grid_based_searches.py 21.2 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
2
3
4
5
6
7
8
9
10
11
12
""" Searches using grid-based methods """

import os
import logging
import itertools
from collections import OrderedDict

import numpy as np
import matplotlib
import matplotlib.pyplot as plt

import helper_functions
13
from core import BaseSearchClass, ComputeFstat, SemiCoherentGlitchSearch, SemiCoherentSearch
14
from core import tqdm, args, earth_ephem, sun_ephem, read_par
Gregory Ashton's avatar
Gregory Ashton committed
15
16
17
18
19


class GridSearch(BaseSearchClass):
    """ Gridded search using ComputeFstat """
    @helper_functions.initializer
20
    def __init__(self, label, outdir, sftfilepattern, F0s=[0], F1s=[0], F2s=[0],
Gregory Ashton's avatar
Gregory Ashton committed
21
22
                 Alphas=[0], Deltas=[0], tref=None, minStartTime=None,
                 maxStartTime=None, nsegs=1, BSGL=False, minCoverFreq=None,
Gregory Ashton's avatar
Gregory Ashton committed
23
                 maxCoverFreq=None, earth_ephem=None, sun_ephem=None,
24
                 detectors=None, SSBprec=None, injectSources=None,
25
                 input_arrays=False, assumeSqrtSX=None):
Gregory Ashton's avatar
Gregory Ashton committed
26
27
28
29
30
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
31
32
33
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
34
35
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
36
37
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
Gregory Ashton's avatar
Gregory Ashton committed
38
39
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
40
41
        input_arrays: bool
            if true, use the F0s, F1s, etc as is
Gregory Ashton's avatar
Gregory Ashton committed
42
43
44
45
46
47
48
49
50
51
52

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
53
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
54
55
56
57
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']

    def inititate_search_object(self):
        logging.info('Setting up search object')
58
59
        if self.nsegs == 1:
            self.search = ComputeFstat(
60
                tref=self.tref, sftfilepattern=self.sftfilepattern,
61
62
63
64
                minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
                earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
                detectors=self.detectors, transient=False,
                minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
65
                BSGL=self.BSGL, SSBprec=self.SSBprec,
66
67
                injectSources=self.injectSources,
                assumeSqrtSX=self.assumeSqrtSX)
68
69
70
71
            self.search.get_det_stat = self.search.run_computefstatistic_single_point
        else:
            self.search = SemiCoherentSearch(
                label=self.label, outdir=self.outdir, tref=self.tref,
72
                nsegs=self.nsegs, sftfilepattern=self.sftfilepattern,
73
74
75
76
77
78
79
80
                BSGL=self.BSGL, minStartTime=self.minStartTime,
                maxStartTime=self.maxStartTime, minCoverFreq=self.minCoverFreq,
                maxCoverFreq=self.maxCoverFreq, detectors=self.detectors,
                earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem)

            def cut_out_tstart_tend(*vals):
                return self.search.run_semi_coherent_computefstatistic_single_point(*vals[2:])
            self.search.get_det_stat = cut_out_tstart_tend
Gregory Ashton's avatar
Gregory Ashton committed
81
82
83
84

    def get_array_from_tuple(self, x):
        if len(x) == 1:
            return np.array(x)
85
        elif len(x) == 3 and self.input_arrays is False:
Gregory Ashton's avatar
Gregory Ashton committed
86
            return np.arange(x[0], x[1], x[2])
Gregory Ashton's avatar
Gregory Ashton committed
87
        else:
Gregory Ashton's avatar
Gregory Ashton committed
88
89
            logging.info('Using tuple as is')
            return np.array(x)
Gregory Ashton's avatar
Gregory Ashton committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

    def get_input_data_array(self):
        arrays = []
        for tup in ([self.minStartTime], [self.maxStartTime], self.F0s, self.F1s, self.F2s,
                    self.Alphas, self.Deltas):
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        self.arrays = arrays
        self.input_data = np.array(input_data)

    def check_old_data_is_okay_to_use(self):
        if args.clean:
            return False
        if os.path.isfile(self.out_file) is False:
            logging.info('No old data found, continuing with grid search')
            return False
110
        if self.sftfilepattern is not None:
111
112
113
114
115
116
            oldest_sft = min([os.path.getmtime(f) for f in
                              self._get_list_of_matching_sfts()])
            if os.path.getmtime(self.out_file) < oldest_sft:
                logging.info('Search output data outdates sft files,'
                             + ' continuing with grid search')
                return False
Gregory Ashton's avatar
Gregory Ashton committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        data = np.atleast_2d(np.genfromtxt(self.out_file, delimiter=' '))
        if np.all(data[:, 0:-1] == self.input_data):
            logging.info(
                'Old data found with matching input, no search performed')
            return data
        else:
            logging.info(
                'Old data found, input differs, continuing with grid search')
            return False

    def run(self, return_data=False):
        self.get_input_data_array()
        old_data = self.check_old_data_is_okay_to_use()
        if old_data is not False:
            self.data = old_data
            return

        self.inititate_search_object()

        logging.info('Total number of grid points is {}'.format(
            len(self.input_data)))

        data = []
        for vals in tqdm(self.input_data):
141
            FS = self.search.get_det_stat(*vals)
Gregory Ashton's avatar
Gregory Ashton committed
142
143
            data.append(list(vals) + [FS])

144
        data = np.array(data, dtype=np.float)
Gregory Ashton's avatar
Gregory Ashton committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        if return_data:
            return data
        else:
            logging.info('Saving data to {}'.format(self.out_file))
            np.savetxt(self.out_file, data, delimiter=' ')
            self.data = data

    def convert_F0_to_mismatch(self, F0, F0hat, Tseg):
        DeltaF0 = F0[1] - F0[0]
        m_spacing = (np.pi*Tseg*DeltaF0)**2 / 12.
        N = len(F0)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def convert_F1_to_mismatch(self, F1, F1hat, Tseg):
        DeltaF1 = F1[1] - F1[0]
        m_spacing = (np.pi*Tseg**2*DeltaF1)**2 / 720.
        N = len(F1)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def add_mismatch_to_ax(self, ax, x, y, xkey, ykey, xhat, yhat, Tseg):
        axX = ax.twiny()
        axX.zorder = -10
        axY = ax.twinx()
        axY.zorder = -10

        if xkey == 'F0':
            m = self.convert_F0_to_mismatch(x, xhat, Tseg)
            axX.set_xlim(m[0], m[-1])

        if ykey == 'F1':
            m = self.convert_F1_to_mismatch(y, yhat, Tseg)
            axY.set_ylim(m[0], m[-1])

    def plot_1D(self, xkey):
        fig, ax = plt.subplots()
        xidx = self.keys.index(xkey)
        x = np.unique(self.data[:, xidx])
        z = self.data[:, -1]
        plt.plot(x, z)
        fig.savefig('{}/{}_1D.png'.format(self.outdir, self.label))

    def plot_2D(self, xkey, ykey, ax=None, save=True, vmin=None, vmax=None,
                add_mismatch=None, xN=None, yN=None, flat_keys=[],
Gregory Ashton's avatar
Gregory Ashton committed
188
                rel_flat_idxs=[], flatten_method=np.max, title=None,
Gregory Ashton's avatar
Gregory Ashton committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
                predicted_twoF=None, cm=None, cbarkwargs={}):
        """ Plots a 2D grid of 2F values

        Parameters
        ----------
        add_mismatch: tuple (xhat, yhat, Tseg)
            If not None, add a secondary axis with the metric mismatch from the
            point xhat, yhat with duration Tseg
        flatten_method: np.max
            Function to use in flattening the flat_keys
        """
        if ax is None:
            fig, ax = plt.subplots()
        xidx = self.keys.index(xkey)
        yidx = self.keys.index(ykey)
        flat_idxs = [self.keys.index(k) for k in flat_keys]

        x = np.unique(self.data[:, xidx])
        y = np.unique(self.data[:, yidx])
        flat_vals = [np.unique(self.data[:, j]) for j in flat_idxs]
        z = self.data[:, -1]

        Y, X = np.meshgrid(y, x)
        shape = [len(x), len(y)] + [len(v) for v in flat_vals]
        Z = z.reshape(shape)

        if len(rel_flat_idxs) > 0:
            Z = flatten_method(Z, axis=tuple(rel_flat_idxs))

        if predicted_twoF:
            Z = (predicted_twoF - Z) / (predicted_twoF + 4)
            if cm is None:
                cm = plt.cm.viridis_r
        else:
            if cm is None:
                cm = plt.cm.viridis

        pax = ax.pcolormesh(X, Y, Z, cmap=cm, vmin=vmin, vmax=vmax)
        cb = plt.colorbar(pax, ax=ax, **cbarkwargs)
        cb.set_label('$2\mathcal{F}$')

        if add_mismatch:
            self.add_mismatch_to_ax(ax, x, y, xkey, ykey, *add_mismatch)

        ax.set_xlim(x[0], x[-1])
        ax.set_ylim(y[0], y[-1])
        labels = {'F0': '$f$', 'F1': '$\dot{f}$'}
        ax.set_xlabel(labels[xkey])
        ax.set_ylabel(labels[ykey])

Gregory Ashton's avatar
Gregory Ashton committed
239
240
241
        if title:
            ax.set_title(title)

Gregory Ashton's avatar
Gregory Ashton committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        if xN:
            ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(xN))
        if yN:
            ax.yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(yN))

        if save:
            fig.tight_layout()
            fig.savefig('{}/{}_2D.png'.format(self.outdir, self.label))
        else:
            return ax

    def get_max_twoF(self):
        twoF = self.data[:, -1]
        idx = np.argmax(twoF)
        v = self.data[idx, :]
        d = OrderedDict(minStartTime=v[0], maxStartTime=v[1], F0=v[2], F1=v[3],
                        F2=v[4], Alpha=v[5], Delta=v[6], twoF=v[7])
        return d

    def print_max_twoF(self):
        d = self.get_max_twoF()
        print('Max twoF values for {}:'.format(self.label))
        for k, v in d.iteritems():
            print('  {}={}'.format(k, v))

267
    def set_out_file(self, extra_label=None):
268
269
270
271
        if self.detectors:
            dets = self.detectors.replace(',', '')
        else:
            dets = 'NA'
272
273
274
275
276
277
278
279
        if extra_label:
            self.out_file = '{}/{}_{}_{}_{}.txt'.format(
                self.outdir, self.label, dets, type(self).__name__,
                extra_label)
        else:
            self.out_file = '{}/{}_{}_{}.txt'.format(
                self.outdir, self.label, dets, type(self).__name__)

Gregory Ashton's avatar
Gregory Ashton committed
280

Gregory Ashton's avatar
Gregory Ashton committed
281
class GridUniformPriorSearch():
282
    def __init__(self, theta_prior, NF0, NF1, label, outdir, sftfilepattern,
283
284
                 tref, minStartTime, maxStartTime, minCoverFreq=None,
                 maxCoverFreq=None, BSGL=False, detectors=None, nsegs=1):
Gregory Ashton's avatar
Gregory Ashton committed
285
286
287
288
        dF0 = (theta_prior['F0']['upper'] - theta_prior['F0']['lower'])/NF0
        dF1 = (theta_prior['F1']['upper'] - theta_prior['F1']['lower'])/NF1
        F0s = [theta_prior['F0']['lower'], theta_prior['F0']['upper'], dF0]
        F1s = [theta_prior['F1']['lower'], theta_prior['F1']['upper'], dF1]
289
        self.search = GridSearch(
290
            label, outdir, sftfilepattern, F0s=F0s, F1s=F1s, tref=tref,
Gregory Ashton's avatar
Gregory Ashton committed
291
292
            Alphas=[theta_prior['Alpha']], Deltas=[theta_prior['Delta']],
            minStartTime=minStartTime, maxStartTime=maxStartTime, BSGL=BSGL,
293
294
            detectors=detectors, minCoverFreq=minCoverFreq,
            maxCoverFreq=maxCoverFreq, nsegs=nsegs)
295

296
    def run(self):
297
        self.search.run()
298
299

    def get_2D_plot(self, **kwargs):
300
        return self.search.plot_2D('F0', 'F1', **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
301
302


Gregory Ashton's avatar
Gregory Ashton committed
303
304
305
class GridGlitchSearch(GridSearch):
    """ Grid search using the SemiCoherentGlitchSearch """
    @helper_functions.initializer
306
    def __init__(self, label, outdir, sftfilepattern=None, F0s=[0],
Gregory Ashton's avatar
Gregory Ashton committed
307
308
309
310
311
312
313
314
315
316
                 F1s=[0], F2s=[0], delta_F0s=[0], delta_F1s=[0], tglitchs=None,
                 Alphas=[0], Deltas=[0], tref=None, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
                 write_after=1000, earth_ephem=None, sun_ephem=None):

        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
317
318
319
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0].
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see pyfstat.ComputeFStat.
        """
        if tglitchs is None:
            self.tglitchs = [self.maxStartTime]
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        self.search = SemiCoherentGlitchSearch(
336
            label=label, outdir=outdir, sftfilepattern=self.sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
337
338
339
340
341
342
343
            tref=tref, minStartTime=minStartTime, maxStartTime=maxStartTime,
            minCoverFreq=minCoverFreq, maxCoverFreq=maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
            BSGL=self.BSGL)

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
344
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
        self.keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta', 'delta_F0',
                     'delta_F1', 'tglitch']

    def get_input_data_array(self):
        arrays = []
        for tup in (self.F0s, self.F1s, self.F2s, self.Alphas, self.Deltas,
                    self.delta_F0s, self.delta_F1s, self.tglitchs):
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        self.arrays = arrays
        self.input_data = np.array(input_data)


Gregory Ashton's avatar
Gregory Ashton committed
362
363
364
class FrequencySlidingWindow(GridSearch):
    """ A sliding-window search over the Frequency """
    @helper_functions.initializer
365
    def __init__(self, label, outdir, sftfilepattern, F0s, F1, F2,
Gregory Ashton's avatar
Gregory Ashton committed
366
367
368
                 Alpha, Delta, tref, minStartTime=None,
                 maxStartTime=None, window_size=10*86400, window_delta=86400,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
369
                 earth_ephem=None, sun_ephem=None, detectors=None,
Gregory Ashton's avatar
Gregory Ashton committed
370
                 SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
371
372
373
374
375
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
376
377
378
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
        F0s: array
            Frequency range
        F1, F2, Alpha, Delta: float
            Fixed values to compute twoF(F) over
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
396
        self.set_out_file()
Gregory Ashton's avatar
Gregory Ashton committed
397
398
399
400
401
        self.nsegs = 1
        self.F1s = [F1]
        self.F2s = [F2]
        self.Alphas = [Alpha]
        self.Deltas = [Delta]
Gregory Ashton's avatar
Gregory Ashton committed
402

Gregory Ashton's avatar
Gregory Ashton committed
403
404
405
    def inititate_search_object(self):
        logging.info('Setting up search object')
        self.search = ComputeFstat(
406
            tref=self.tref, sftfilepattern=self.sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
407
408
409
410
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
            detectors=self.detectors, transient=True,
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
Gregory Ashton's avatar
Gregory Ashton committed
411
412
            BSGL=self.BSGL, SSBprec=self.SSBprec,
            injectSources=self.injectSources)
Gregory Ashton's avatar
Gregory Ashton committed
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
        self.search.get_det_stat = (
            self.search.run_computefstatistic_single_point)

    def get_input_data_array(self):
        arrays = []
        tstarts = [self.minStartTime]
        while tstarts[-1] + self.window_size < self.maxStartTime:
            tstarts.append(tstarts[-1]+self.window_delta)
        arrays = [tstarts]
        for tup in (self.F0s, self.F1s, self.F2s,
                    self.Alphas, self.Deltas):
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        input_data = np.array(input_data)
        input_data = np.insert(
            input_data, 1, input_data[:, 0] + self.window_size, axis=1)

        self.arrays = arrays
        self.input_data = np.array(input_data)

    def plot_sliding_window(self, F0=None, ax=None, savefig=True,
438
                            colorbar=True, timestamps=False):
Gregory Ashton's avatar
Gregory Ashton committed
439
440
441
442
443
444
445
446
447
448
449
        data = self.data
        if ax is None:
            ax = plt.subplot()
        tstarts = np.unique(data[:, 0])
        tends = np.unique(data[:, 1])
        frequencies = np.unique(data[:, 2])
        twoF = data[:, -1]
        tmids = (tstarts + tends) / 2.0
        dts = (tmids - self.minStartTime) / 86400.
        if F0:
            frequencies = frequencies - F0
450
            ax.set_ylabel('Frequency - $f_0$ [Hz] \n $f_0={:0.2f}$'.format(F0))
Gregory Ashton's avatar
Gregory Ashton committed
451
452
453
454
455
456
457
458
459
        else:
            ax.set_ylabel('Frequency [Hz]')
        twoF = twoF.reshape((len(tmids), len(frequencies)))
        Y, X = np.meshgrid(frequencies, dts)
        pax = ax.pcolormesh(X, Y, twoF)
        if colorbar:
            cb = plt.colorbar(pax, ax=ax)
            cb.set_label('$2\mathcal{F}$')
        ax.set_xlabel(
460
461
            r'Mid-point (days after $t_\mathrm{{start}}$={})'.format(
                self.minStartTime))
Gregory Ashton's avatar
Gregory Ashton committed
462
463
        ax.set_title(
            'Sliding window length = {} days in increments of {} days'
464
465
466
467
468
469
470
            .format(self.window_size/86400, self.window_delta/86400),
            )
        if timestamps:
            axT = ax.twiny()
            axT.set_xlim(tmids[0]*1e-9, tmids[-1]*1e-9)
            axT.set_xlabel('Mid-point timestamp [GPS $10^{9}$ s]')
            ax.set_title(ax.get_title(), y=1.18)
Gregory Ashton's avatar
Gregory Ashton committed
471
472
473
474
475
476
        if savefig:
            plt.tight_layout()
            plt.savefig(
                '{}/{}_sliding_window.png'.format(self.outdir, self.label))
        else:
            return ax
477
478
479
480
481


class DMoff_NO_SPIN(GridSearch):
    """ DMoff test using SSBPREC_NO_SPIN """
    @helper_functions.initializer
482
    def __init__(self, par, label, outdir, sftfilepattern, minStartTime=None,
483
484
485
486
487
488
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
                 earth_ephem=None, sun_ephem=None, detectors=None,
                 injectSources=None, assumeSqrtSX=None):
        """
        Parameters
        ----------
489
490
491
        par: dict, str
            Either a par dictionary (containing 'F0', 'F1', 'Alpha', 'Delta'
            and 'tref') or a path to a .par file to read in the F0, F1 etc
492
493
        label, outdir: str
            A label and directory to read/write data from/to
494
495
496
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
497
498
499
500
501
502
503
504
505
506
507
508
509
510
        minStartTime, maxStartTime: int
            GPS seconds of the start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)

511
512
513
514
        if type(par) == dict:
            self.par = par
        elif type(par) == str and os.path.isfile(par):
            self.par = read_par(filename=par)
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
        else:
            raise ValueError('The .par file does not exist')

        self.nsegs = 1
        self.BSGL = False

        self.tref = self.par['tref']
        self.F1s = [self.par.get('F1', 0)]
        self.F2s = [self.par.get('F2', 0)]
        self.Alphas = [self.par['Alpha']]
        self.Deltas = [self.par['Delta']]
        self.Re = 6.371e6
        self.c = 2.998e8
        self.SIDEREAL_DAY = 23*60*60 + 56*60 + 4.0916
        self.TERRESTRIAL_DAY = 86400.
530
        a0 = self.Re/self.c  # *np.cos(self.par['Delta'])
531
        self.m0 = np.max([4, int(np.ceil(2*np.pi*self.par['F0']*a0))])
532
533
        logging.info(
            'Setting up DMoff_NO_SPIN search with m0 = {}'.format(self.m0))
534
535
536
537
538
539
540
541
542
543

    def get_results(self):
        """ Compute the three summed detection statistics

        Returns
        -------
            m0, twoF_SUM, twoFstar_SUM_SIDEREAL, twoFstar_SUM_TERRESTRIAL

        """
        self.SSBprec = 2
544
        self.set_out_file('SSBPREC2')
545
        self.F0s = [self.par['F0']+j/self.SIDEREAL_DAY for j in range(-4, 5)]
546
547
548
549
        self.run()
        twoF_SUM = np.sum(self.data[:, -1])

        self.SSBprec = 4
550
        self.set_out_file('SSBPREC4')
551
552
553
554
555
        self.F0s = [self.par['F0']+j/self.SIDEREAL_DAY
                    for j in range(-self.m0, self.m0+1)]
        self.run()
        twoFstar_SUM = np.sum(self.data[:, -1])

556
        self.set_out_file('SSBPREC4_TERRESTRIAL')
557
558
559
560
561
562
        self.F0s = [self.par['F0']+j/self.TERRESTRIAL_DAY
                    for j in range(-self.m0, self.m0+1)]
        self.run()
        twoFstar_SUM_terrestrial = np.sum(self.data[:, -1])

        return self.m0, twoF_SUM, twoFstar_SUM, twoFstar_SUM_terrestrial