
689
                self.theta_keys.append(key)
690
691
692
693
694
695
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
696
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

    def check_initial_points(self, p0):
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

                p0 = self.generate_new_p0_to_fix_initial_points(
                    p0, nt, initial_priors)

    def generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
749

Gregory Ashton's avatar
Gregory Ashton committed
750
    def run_sampler_with_progress_bar(self, sampler, ns, p0):
751
752
        for result in tqdm(sampler.sample(p0, iterations=ns), total=ns):
            pass
Gregory Ashton's avatar
Gregory Ashton committed
753
754
755
        return sampler

    def run(self, proposal_scale_factor=2):
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771

        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
            d = self.get_saved_data()
            self.sampler = d['sampler']
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
            return

        self.inititate_search_object()

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
772
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
773

Gregory Ashton's avatar
Gregory Ashton committed
774
775
        p0 = self.generate_initial_p0()
        p0 = self.apply_corrections_to_p0(p0)
776
777
778
779
780
        self.check_initial_points(p0)

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
781
                j+1, ninit_steps, n))
Gregory Ashton's avatar
Gregory Ashton committed
782
            sampler = self.run_sampler_with_progress_bar(sampler, n, p0)
783
784
            logging.info("Mean acceptance fraction: {}"
                         .format(np.mean(sampler.acceptance_fraction, axis=1)))
785
786
787
            if self.ntemps > 1:
                logging.info("Tswap acceptance fraction: {}"
                             .format(sampler.tswap_acceptance_fraction))
Gregory Ashton's avatar
Gregory Ashton committed
788
            fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols)
789
790
791
            fig.savefig('{}/{}_init_{}_walkers.png'.format(
                self.outdir, self.label, j))

792
            p0 = self.get_new_p0(sampler)
Gregory Ashton's avatar
Gregory Ashton committed
793
            p0 = self.apply_corrections_to_p0(p0)
794
795
796
            self.check_initial_points(p0)
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
797
798
799
800
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
801
802
803
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
Gregory Ashton's avatar
Gregory Ashton committed
804
        sampler = self.run_sampler_with_progress_bar(sampler, nburn+nprod, p0)
805
806
        logging.info("Mean acceptance fraction: {}"
                     .format(np.mean(sampler.acceptance_fraction, axis=1)))
807
808
809
        if self.ntemps > 1:
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
810

Gregory Ashton's avatar
Gregory Ashton committed
811
812
        fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols,
                                      burnin_idx=nburn)
813
814
815
816
817
818
819
820
821
822
823
        fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label))

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
        self.sampler = sampler
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
        self.save_data(sampler, samples, lnprobs, lnlikes)

824
    def plot_corner(self, figsize=(7, 7),  tglitch_ratio=False,
825
826
827
                    add_prior=False, nstds=None, label_offset=0.4,
                    dpi=300, rc_context={}, **kwargs):

Gregory Ashton's avatar
Gregory Ashton committed
828
829
830
831
832
833
834
835
836
837
        if self.ndim < 2:
            with plt.rc_context(rc_context):
                fig, ax = plt.subplots(figsize=figsize)
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

838
839
840
841
842
843
        with plt.rc_context(rc_context):
            fig, axes = plt.subplots(self.ndim, self.ndim,
                                     figsize=figsize)

            samples_plt = copy.copy(self.samples)
            theta_symbols_plt = copy.copy(self.theta_symbols)
844
845
            theta_symbols_plt = [s.replace('_{glitch}', r'_\textrm{glitch}')
                                 for s in theta_symbols_plt]
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
                        samples_plt[:, j] = (s - self.tstart)/(
                                             self.tend - self.tstart)
                        theta_symbols_plt[j] = r'$R_{\textrm{glitch}}$'

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
            else:
                _range = None

            fig_triangle = corner.corner(samples_plt,
                                         labels=theta_symbols_plt,
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
                self.add_prior_to_corner(axes, samples_plt)

            fig_triangle.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
895
896
897
898
899
900

    def add_prior_to_corner(self, axes, samples):
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            xlim = ax.get_xlim()
            s = samples[:, i]
Gregory Ashton's avatar
Gregory Ashton committed
901
            prior = self.generic_lnprior(**self.theta_prior[key])
902
903
904
905
906
907
            x = np.linspace(s.min(), s.max(), 100)
            ax2 = ax.twinx()
            ax2.get_yaxis().set_visible(False)
            ax2.plot(x, [prior(xi) for xi in x], '-r')
            ax.set_xlim(xlim)

908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
    def plot_prior_posterior(self, normal_stds=2):
        """ Plot the posterior in the context of the prior """
        fig, axes = plt.subplots(nrows=self.ndim, figsize=(8, 4*self.ndim))
        N = 1000
        from scipy.stats import gaussian_kde

        for i, (ax, key) in enumerate(zip(axes, self.theta_keys)):
            prior_dict = self.theta_prior[key]
            prior_func = self.generic_lnprior(**prior_dict)
            if prior_dict['type'] == 'unif':
                x = np.linspace(prior_dict['lower'], prior_dict['upper'], N)
                prior = prior_func(x)
                prior[0] = 0
                prior[-1] = 0
            elif prior_dict['type'] == 'norm':
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = prior_func(x)
927
928
929
930
931
            elif prior_dict['type'] == 'halfnorm':
                lower = prior_dict['loc']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
Gregory Ashton's avatar
Gregory Ashton committed
932
933
934
935
936
            elif prior_dict['type'] == 'neghalfnorm':
                upper = prior_dict['loc']
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
            else:
                raise ValueError('Not implemented for prior type {}'.format(
                    prior_dict['type']))
            priorln = ax.plot(x, prior, 'r', label='prior')
            ax.set_xlabel(self.theta_symbols[i])

            s = self.samples[:, i]
            while len(s) > 10**4:
                # random downsample to avoid slow calculation of kde
                s = np.random.choice(s, size=int(len(s)/2.))
            kde = gaussian_kde(s)
            ax2 = ax.twinx()
            postln = ax2.plot(x, kde.pdf(x), 'k', label='posterior')
            ax2.set_yticklabels([])
            ax.set_yticklabels([])

        lns = priorln + postln
        labs = [l.get_label() for l in lns]
        axes[0].legend(lns, labs, loc=1, framealpha=0.8)

        fig.savefig('{}/{}_prior_posterior.png'.format(
            self.outdir, self.label))

Gregory Ashton's avatar
Gregory Ashton committed
960
961
962
963
964
965
966
967
968
969
    def plot_cumulative_max(self):
        d, maxtwoF = self.get_max_twoF()
        for key, val in self.theta_prior.iteritems():
            if key not in d:
                d[key] = val
        self.search.plot_twoF_cumulative(
            self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
            Alpha=d['Alpha'], Delta=d['Delta'], tstart=self.tstart,
            tend=self.tend)

Gregory Ashton's avatar
Gregory Ashton committed
970
    def generic_lnprior(self, **kwargs):
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
        """ Return a lambda function of the pdf

        Parameters
        ----------
        kwargs: dict
            A dictionary containing 'type' of pdf and shape parameters

        """

        def logunif(x, a, b):
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

        def halfnorm(x, loc, scale):
            if x < 0:
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
            return lambda x: logunif(x, kwargs['lower'], kwargs['upper'])
        elif kwargs['type'] == 'halfnorm':
            return lambda x: halfnorm(x, kwargs['loc'], kwargs['scale'])
1013
1014
        elif kwargs['type'] == 'neghalfnorm':
            return lambda x: halfnorm(-x, kwargs['loc'], kwargs['scale'])
1015
1016
1017
1018
1019
1020
1021
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

Gregory Ashton's avatar
Gregory Ashton committed
1022
    def generate_rv(self, **kwargs):
1023
1024
1025
1026
1027
1028
1029
1030
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
1031
1032
1033
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
1034
1035
1036
1037
1038
1039
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

Gregory Ashton's avatar
Gregory Ashton committed
1040
    def plot_walkers(self, sampler, symbols=None, alpha=0.4, color="k", temp=0,
1041
                     lw=0.1, burnin_idx=None, add_det_stat_burnin=False):
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
        """ Plot all the chains from a sampler """

        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
            chain = sampler.chain[:, :, :]
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
            chain = sampler.chain[temp, :, :, :]

        with plt.style.context(('classic')):
Gregory Ashton's avatar
Gregory Ashton committed
1058
1059
1060
1061
            fig = plt.figure(figsize=(8, 4*ndim))
            ax = fig.add_subplot(ndim+1, 1, 1)
            axes = [ax] + [fig.add_subplot(ndim+1, 1, i, sharex=ax)
                           for i in range(2, ndim+1)]
1062

Gregory Ashton's avatar
Gregory Ashton committed
1063
            idxs = np.arange(chain.shape[1])
1064
1065
            if ndim > 1:
                for i in range(ndim):
1066
                    axes[i].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
1067
1068
1069
                    cs = chain[:, :, i].T
                    if burnin_idx:
                        axes[i].plot(idxs[:burnin_idx], cs[:burnin_idx],
Gregory Ashton's avatar
Gregory Ashton committed
1070
                                     color="r", alpha=alpha, lw=lw)
Gregory Ashton's avatar
Gregory Ashton committed
1071
                    axes[i].plot(idxs[burnin_idx:], cs[burnin_idx:], color="k",
Gregory Ashton's avatar
Gregory Ashton committed
1072
                                 alpha=alpha, lw=lw)
1073
1074
                    if symbols:
                        axes[i].set_ylabel(symbols[i])
1075
            else:
Gregory Ashton's avatar
Gregory Ashton committed
1076
                axes[0].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
1077
                cs = chain[:, :, temp].T
Gregory Ashton's avatar
Gregory Ashton committed
1078
1079
1080
1081
1082
1083
1084
                if burnin_idx:
                    axes[0].plot(idxs[:burnin_idx], cs[:burnin_idx],
                                 color="r", alpha=alpha, lw=lw)
                axes[0].plot(idxs[burnin_idx:], cs[burnin_idx:], color="k",
                             alpha=alpha, lw=lw)
                if symbols:
                    axes[0].set_ylabel(symbols[0])
1085

Gregory Ashton's avatar
Gregory Ashton committed
1086
1087
        axes.append(fig.add_subplot(ndim+1, 1, ndim+1))
        lnl = sampler.lnlikelihood[temp, :, :]
1088
        if burnin_idx and add_det_stat_burnin:
Gregory Ashton's avatar
Gregory Ashton committed
1089
1090
            axes[-1].hist(lnl[:, :burnin_idx].flatten(), bins=50,
                          histtype='step', color='r')
Gregory Ashton's avatar
Gregory Ashton committed
1091
1092
        axes[-1].hist(lnl[:, burnin_idx:].flatten(), bins=50, histtype='step',
                      color='k')
Gregory Ashton's avatar
Gregory Ashton committed
1093
1094
1095
1096
        if self.BSGL:
            axes[-1].set_xlabel(r'$\mathcal{B}_\mathrm{S/GL}$')
        else:
            axes[-1].set_xlabel(r'$2\mathcal{F}$')
Gregory Ashton's avatar
Gregory Ashton committed
1097

1098
1099
        return fig, axes

Gregory Ashton's avatar
Gregory Ashton committed
1100
1101
1102
1103
1104
    def apply_corrections_to_p0(self, p0):
        """ Apply any correction to the initial p0 values """
        return p0

    def generate_scattered_p0(self, p):
1105
        """ Generate a set of p0s scattered about p """
Gregory Ashton's avatar
Gregory Ashton committed
1106
        p0 = [[p + self.scatter_val * p * np.random.randn(self.ndim)
1107
1108
1109
1110
               for i in xrange(self.nwalkers)]
              for j in xrange(self.ntemps)]
        return p0

Gregory Ashton's avatar
Gregory Ashton committed
1111
    def generate_initial_p0(self):
1112
1113
1114
        """ Generate a set of init vals for the walkers """

        if type(self.theta_initial) == dict:
1115
            logging.info('Generate initial values from initial dictionary')
1116
            if hasattr(self, 'nglitch') and self.nglitch > 1:
1117
                raise ValueError('Initial dict not implemented for nglitch>1')
Gregory Ashton's avatar
Gregory Ashton committed
1118
            p0 = [[[self.generate_rv(**self.theta_initial[key])
1119
1120
1121
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
1122
1123
1124
1125
1126
1127
        elif type(self.theta_initial) == list:
            logging.info('Generate initial values from list of theta_initial')
            p0 = [[[self.generate_rv(**val)
                    for val in self.theta_initial]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
1128
        elif self.theta_initial is None:
1129
            logging.info('Generate initial values from prior dictionary')
Gregory Ashton's avatar
Gregory Ashton committed
1130
            p0 = [[[self.generate_rv(**self.theta_prior[key])
1131
1132
1133
1134
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
        elif len(self.theta_initial) == self.ndim:
Gregory Ashton's avatar
Gregory Ashton committed
1135
            p0 = self.generate_scattered_p0(self.theta_initial)
1136
1137
1138
1139
1140
        else:
            raise ValueError('theta_initial not understood')

        return p0

1141
    def get_new_p0(self, sampler):
1142
1143
1144
1145
1146
1147
        """ Returns new initial positions for walkers are burn0 stage

        This returns new positions for all walkers by scattering points about
        the maximum posterior with scale `scatter_val`.

        """
Gregory Ashton's avatar
Gregory Ashton committed
1148
1149
1150
1151
        temp_idx = 0
        pF = sampler.chain[temp_idx, :, :, :]
        lnl = sampler.lnlikelihood[temp_idx, :, :]
        lnp = sampler.lnprobability[temp_idx, :, :]
1152
1153

        # General warnings about the state of lnp
Gregory Ashton's avatar
Gregory Ashton committed
1154
        if np.any(np.isnan(lnp)):
1155
1156
            logging.warning(
                "Of {} lnprobs {} are nan".format(
Gregory Ashton's avatar
Gregory Ashton committed
1157
1158
                    np.shape(lnp), np.sum(np.isnan(lnp))))
        if np.any(np.isposinf(lnp)):
1159
1160
            logging.warning(
                "Of {} lnprobs {} are +np.inf".format(
Gregory Ashton's avatar
Gregory Ashton committed
1161
1162
                    np.shape(lnp), np.sum(np.isposinf(lnp))))
        if np.any(np.isneginf(lnp)):
1163
1164
            logging.warning(
                "Of {} lnprobs {} are -np.inf".format(
Gregory Ashton's avatar
Gregory Ashton committed
1165
                    np.shape(lnp), np.sum(np.isneginf(lnp))))
1166

1167
1168
        lnp_finite = copy.copy(lnp)
        lnp_finite[np.isinf(lnp)] = np.nan
Gregory Ashton's avatar
Gregory Ashton committed
1169
1170
        idx = np.unravel_index(np.nanargmax(lnp_finite), lnp_finite.shape)
        p = pF[idx]
1171
        p0 = self.generate_scattered_p0(p)
1172

1173
1174
1175
1176
1177
1178
1179
1180
        self.search.BSGL = False
        twoF = self.logl(p, self.search)
        self.search.BSGL = self.BSGL

        logging.info(('Gen. new p0 from pos {} which had det. stat.={:2.1f},'
                      ' twoF={:2.1f} and lnp={:2.1f}')
                     .format(idx[1], lnl[idx], twoF, lnp_finite[idx]))

1181
1182
1183
1184
1185
        return p0

    def get_save_data_dictionary(self):
        d = dict(nsteps=self.nsteps, nwalkers=self.nwalkers,
                 ntemps=self.ntemps, theta_keys=self.theta_keys,
Gregory Ashton's avatar
Gregory Ashton committed
1186
                 theta_prior=self.theta_prior, scatter_val=self.scatter_val,
1187
                 log10temperature_min=self.log10temperature_min,
1188
                 theta0_idx=self.theta0_idx, BSGL=self.BSGL,
Gregory Ashton's avatar
Gregory Ashton committed
1189
1190
                 BSGL_PREFACTOR=self.BSGL_PREFACTOR,
                 BSGL_FLOOR=self.BSGL_FLOOR)
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
        return d

    def save_data(self, sampler, samples, lnprobs, lnlikes):
        d = self.get_save_data_dictionary()
        d['sampler'] = sampler
        d['samples'] = samples
        d['lnprobs'] = lnprobs
        d['lnlikes'] = lnlikes

        if os.path.isfile(self.pickle_path):
            logging.info('Saving backup of {} as {}.old'.format(
                self.pickle_path, self.pickle_path))
            os.rename(self.pickle_path, self.pickle_path+".old")
        with open(self.pickle_path, "wb") as File:
            pickle.dump(d, File)

    def get_list_of_matching_sfts(self):
1208
        matches = glob.glob(self.sftfilepath)
1209
1210
1211
1212
        if len(matches) > 0:
            return matches
        else:
            raise IOError('No sfts found matching {}'.format(
1213
                self.sftfilepath))
1214
1215
1216
1217
1218
1219
1220

    def get_saved_data(self):
        with open(self.pickle_path, "r") as File:
            d = pickle.load(File)
        return d

    def check_old_data_is_okay_to_use(self):
1221
1222
1223
1224
        if args.use_old_data:
            logging.info("Forcing use of old data")
            return True

1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
        if os.path.isfile(self.pickle_path) is False:
            logging.info('No pickled data found')
            return False

        oldest_sft = min([os.path.getmtime(f) for f in
                          self.get_list_of_matching_sfts()])
        if os.path.getmtime(self.pickle_path) < oldest_sft:
            logging.info('Pickled data outdates sft files')
            return False

        old_d = self.get_saved_data().copy()
        new_d = self.get_save_data_dictionary().copy()

        old_d.pop('samples')
        old_d.pop('sampler')
        old_d.pop('lnprobs')
        old_d.pop('lnlikes')

        mod_keys = []
        for key in new_d.keys():
            if key in old_d:
                if new_d[key] != old_d[key]:
                    mod_keys.append((key, old_d[key], new_d[key]))
            else:
1249
                raise ValueError('Keys {} not in old dictionary'.format(key))
1250
1251
1252
1253
1254
1255
1256
1257
1258

        if len(mod_keys) == 0:
            return True
        else:
            logging.warning("Saved data differs from requested")
            logging.info("Differences found in following keys:")
            for key in mod_keys:
                if len(key) == 3:
                    if np.isscalar(key[1]) or key[0] == 'nsteps':
1259
                        logging.info("    {} : {} -> {}".format(*key))
1260
                    else:
1261
                        logging.info("    " + key[0])
1262
1263
1264
1265
1266
                else:
                    logging.info(key)
            return False

    def get_max_twoF(self, threshold=0.05):
1267
        """ Returns the max likelihood sample and the corresponding 2F value
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281

        Note: the sample is returned as a dictionary along with an estimate of
        the standard deviation calculated from the std of all samples with a
        twoF within `threshold` (relative) to the max twoF

        """
        if any(np.isposinf(self.lnlikes)):
            logging.info