core.py 41.2 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" The core tools used in pyfstat """
2
3
from __future__ import division, absolute_import, print_function

Gregory Ashton's avatar
Gregory Ashton committed
4
5
6
7
import os
import logging
import copy

8
import glob
Gregory Ashton's avatar
Gregory Ashton committed
9
import numpy as np
10
11
12
13
14
import scipy.special
import scipy.optimize

import lal
import lalpulsar
15
import pyfstat.helper_functions as helper_functions
16
17

# workaround for matplotlib on X-less remote logins
18
if 'DISPLAY' in os.environ:
19
20
    import matplotlib.pyplot as plt
else:
21
22
    logging.info('No $DISPLAY environment variable found, so importing \
                  matplotlib.pyplot with non-interactive "Agg" backend.')
23
24
25
26
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt

Gregory Ashton's avatar
Gregory Ashton committed
27
helper_functions.set_up_matplotlib_defaults()
28
args, tqdm = helper_functions.set_up_command_line_arguments()
29
detector_colors = {'h1': 'C0', 'l1': 'C1'}
Gregory Ashton's avatar
Gregory Ashton committed
30
31


Gregory Ashton's avatar
Gregory Ashton committed
32
class Bunch(object):
33
34
    """ Turns dictionary into object with attribute-style access

35
36
    Parameters
    ----------
37
38
39
40
41
42
43
44
45
46
47
48
49
50
    dict
        Input dictionary

    Examples
    --------
    >>> data = Bunch(dict(x=1, y=[1, 2, 3], z=True))
    >>> print(data.x)
    1
    >>> print(data.y)
    [1, 2, 3]
    >>> print(data.z)
    True

    """
Gregory Ashton's avatar
Gregory Ashton committed
51
52
53
54
55
    def __init__(self, dictionary):
        self.__dict__.update(dictionary)


def read_par(filename=None, label=None, outdir=None, suffix='par',
56
57
             return_type='dict', comments=['%', '#'], raise_error=False):
    """ Read in a .par or .loudest file, returns a dict or Bunch of the data
58

Gregory Ashton's avatar
Gregory Ashton committed
59
60
    Parameters
    ----------
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    filename : str
        Filename (path) containing rows of `key=val` data to read in.
    label, outdir, suffix : str, optional
        If filename is None, form the file to read as `outdir/label.suffix`.
    return_type : {'dict', 'bunch'}, optional
        If `dict`, return a dictionary, if 'bunch' return a Bunch
    comments : str or list of strings, optional
        Characters denoting that a row is a comment.
    raise_error : bool, optional
        If True, raise an error for lines which are not comments, but cannot
        be read.

    Notes
    -----
    This can also be used to read in .loudest files, or any file which has
    rows of `key=val` data (in which the val can be understood using eval(val)
Gregory Ashton's avatar
Gregory Ashton committed
77
78
79
80
81

    Returns
    -------
    d: Bunch or dict
        The par values as either a `Bunch` or dict type
82

83
84
85
86
    """
    if filename is None:
        filename = '{}/{}.{}'.format(outdir, label, suffix)
    if os.path.isfile(filename) is False:
87
        raise ValueError("No file {} found".format(filename))
Gregory Ashton's avatar
Gregory Ashton committed
88
89
    d = {}
    with open(filename, 'r') as f:
90
        d = _get_dictionary_from_lines(f, comments, raise_error)
Gregory Ashton's avatar
Gregory Ashton committed
91
92
93
94
95
96
    if return_type in ['bunch', 'Bunch']:
        return Bunch(d)
    elif return_type in ['dict', 'dictionary']:
        return d
    else:
        raise ValueError('return_type {} not understood'.format(return_type))
Gregory Ashton's avatar
Gregory Ashton committed
97
98


99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
def _get_dictionary_from_lines(lines, comments, raise_error):
    """ Return dictionary of key=val pairs for each line in lines

    Parameters
    ----------
    comments : str or list of strings
        Characters denoting that a row is a comment.
    raise_error : bool
        If True, raise an error for lines which are not comments, but cannot
        be read.

    Returns
    -------
    d: Bunch or dict
        The par values as either a `Bunch` or dict type

    """
116
117
    d = {}
    for line in lines:
118
        if line[0] not in comments and len(line.split('=')) == 2:
119
120
121
            try:
                key, val = line.rstrip('\n').split('=')
                key = key.strip()
Gregory Ashton's avatar
Gregory Ashton committed
122
123
124
125
                try:
                    d[key] = np.float64(eval(val.rstrip('; ')))
                except NameError:
                    d[key] = val.rstrip('; ')
126
            except SyntaxError:
127
128
                if raise_error:
                    raise IOError('Line {} not understood'.format(line))
129
130
131
132
133
                pass
    return d


def predict_fstat(h0, cosi, psi, Alpha, Delta, Freq, sftfilepattern,
Gregory Ashton's avatar
Gregory Ashton committed
134
135
                  minStartTime, maxStartTime, IFO=None, assumeSqrtSX=None,
                  **kwargs):
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    """ Wrapper to lalapps_PredictFstat

    Parameters
    ----------
    h0, cosi, psi, Alpha, Delta, Freq : float
        Signal properties, see `lalapps_PredictFstat --help` for more info.
    sftfilepattern : str
        Pattern matching the sftfiles to use.
    minStartTime, maxStartTime : int
    IFO : str
        See `lalapps_PredictFstat --help`
    assumeSqrtSX : float or None
        See `lalapps_PredictFstat --help`, if None this option is not used

    Returns
    -------
    twoF_expected, twoF_sigma : float
        The expectation and standard deviation of 2F

    """
156
157
158
159
160
161
162
163
164
165
    cl_pfs = []
    cl_pfs.append("lalapps_PredictFstat")
    cl_pfs.append("--h0={}".format(h0))
    cl_pfs.append("--cosi={}".format(cosi))
    cl_pfs.append("--psi={}".format(psi))
    cl_pfs.append("--Alpha={}".format(Alpha))
    cl_pfs.append("--Delta={}".format(Delta))
    cl_pfs.append("--Freq={}".format(Freq))

    cl_pfs.append("--DataFiles='{}'".format(sftfilepattern))
166
    if assumeSqrtSX:
167
        cl_pfs.append("--assumeSqrtSX={}".format(assumeSqrtSX))
168
    if IFO:
169
        cl_pfs.append("--IFO={}".format(IFO))
170

171
172
173
    cl_pfs.append("--minStartTime={}".format(int(minStartTime)))
    cl_pfs.append("--maxStartTime={}".format(int(maxStartTime)))
    cl_pfs.append("--outputFstat=/tmp/fs")
174

175
176
    cl_pfs = " ".join(cl_pfs)
    helper_functions.run_commandline(cl_pfs)
177
178
179
180
    d = read_par(filename='/tmp/fs')
    return float(d['twoF_expected']), float(d['twoF_sigma'])


Gregory Ashton's avatar
Gregory Ashton committed
181
class BaseSearchClass(object):
182
    """ The base search class providing parent methods to other searches """
Gregory Ashton's avatar
Gregory Ashton committed
183

184
    def _add_log_file(self):
Gregory Ashton's avatar
Gregory Ashton committed
185
186
187
188
189
190
191
192
193
        """ Log output to a file, requires class to have outdir and label """
        logfilename = '{}/{}.log'.format(self.outdir, self.label)
        fh = logging.FileHandler(logfilename)
        fh.setLevel(logging.INFO)
        fh.setFormatter(logging.Formatter(
            '%(asctime)s %(levelname)-8s: %(message)s',
            datefmt='%y-%m-%d %H:%M'))
        logging.getLogger().addHandler(fh)

194
    def _shift_matrix(self, n, dT):
Gregory Ashton's avatar
Gregory Ashton committed
195
196
197
198
        """ Generate the shift matrix

        Parameters
        ----------
199
        n : int
Gregory Ashton's avatar
Gregory Ashton committed
200
            The dimension of the shift-matrix to generate
201
        dT : float
Gregory Ashton's avatar
Gregory Ashton committed
202
203
204
205
            The time delta of the shift matrix

        Returns
        -------
206
207
        m : ndarray, shape (n,)
            The shift matrix.
Gregory Ashton's avatar
Gregory Ashton committed
208

209
        """
Gregory Ashton's avatar
Gregory Ashton committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        m = np.zeros((n, n))
        factorial = np.math.factorial
        for i in range(n):
            for j in range(n):
                if i == j:
                    m[i, j] = 1.0
                elif i > j:
                    m[i, j] = 0.0
                else:
                    if i == 0:
                        m[i, j] = 2*np.pi*float(dT)**(j-i) / factorial(j-i)
                    else:
                        m[i, j] = float(dT)**(j-i) / factorial(j-i)
        return m

225
    def _shift_coefficients(self, theta, dT):
Gregory Ashton's avatar
Gregory Ashton committed
226
227
228
229
        """ Shift a set of coefficients by dT

        Parameters
        ----------
230
231
        theta : array-like, shape (n,)
            Vector of the expansion coefficients to transform starting from the
Gregory Ashton's avatar
Gregory Ashton committed
232
            lowest degree e.g [phi, F0, F1,...].
233
234
        dT : float
            Difference between the two reference times as tref_new - tref_old.
Gregory Ashton's avatar
Gregory Ashton committed
235
236
237

        Returns
        -------
238
239
        theta_new : ndarray, shape (n,)
            Vector of the coefficients as evaluated as the new reference time.
Gregory Ashton's avatar
Gregory Ashton committed
240
241
        """
        n = len(theta)
242
        m = self._shift_matrix(n, dT)
Gregory Ashton's avatar
Gregory Ashton committed
243
244
        return np.dot(m, theta)

245
    def _calculate_thetas(self, theta, delta_thetas, tbounds, theta0_idx=0):
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
        """ Calculates the set of thetas given delta_thetas, the jumps

        This is used when generating data containing glitches or timing noise.
        Specifically, the source parameters of the signal are not constant in
        time, but jump by `delta_theta` at `tbounds`.

        Parameters
        ----------
        theta : array_like
            The source parameters of size (n,).
        delta_thetas : array_like
            The jumps in the source parameters of size (m, n) where m is the
            number of jumps.
        tbounds : array_like
            Time boundaries of the jumps of size (m+2,).
        theta0_idx : int
            Index of the segment for which the theta are defined.

        Returns
        -------
        ndarray
            The set of thetas, shape (m+1, n).

        """
Gregory Ashton's avatar
Gregory Ashton committed
270
271
272
        thetas = [theta]
        for i, dt in enumerate(delta_thetas):
            if i < theta0_idx:
273
                pre_theta_at_ith_glitch = self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
274
275
                    thetas[0], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch - dt
276
                thetas.insert(0, self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
277
278
279
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))

            elif i >= theta0_idx:
280
                pre_theta_at_ith_glitch = self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
281
282
                    thetas[i], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch + dt
283
                thetas.append(self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
284
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))
285
        self.thetas_at_tref = thetas
Gregory Ashton's avatar
Gregory Ashton committed
286
287
        return thetas

288
    def _get_list_of_matching_sfts(self):
289
        """ Returns a list of sfts matching the attribute sftfilepattern """
290
291
        sftfilepatternlist = np.atleast_1d(self.sftfilepattern.split(';'))
        matches = [glob.glob(p) for p in sftfilepatternlist]
292
        matches = [item for sublist in matches for item in sublist]
293
294
295
296
        if len(matches) > 0:
            return matches
        else:
            raise IOError('No sfts found matching {}'.format(
297
                self.sftfilepattern))
298

299
300
    def set_ephemeris_files(self, earth_ephem=None, sun_ephem=None):
        """ Set the ephemeris files to use for the Earth and Sun
Gregory Ashton's avatar
Gregory Ashton committed
301

302
303
304
305
306
        Parameters
        ----------
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
Gregory Ashton's avatar
Gregory Ashton committed
307

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
        Note: If not manually set, default values in ~/.pyfstat are used

        """

        earth_ephem_default, sun_ephem_default = (
                helper_functions.get_ephemeris_files())

        if earth_ephem is None:
            self.earth_ephem = earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = sun_ephem_default


class ComputeFstat(BaseSearchClass):
    """ Base class providing interface to `lalpulsar.ComputeFstat` """
Gregory Ashton's avatar
Gregory Ashton committed
323
324

    @helper_functions.initializer
325
    def __init__(self, tref, sftfilepattern=None, minStartTime=None,
Gregory Ashton's avatar
Gregory Ashton committed
326
                 maxStartTime=None, binary=False, transient=True, BSGL=False,
327
                 detectors=None, minCoverFreq=None, maxCoverFreq=None,
328
329
                 injectSources=None, injectSqrtSX=None, assumeSqrtSX=None,
                 SSBprec=None):
Gregory Ashton's avatar
Gregory Ashton committed
330
331
332
        """
        Parameters
        ----------
333
        tref : int
Gregory Ashton's avatar
Gregory Ashton committed
334
            GPS seconds of the reference time.
335
        sftfilepattern : str
336
337
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
338
        minStartTime, maxStartTime : float GPStime
Gregory Ashton's avatar
Gregory Ashton committed
339
340
            Only use SFTs with timestemps starting from (including, excluding)
            this epoch
341
        binary : bool
Gregory Ashton's avatar
Gregory Ashton committed
342
            If true, search of binary parameters.
343
        transient : bool
Gregory Ashton's avatar
Gregory Ashton committed
344
            If true, allow for the Fstat to be computed over a transient range.
345
        BSGL : bool
Gregory Ashton's avatar
Gregory Ashton committed
346
            If true, compute the BSGL rather than the twoF value.
347
        detectors : str
Gregory Ashton's avatar
Gregory Ashton committed
348
            Two character reference to the data to use, specify None for no
349
            contraint. If multiple-separate by comma.
350
        minCoverFreq, maxCoverFreq : float
Gregory Ashton's avatar
Gregory Ashton committed
351
352
353
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
354
        injectSources : dict or str
355
356
            Either a dictionary of the values to inject, or a string pointing
            to the .cff file to inject
357
        injectSqrtSX :
358
            Not yet implemented
359
        assumeSqrtSX : float
360
361
362
            Don't estimate noise-floors but assume (stationary) per-IFO
            sqrt{SX} (if single value: use for all IFOs). If signal only,
            set sqrtSX=1
363
        SSBprec : int
364
365
            Flag to set the SSB calculation: 0=Newtonian, 1=relativistic,
            2=relativisitic optimised, 3=DMoff, 4=NO_SPIN
Gregory Ashton's avatar
Gregory Ashton committed
366
367
368

        """

369
        self.set_ephemeris_files()
Gregory Ashton's avatar
Gregory Ashton committed
370
371
        self.init_computefstatistic_single_point()

372
373
374
375
376
377
378
379
380
381
382
    def _get_SFTCatalog(self):
        """ Load the SFTCatalog

        If sftfilepattern is specified, load the data. If not, attempt to
        create data on the fly.

        Returns
        -------
        SFTCatalog: lalpulsar.SFTCatalog

        """
Gregory Ashton's avatar
Gregory Ashton committed
383
384
        if hasattr(self, 'SFTCatalog'):
            return
385
        if self.sftfilepattern is None:
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
            for k in ['minStartTime', 'maxStartTime', 'detectors']:
                if getattr(self, k) is None:
                    raise ValueError('You must provide "{}" to injectSources'
                                     .format(k))
            C1 = getattr(self, 'injectSources', None) is None
            C2 = getattr(self, 'injectSqrtSX', None) is None
            if C1 and C2:
                raise ValueError('You must specify either one of injectSources'
                                 ' or injectSqrtSX')
            SFTCatalog = lalpulsar.SFTCatalog()
            Tsft = 1800
            Toverlap = 0
            Tspan = self.maxStartTime - self.minStartTime
            detNames = lal.CreateStringVector(
                *[d for d in self.detectors.split(',')])
            multiTimestamps = lalpulsar.MakeMultiTimestamps(
                self.minStartTime, Tspan, Tsft, Toverlap, detNames.length)
            SFTCatalog = lalpulsar.MultiAddToFakeSFTCatalog(
                SFTCatalog, detNames, multiTimestamps)
            return SFTCatalog

Gregory Ashton's avatar
Gregory Ashton committed
407
408
        logging.info('Initialising SFTCatalog')
        constraints = lalpulsar.SFTConstraints()
409
        if self.detectors:
410
            if ',' in self.detectors:
Gregory Ashton's avatar
Gregory Ashton committed
411
                constraints.detector = self.detectors
412
413
            else:
                constraints.detector = self.detectors
Gregory Ashton's avatar
Gregory Ashton committed
414
415
416
417
418
419
        if self.minStartTime:
            constraints.minStartTime = lal.LIGOTimeGPS(self.minStartTime)
        if self.maxStartTime:
            constraints.maxStartTime = lal.LIGOTimeGPS(self.maxStartTime)

        logging.info('Loading data matching pattern {}'.format(
420
421
                     self.sftfilepattern))
        SFTCatalog = lalpulsar.SFTdataFind(self.sftfilepattern, constraints)
Gregory Ashton's avatar
Gregory Ashton committed
422
423
424
        detector_names = list(set([d.header.name for d in SFTCatalog.data]))
        self.detector_names = detector_names
        SFT_timestamps = [d.header.epoch for d in SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
425
        self.SFT_timestamps = [float(s) for s in SFT_timestamps]
426
427
        if len(SFT_timestamps) == 0:
            raise ValueError('Failed to load any data')
Gregory Ashton's avatar
Gregory Ashton committed
428
429
430
431
432
        if args.quite is False and args.no_interactive is False:
            try:
                from bashplotlib.histogram import plot_hist
                print('Data timestamps histogram:')
                plot_hist(SFT_timestamps, height=5, bincount=50)
Gregory Ashton's avatar
Gregory Ashton committed
433
            except ImportError:
Gregory Ashton's avatar
Gregory Ashton committed
434
435
436
437
438
                pass
        if len(detector_names) == 0:
            raise ValueError('No data loaded.')
        logging.info('Loaded {} data files from detectors {}'.format(
            len(SFT_timestamps), detector_names))
439
        cl_tconv1 = 'lalapps_tconvert {}'.format(int(SFT_timestamps[0]))
440
        output = helper_functions.run_commandline(cl_tconv1)
441
442
        tconvert1 = output.rstrip('\n')
        cl_tconv2 = 'lalapps_tconvert {}'.format(int(SFT_timestamps[-1]))
443
        output = helper_functions.run_commandline(cl_tconv2)
444
        tconvert2 = output.rstrip('\n')
Gregory Ashton's avatar
Gregory Ashton committed
445
446
        logging.info('Data spans from {} ({}) to {} ({})'.format(
            int(SFT_timestamps[0]),
447
            tconvert1,
Gregory Ashton's avatar
Gregory Ashton committed
448
            int(SFT_timestamps[-1]),
449
            tconvert2))
450
        return SFTCatalog
Gregory Ashton's avatar
Gregory Ashton committed
451
452
453
454

    def init_computefstatistic_single_point(self):
        """ Initilisation step of run_computefstatistic for a single point """

455
        SFTCatalog = self._get_SFTCatalog()
Gregory Ashton's avatar
Gregory Ashton committed
456
457
458
459
460
461
462
463
464
465
466
467
468

        logging.info('Initialising ephems')
        ephems = lalpulsar.InitBarycenter(self.earth_ephem, self.sun_ephem)

        logging.info('Initialising FstatInput')
        dFreq = 0
        if self.transient:
            self.whatToCompute = lalpulsar.FSTATQ_ATOMS_PER_DET
        else:
            self.whatToCompute = lalpulsar.FSTATQ_2F

        FstatOAs = lalpulsar.FstatOptionalArgs()
        FstatOAs.randSeed = lalpulsar.FstatOptionalArgsDefaults.randSeed
469
470
471
472
473
        if self.SSBprec:
            logging.info('Using SSBprec={}'.format(self.SSBprec))
            FstatOAs.SSBprec = self.SSBprec
        else:
            FstatOAs.SSBprec = lalpulsar.FstatOptionalArgsDefaults.SSBprec
Gregory Ashton's avatar
Gregory Ashton committed
474
475
476
        FstatOAs.Dterms = lalpulsar.FstatOptionalArgsDefaults.Dterms
        FstatOAs.runningMedianWindow = lalpulsar.FstatOptionalArgsDefaults.runningMedianWindow
        FstatOAs.FstatMethod = lalpulsar.FstatOptionalArgsDefaults.FstatMethod
477
478
479
480
481
482
483
484
        if self.assumeSqrtSX is None:
            FstatOAs.assumeSqrtSX = lalpulsar.FstatOptionalArgsDefaults.assumeSqrtSX
        else:
            mnf = lalpulsar.MultiNoiseFloor()
            assumeSqrtSX = np.atleast_1d(self.assumeSqrtSX)
            mnf.sqrtSn[:len(assumeSqrtSX)] = assumeSqrtSX
            mnf.length = len(assumeSqrtSX)
            FstatOAs.assumeSqrtSX = mnf
Gregory Ashton's avatar
Gregory Ashton committed
485
486
487
        FstatOAs.prevInput = lalpulsar.FstatOptionalArgsDefaults.prevInput
        FstatOAs.collectTiming = lalpulsar.FstatOptionalArgsDefaults.collectTiming

Gregory Ashton's avatar
Gregory Ashton committed
488
        if hasattr(self, 'injectSources') and type(self.injectSources) == dict:
Gregory Ashton's avatar
Gregory Ashton committed
489
490
491
492
493
494
495
496
497
498
            logging.info('Injecting source with params: {}'.format(
                self.injectSources))
            PPV = lalpulsar.CreatePulsarParamsVector(1)
            PP = PPV.data[0]
            PP.Amp.h0 = self.injectSources['h0']
            PP.Amp.cosi = self.injectSources['cosi']
            PP.Amp.phi0 = self.injectSources['phi0']
            PP.Amp.psi = self.injectSources['psi']
            PP.Doppler.Alpha = self.injectSources['Alpha']
            PP.Doppler.Delta = self.injectSources['Delta']
Gregory Ashton's avatar
Gregory Ashton committed
499
500
501
502
503
504
            if 'fkdot' in self.injectSources:
                PP.Doppler.fkdot = np.array(self.injectSources['fkdot'])
            else:
                PP.Doppler.fkdot = np.zeros(lalpulsar.PULSAR_MAX_SPINS)
                for i, key in enumerate(['F0', 'F1', 'F2']):
                    PP.Doppler.fkdot[i] = self.injectSources[key]
Gregory Ashton's avatar
Gregory Ashton committed
505
506
507
508
            PP.Doppler.refTime = self.tref
            if 't0' not in self.injectSources:
                PP.Transient.type = lalpulsar.TRANSIENT_NONE
            FstatOAs.injectSources = PPV
Gregory Ashton's avatar
Gregory Ashton committed
509
        elif hasattr(self, 'injectSources') and type(self.injectSources) == str:
510
511
512
513
            logging.info('Injecting source from param file: {}'.format(
                self.injectSources))
            PPV = lalpulsar.PulsarParamsFromFile(self.injectSources, self.tref)
            FstatOAs.injectSources = PPV
Gregory Ashton's avatar
Gregory Ashton committed
514
515
        else:
            FstatOAs.injectSources = lalpulsar.FstatOptionalArgsDefaults.injectSources
516
517
518
519
        if hasattr(self, 'injectSqrtSX') and self.injectSqrtSX is not None:
            raise ValueError('injectSqrtSX not implemented')
        else:
            FstatOAs.InjectSqrtSX = lalpulsar.FstatOptionalArgsDefaults.injectSqrtSX
Gregory Ashton's avatar
Gregory Ashton committed
520
        if self.minCoverFreq is None or self.maxCoverFreq is None:
521
            fAs = [d.header.f0 for d in SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
522
            fBs = [d.header.f0 + (d.numBins-1)*d.header.deltaF
523
                   for d in SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
524
525
526
527
528
529
            self.minCoverFreq = np.min(fAs) + 0.5
            self.maxCoverFreq = np.max(fBs) - 0.5
            logging.info('Min/max cover freqs not provided, using '
                         '{} and {}, est. from SFTs'.format(
                             self.minCoverFreq, self.maxCoverFreq))

530
        self.FstatInput = lalpulsar.CreateFstatInput(SFTCatalog,
Gregory Ashton's avatar
Gregory Ashton committed
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
                                                     self.minCoverFreq,
                                                     self.maxCoverFreq,
                                                     dFreq,
                                                     ephems,
                                                     FstatOAs
                                                     )

        logging.info('Initialising PulsarDoplerParams')
        PulsarDopplerParams = lalpulsar.PulsarDopplerParams()
        PulsarDopplerParams.refTime = self.tref
        PulsarDopplerParams.Alpha = 1
        PulsarDopplerParams.Delta = 1
        PulsarDopplerParams.fkdot = np.array([0, 0, 0, 0, 0, 0, 0])
        self.PulsarDopplerParams = PulsarDopplerParams

        logging.info('Initialising FstatResults')
        self.FstatResults = lalpulsar.FstatResults()

        if self.BSGL:
            if len(self.detector_names) < 2:
551
                raise ValueError("Can't use BSGL with single detectors data")
Gregory Ashton's avatar
Gregory Ashton committed
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
            else:
                logging.info('Initialising BSGL')

            # Tuning parameters - to be reviewed
            numDetectors = 2
            if hasattr(self, 'nsegs'):
                p_val_threshold = 1e-6
                Fstar0s = np.linspace(0, 1000, 10000)
                p_vals = scipy.special.gammaincc(2*self.nsegs, Fstar0s)
                Fstar0 = Fstar0s[np.argmin(np.abs(p_vals - p_val_threshold))]
                if Fstar0 == Fstar0s[-1]:
                    raise ValueError('Max Fstar0 exceeded')
            else:
                Fstar0 = 15.
            logging.info('Using Fstar0 of {:1.2f}'.format(Fstar0))
            oLGX = np.zeros(10)
            oLGX[:numDetectors] = 1./numDetectors
            self.BSGLSetup = lalpulsar.CreateBSGLSetup(numDetectors,
                                                       Fstar0,
                                                       oLGX,
                                                       True,
                                                       1)
            self.twoFX = np.zeros(10)
            self.whatToCompute = (self.whatToCompute +
                                  lalpulsar.FSTATQ_2F_PER_DET)

        if self.transient:
            logging.info('Initialising transient parameters')
            self.windowRange = lalpulsar.transientWindowRange_t()
            self.windowRange.type = lalpulsar.TRANSIENT_RECTANGULAR
            self.windowRange.t0Band = 0
            self.windowRange.dt0 = 1
            self.windowRange.tauBand = 0
            self.windowRange.dtau = 1

587
588
589
    def get_fullycoherent_twoF(self, tstart, tend, F0, F1, F2, Alpha, Delta,
                               asini=None, period=None, ecc=None, tp=None,
                               argp=None):
Gregory Ashton's avatar
Gregory Ashton committed
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
        """ Returns twoF or ln(BSGL) fully-coherently at a single point """

        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
                               1,
                               self.whatToCompute
                               )

        if self.transient is False:
            if self.BSGL is False:
                return self.FstatResults.twoF[0]

            twoF = np.float(self.FstatResults.twoF[0])
            self.twoFX[0] = self.FstatResults.twoFPerDet(0)
            self.twoFX[1] = self.FstatResults.twoFPerDet(1)
            log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
                                               self.BSGLSetup)
            return log10_BSGL/np.log10(np.exp(1))

        self.windowRange.t0 = int(tstart)  # TYPE UINT4
        self.windowRange.tau = int(tend - tstart)  # TYPE UINT4

        FS = lalpulsar.ComputeTransientFstatMap(
            self.FstatResults.multiFatoms[0], self.windowRange, False)

        if self.BSGL is False:
627
628
629
630
631
            twoF = 2*FS.F_mn.data[0][0]
            if np.isnan(twoF):
                return 0
            else:
                return twoF
Gregory Ashton's avatar
Gregory Ashton committed
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651

        FstatResults_single = copy.copy(self.FstatResults)
        FstatResults_single.lenth = 1
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
        FS0 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
        FS1 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)

        self.twoFX[0] = 2*FS0.F_mn.data[0][0]
        self.twoFX[1] = 2*FS1.F_mn.data[0][0]
        log10_BSGL = lalpulsar.ComputeBSGL(
                2*FS.F_mn.data[0][0], self.twoFX, self.BSGLSetup)

        return log10_BSGL/np.log10(np.exp(1))

    def calculate_twoF_cumulative(self, F0, F1, F2, Alpha, Delta, asini=None,
                                  period=None, ecc=None, tp=None, argp=None,
                                  tstart=None, tend=None, npoints=1000,
652
653
                                  ):
        """ Calculate the cumulative twoF along the obseration span
654
655
656

        Parameters
        ----------
657
658
        F0, F1, F2, Alpha, Delta: float
            Parameters at which to compute the cumulative twoF
659
660
        asini, period, ecc, tp, argp: float, optional
            Binary parameters at which to compute the cumulative 2F
661
662
663
664
665
666
        tstart, tend: int
            GPS times to restrict the range of data used - automatically
            truncated to the span of data available
        npoints: int
            Number of points to compute twoF along the span

667
668
669
        Notes
        -----
        The minimum cumulatibe twoF is hard-coded to be computed over
670
671
672
673
674
675
        the first 6 hours from either the first timestampe in the data (if
        tstart is smaller than it) or tstart.

        """
        SFTminStartTime = self.SFT_timestamps[0]
        SFTmaxStartTime = self.SFT_timestamps[-1]
Gregory Ashton's avatar
Gregory Ashton committed
676
        tstart = np.max([SFTminStartTime, tstart])
677
678
679
        min_tau = np.max([SFTminStartTime - tstart, 0]) + 3600*6
        max_tau = SFTmaxStartTime - tstart
        taus = np.linspace(min_tau, max_tau, npoints)
Gregory Ashton's avatar
Gregory Ashton committed
680
681
682
683
684
        twoFs = []
        if self.transient is False:
            self.transient = True
            self.init_computefstatistic_single_point()
        for tau in taus:
685
            twoFs.append(self.get_fullycoherent_twoF(
Gregory Ashton's avatar
Gregory Ashton committed
686
687
688
689
690
691
                tstart=tstart, tend=tstart+tau, F0=F0, F1=F1, F2=F2,
                Alpha=Alpha, Delta=Delta, asini=asini, period=period, ecc=ecc,
                tp=tp, argp=argp))

        return taus, np.array(twoFs)

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
    def _calculate_predict_fstat_cumulative(self, N, label=None, outdir=None,
                                            IFO=None, pfs_input=None):
        """ Calculates the predicted 2F and standard deviation cumulatively

        Parameters
        ----------
        N : int
            Number of timesteps to use between minStartTime and maxStartTime.
        label, outdir : str, optional
            The label and directory to read in the .loudest file from
        IFO : str
        pfs_input : dict, optional
            Input kwargs to predict_fstat (alternative to giving label and
            outdir).

        Returns
        -------
        times, pfs, pfs_sigma : ndarray, size (N,)

        """
Gregory Ashton's avatar
Gregory Ashton committed
712
713
714
715
716

        if pfs_input is None:
            if os.path.isfile('{}/{}.loudest'.format(outdir, label)) is False:
                raise ValueError(
                    'Need a loudest file to add the predicted Fstat')
717
            loudest = read_par(label=label, outdir=outdir, suffix='loudest')
Gregory Ashton's avatar
Gregory Ashton committed
718
719
            pfs_input = {key: loudest[key] for key in
                         ['h0', 'cosi', 'psi', 'Alpha', 'Delta', 'Freq']}
720
721
722
        times = np.linspace(self.minStartTime, self.maxStartTime, N+1)[1:]
        times = np.insert(times, 0, self.minStartTime + 86400/2.)
        out = [predict_fstat(minStartTime=self.minStartTime, maxStartTime=t,
723
                             sftfilepattern=self.sftfilepattern, IFO=IFO,
724
725
726
727
                             **pfs_input) for t in times]
        pfs, pfs_sigma = np.array(out).T
        return times, pfs, pfs_sigma

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
    def plot_twoF_cumulative(self, label, outdir, add_pfs=False, N=15,
                             injectSources=None, ax=None, c='k', savefig=True,
                             title=None, **kwargs):
        """ Plot the twoF value cumulatively

        Parameters
        ----------
        label, outdir : str
        add_pfs : bool
            If true, plot the predicted 2F and standard deviation
        N : int
            Number of points to use
        injectSources : dict
            See `ComputeFstat`
        ax : matplotlib.axes._subplots_AxesSubplot, optional
            Axis to add the plot to.
        c : str
            Colour
        savefig : bool
            If true, save the figure in outdir
        title: str
            Figure title

        Returns
        -------
        tauS, tauF : ndarray shape (N,)
            If savefig, the times and twoF (cumulative) values
        ax : matplotlib.axes._subplots_AxesSubplot, optional
            If savefig is False

        """
Gregory Ashton's avatar
Gregory Ashton committed
759
760
        if ax is None:
            fig, ax = plt.subplots()
Gregory Ashton's avatar
Gregory Ashton committed
761
762
763
764
765
766
767
        if injectSources:
            pfs_input = dict(
                h0=injectSources['h0'], cosi=injectSources['cosi'],
                psi=injectSources['psi'], Alpha=injectSources['Alpha'],
                Delta=injectSources['Delta'], Freq=injectSources['fkdot'][0])
        else:
            pfs_input = None
768
769
770
771

        taus, twoFs = self.calculate_twoF_cumulative(**kwargs)
        ax.plot(taus/86400., twoFs, label='All detectors', color=c)
        if len(self.detector_names) > 1:
772
773
            detector_names = self.detector_names
            detectors = self.detectors
774
775
776
777
            for d in self.detector_names:
                self.detectors = d
                self.init_computefstatistic_single_point()
                taus, twoFs = self.calculate_twoF_cumulative(**kwargs)
778
779
780
781
782
783
                ax.plot(taus/86400., twoFs, label='{}'.format(d),
                        color=detector_colors[d.lower()])
            self.detectors = detectors
            self.detector_names = detector_names

        if add_pfs:
784
785
            times, pfs, pfs_sigma = self._calculate_predict_fstat_cumulative(
                N=N, label=label, outdir=outdir, pfs_input=pfs_input)
786
787
            ax.fill_between(
                (times-self.minStartTime)/86400., pfs-pfs_sigma, pfs+pfs_sigma,
Gregory Ashton's avatar
Gregory Ashton committed
788
                color=c,
789
790
                label=(r'Predicted $\langle 2\mathcal{F} '
                       r'\rangle\pm $ 1-$\sigma$ band'),
791
792
793
                zorder=-10, alpha=0.2)
            if len(self.detector_names) > 1:
                for d in self.detector_names:
794
795
796
797
                    out = self._calculate_predict_fstat_cumulative(
                        N=N, label=label, outdir=outdir, IFO=d.upper(),
                        pfs_input=pfs_input)
                    times, pfs, pfs_sigma = out
798
799
800
801
802
803
804
805
                    ax.fill_between(
                        (times-self.minStartTime)/86400., pfs-pfs_sigma,
                        pfs+pfs_sigma, color=detector_colors[d.lower()],
                        alpha=0.5,
                        label=(
                            'Predicted $2\mathcal{{F}}$ 1-$\sigma$ band ({})'
                            .format(d.upper())),
                        zorder=-10)
806

Gregory Ashton's avatar
Gregory Ashton committed
807
808
809
810
811
812
813
        ax.set_xlabel(r'Days from $t_{{\rm start}}={:.0f}$'.format(
            kwargs['tstart']))
        if self.BSGL:
            ax.set_ylabel(r'$\log_{10}(\mathrm{BSGL})_{\rm cumulative}$')
        else:
            ax.set_ylabel(r'$\widetilde{2\mathcal{F}}_{\rm cumulative}$')
        ax.set_xlim(0, taus[-1]/86400)
Gregory Ashton's avatar
Gregory Ashton committed
814
        ax.legend(frameon=False, loc=2, fontsize=6)
Gregory Ashton's avatar
Gregory Ashton committed
815
816
817
818
819
820
821
822
823
824
        if title:
            ax.set_title(title)
        if savefig:
            plt.tight_layout()
            plt.savefig('{}/{}_twoFcumulative.png'.format(outdir, label))
            return taus, twoFs
        else:
            return ax


825
class SemiCoherentSearch(ComputeFstat):
Gregory Ashton's avatar
Gregory Ashton committed
826
827
828
    """ A semi-coherent search """

    @helper_functions.initializer
829
    def __init__(self, label, outdir, tref, nsegs=None, sftfilepattern=None,
Gregory Ashton's avatar
Gregory Ashton committed
830
831
                 binary=False, BSGL=False, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
832
833
                 detectors=None, injectSources=None, assumeSqrtSX=None,
                 SSBprec=None):
Gregory Ashton's avatar
Gregory Ashton committed
834
835
836
837
838
839
840
841
842
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, and start and end of the data.
        nsegs: int
            The (fixed) number of segments
843
844
845
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
846
847
848
849
850

        For all other parameters, see pyfstat.ComputeFStat.
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
851
        self.set_ephemeris_files()
Gregory Ashton's avatar
Gregory Ashton committed
852
853
854
855
856
857
858
859
860
861
862
863
        self.transient = True
        self.init_computefstatistic_single_point()
        self.init_semicoherent_parameters()

    def init_semicoherent_parameters(self):
        logging.info(('Initialising semicoherent parameters from {} to {} in'
                      ' {} segments').format(
            self.minStartTime, self.maxStartTime, self.nsegs))
        self.transient = True
        self.whatToCompute = lalpulsar.FSTATQ_2F+lalpulsar.FSTATQ_ATOMS_PER_DET
        self.tboundaries = np.linspace(self.minStartTime, self.maxStartTime,
                                       self.nsegs+1)
864
        self.Tcoh = self.tboundaries[1] - self.tboundaries[0]
Gregory Ashton's avatar
Gregory Ashton committed
865

866
867
868
869
870
871
872
873
874
        if hasattr(self, 'SFT_timestamps'):
            if self.tboundaries[0] < self.SFT_timestamps[0]:
                logging.debug(
                    'Semi-coherent start time {} before first SFT timestamp {}'
                    .format(self.tboundaries[0], self.SFT_timestamps[0]))
            if self.tboundaries[-1] > self.SFT_timestamps[-1]:
                logging.debug(
                    'Semi-coherent end time {} after last SFT timestamp {}'
                    .format(self.tboundaries[-1], self.SFT_timestamps[-1]))
Gregory Ashton's avatar
Gregory Ashton committed
875

876
    def get_semicoherent_twoF(
877
878
879
880
881
            self, F0, F1, F2, Alpha, Delta, asini=None,
            period=None, ecc=None, tp=None, argp=None,
            record_segments=False):
        """ Returns twoF or ln(BSGL) semi-coherently at a single point """

Gregory Ashton's avatar
Gregory Ashton committed
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
                               1,
                               self.whatToCompute
                               )

899
900
901
902
903
904
905
906
907
        #if self.transient is False:
        #    if self.BSGL is False:
        #        return self.FstatResults.twoF[0]
        #    twoF = np.float(self.FstatResults.twoF[0])
        #    self.twoFX[0] = self.FstatResults.twoFPerDet(0)
        #    self.twoFX[1] = self.FstatResults.twoFPerDet(1)
        #    log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
        #                                       self.BSGLSetup)
        #    return log10_BSGL/np.log10(np.exp(1))
Gregory Ashton's avatar
Gregory Ashton committed
908
909

        detStat = 0
910
911
        if record_segments:
            self.detStat_per_segment = []
Gregory Ashton's avatar
Gregory Ashton committed
912

913
914
915
        self.windowRange.tau = int(self.Tcoh)  # TYPE UINT4
        for tstart in self.tboundaries[:-1]:
            d_detStat = self._get_per_segment_det_stat(tstart)
916
917
918
            detStat += d_detStat
            if record_segments:
                self.detStat_per_segment.append(d_detStat)
Gregory Ashton's avatar
Gregory Ashton committed
919
920
921

        return detStat

922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
    def _get_per_segment_det_stat(self, tstart):
        self.windowRange.t0 = int(tstart)  # TYPE UINT4

        FS = lalpulsar.ComputeTransientFstatMap(
            self.FstatResults.multiFatoms[0], self.windowRange, False)

        if self.BSGL is False:
            d_detStat = 2*FS.F_mn.data[0][0]
        else:
            FstatResults_single = copy.copy(self.FstatResults)
            FstatResults_single.lenth = 1
            FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
            FS0 = lalpulsar.ComputeTransientFstatMap(
                FstatResults_single.multiFatoms[0], self.windowRange, False)
            FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
            FS1 = lalpulsar.ComputeTransientFstatMap(
                FstatResults_single.multiFatoms[0], self.windowRange, False)

            self.twoFX[0] = 2*FS0.F_mn.data[0][0]
            self.twoFX[1] = 2*FS1.F_mn.data[0][0]
            log10_BSGL = lalpulsar.ComputeBSGL(
                    2*FS.F_mn.data[0][0], self.twoFX, self.BSGLSetup)
            d_detStat = log10_BSGL/np.log10(np.exp(1))
        if np.isnan(d_detStat):
            logging.debug('NaNs in semi-coherent twoF treated as zero')
            d_detStat = 0

        return d_detStat

Gregory Ashton's avatar
Gregory Ashton committed
951

952
class SemiCoherentGlitchSearch(ComputeFstat):
Gregory Ashton's avatar
Gregory Ashton committed
953
954
955
956
957
958
959
960
961
962
    """ A semi-coherent glitch search

    This implements a basic `semi-coherent glitch F-stat in which the data
    is divided into segments either side of the proposed glitches and the
    fully-coherent F-stat in each segment is summed to give the semi-coherent
    F-stat
    """

    @helper_functions.initializer
    def __init__(self, label, outdir, tref, minStartTime, maxStartTime,
963
                 nglitch=0, sftfilepattern=None, theta0_idx=0, BSGL=False,
964
                 minCoverFreq=None, maxCoverFreq=None, assumeSqrtSX=None,
965
                 detectors=None, SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
966
967
968
969
970
971
972
973
974
975
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, and start and end of the data.
        nglitch: int
            The (fixed) number of glitches; this can zero, but occasionally
            this causes issue (in which case just use ComputeFstat).
976
977
978
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
979
980
981
982
983
984
985
986
987
        theta0_idx, int
            Index (zero-based) of which segment the theta refers to - uyseful
            if providing a tight prior on theta to allow the signal to jump
            too theta (and not just from)

        For all other parameters, see pyfstat.ComputeFStat.
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
988
        self.set_ephemeris_files()
Gregory Ashton's avatar
Gregory Ashton committed
989
990
991
992
        self.transient = True
        self.binary = False
        self.init_computefstatistic_single_point()

993
    def get_semicoherent_nglitch_twoF(self, F0, F1, F2, Alpha, Delta, *args):
Gregory Ashton's avatar
Gregory Ashton committed
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
        """ Returns the semi-coherent glitch summed twoF """

        args = list(args)
        tboundaries = ([self.minStartTime] + args[-self.nglitch:]
                       + [self.maxStartTime])
        delta_F0s = args[-3*self.nglitch:-2*self.nglitch]
        delta_F1s = args[-2*self.nglitch:-self.nglitch]
        delta_F2 = np.zeros(len(delta_F0s))
        delta_phi = np.zeros(len(delta_F0s))
        theta = [0, F0, F1, F2]
        delta_thetas = np.atleast_2d(
                np.array([delta_phi, delta_F0s, delta_F1s, delta_F2]).T)

1007
        thetas = self._calculate_thetas(theta, delta_thetas, tboundaries,
1008
                                        theta0_idx=self.theta0_idx)
Gregory Ashton's avatar
Gregory Ashton committed
1009
1010
1011
1012
1013

        twoFSum = 0
        for i, theta_i_at_tref in enumerate(thetas):
            ts, te = tboundaries[i], tboundaries[i+1]

1014
            twoFVal = self.get_fullycoherent_twoF(
Gregory Ashton's avatar
Gregory Ashton committed
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
                ts, te, theta_i_at_tref[1], theta_i_at_tref[2],
                theta_i_at_tref[3], Alpha, Delta)
            twoFSum += twoFVal

        if np.isfinite(twoFSum):
            return twoFSum
        else:
            return -np.inf

    def compute_glitch_fstat_single(self, F0, F1, F2, Alpha, Delta, delta_F0,
                                    delta_F1, tglitch):
        """ Returns the semi-coherent glitch summed twoF for nglitch=1

        Note: OBSOLETE, used only for testing
        """

        theta = [F0, F1, F2]
        delta_theta = [delta_F0, delta_F1, 0]
        tref = self.tref

1035
        theta_at_glitch = self._shift_coefficients(theta, tglitch - tref)
Gregory Ashton's avatar
Gregory Ashton committed
1036
        theta_post_glitch_at_glitch = theta_at_glitch + delta_theta
1037
        theta_post_glitch = self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
1038
1039
            theta_post_glitch_at_glitch, tref - tglitch)

1040
        twoFsegA = self.get_fullycoherent_twoF(
Gregory Ashton's avatar
Gregory Ashton committed
1041
1042
1043
1044
1045
1046
            self.minStartTime, tglitch, theta[0], theta[1], theta[2], Alpha,
            Delta)

        if tglitch == self.maxStartTime:
            return twoFsegA

1047
        twoFsegB = self.get_fullycoherent_twoF(
Gregory Ashton's avatar
Gregory Ashton committed
1048
1049
1050
1051
1052
            tglitch, self.maxStartTime, theta_post_glitch[0],
            theta_post_glitch[1], theta_post_glitch[2], Alpha,
            Delta)

        return twoFsegA + twoFsegB