pyfstat.py 63.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
""" Classes for various types of searches using ComputeFstatistic """
import os
import sys
import itertools
import logging
import argparse
import copy
import glob
import inspect
from functools import wraps
11
import subprocess
12
from collections import OrderedDict
13
14
15
16
17
18
19
20
21
22

import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import emcee
import corner
import dill as pickle
import lalpulsar

23
24
plt.rcParams['text.usetex'] = True

25
26
27
28
29
30
31
config_file = os.path.expanduser('~')+'/.pyfstat.conf'
if os.path.isfile(config_file):
    d = {}
    with open(config_file, 'r') as f:
        for line in f:
            k, v = line.split('=')
            k = k.replace(' ', '')
32
            v = v.replace(' ', '').replace("'", "").replace('"', '').replace('\n', '')
33
34
35
36
37
38
            d[k] = v
    earth_ephem = d['earth_ephem']
    sun_ephem = d['sun_ephem']
else:
    logging.warning('No ~/.pyfstat.conf file found please provide the paths '
                    'when initialising searches')
39
40
41
    earth_ephem = None
    sun_ephem = None

42
43
44
45
46
parser = argparse.ArgumentParser()
parser.add_argument("-q", "--quite", help="Decrease output verbosity",
                    action="store_true")
parser.add_argument("-c", "--clean", help="Don't use cached data",
                    action="store_true")
47
parser.add_argument("-u", "--use-old-data", action="store_true")
48
49
50
51
52
53
54
55
56
57
58
59
60
parser.add_argument('unittest_args', nargs='*')
args, unknown = parser.parse_known_args()
sys.argv[1:] = args.unittest_args

if args.quite:
    log_level = logging.WARNING
else:
    log_level = logging.DEBUG

logging.basicConfig(level=log_level,
                    format='%(asctime)s %(levelname)-8s: %(message)s',
                    datefmt='%H:%M')

61
62

def initializer(func):
63
    """ Automatically assigns the parameters to self """
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    names, varargs, keywords, defaults = inspect.getargspec(func)

    @wraps(func)
    def wrapper(self, *args, **kargs):
        for name, arg in list(zip(names[1:], args)) + list(kargs.items()):
            setattr(self, name, arg)

        for name, default in zip(reversed(names), reversed(defaults)):
            if not hasattr(self, name):
                setattr(self, name, default)

        func(self, *args, **kargs)

    return wrapper


def read_par(label, outdir):
81
    """ Read in a .par file, returns a dictionary of the values """
82
83
84
85
86
87
88
89
90
91
    filename = '{}/{}.par'.format(outdir, label)
    d = {}
    with open(filename, 'r') as f:
        for line in f:
            key, val = line.rstrip('\n').split(' = ')
            d[key] = np.float64(val)
    return d


class BaseSearchClass(object):
92
    """ The base search class, provides ephemeris and general utilities """
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

    def shift_matrix(self, n, dT):
        """ Generate the shift matrix """
        m = np.zeros((n, n))
        factorial = np.math.factorial
        for i in range(n):
            for j in range(n):
                if i == j:
                    m[i, j] = 1.0
                elif i > j:
                    m[i, j] = 0.0
                else:
                    if i == 0:
                        m[i, j] = 2*np.pi*float(dT)**(j-i) / factorial(j-i)
                    else:
                        m[i, j] = float(dT)**(j-i) / factorial(j-i)

        return m

    def shift_coefficients(self, theta, dT):
        """ Shift a set of coefficients by dT

        Parameters
        ----------
        theta: array-like, shape (n,)
            vector of the expansion coefficients to transform starting from the
122
            lowest degree e.g [phi, F0, F1,...].
123
        dT: float
124
            difference between the two reference times as tref_new - tref_old.
125
126
127
128

        Returns
        -------
        theta_new: array-like shape (n,)
129
            vector of the coefficients as evaluate as the new reference time.
130
131
132
133
134
        """
        n = len(theta)
        m = self.shift_matrix(n, dT)
        return np.dot(m, theta)

135
    def calculate_thetas(self, theta, delta_thetas, tbounds, theta0_idx=0):
136
137
138
        """ Calculates the set of coefficients for the post-glitch signal """
        thetas = [theta]
        for i, dt in enumerate(delta_thetas):
139
140
141
142
143
144
145
146
147
148
149
150
151
            if i < theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[0], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch - dt
                thetas.insert(0, self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))

            elif i >= theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[i], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch + dt
                thetas.append(self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))
152
153
154
        return thetas


Gregory Ashton's avatar
Gregory Ashton committed
155
156
157
158
159
160
161
162
163
class ComputeFstat(object):
    """ Base class providing interface to lalpulsar.ComputeFstat """

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

    @initializer
    def __init__(self, tref, sftlabel=None, sftdir=None,
                 minCoverFreq=None, maxCoverFreq=None,
164
165
                 detector=None, earth_ephem=None, sun_ephem=None,
                 binary=False, transient=True):
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
        """
        Parameters
        ----------
        tref: int
            GPS seconds of the reference time.
        sftlabel, sftdir: str
            A label and directory in which to find the relevant sft file
        minCoverFreq, maxCoverFreq: float
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput.
            If None defaults defined in BaseSearchClass will be used.
        binary: bool
            If true, search of binary parameters.
        transient: bool
            If true, allow for the Fstat to be computed over a transient range.

        """
Gregory Ashton's avatar
Gregory Ashton committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        self.init_computefstatistic_single_point()

    def init_computefstatistic_single_point(self):
        """ Initilisation step of run_computefstatistic for a single point """

        logging.info('Initialising SFTCatalog')
        constraints = lalpulsar.SFTConstraints()
        if self.detector:
            constraints.detector = self.detector
        self.sft_filepath = self.sftdir+'/*_'+self.sftlabel+"*sft"
        SFTCatalog = lalpulsar.SFTdataFind(self.sft_filepath, constraints)
        names = list(set([d.header.name for d in SFTCatalog.data]))
208
209
210
        logging.info(
            'Loaded data from detectors {} matching pattern {}'.format(
                names, self.sft_filepath))
Gregory Ashton's avatar
Gregory Ashton committed
211
212
213
214
215
216

        logging.info('Initialising ephems')
        ephems = lalpulsar.InitBarycenter(self.earth_ephem, self.sun_ephem)

        logging.info('Initialising FstatInput')
        dFreq = 0
217
218
219
220
221
        if self.transient:
            self.whatToCompute = lalpulsar.FSTATQ_ATOMS_PER_DET
        else:
            self.whatToCompute = lalpulsar.FSTATQ_2F

Gregory Ashton's avatar
Gregory Ashton committed
222
223
224
225
226
227
228
229
        FstatOptionalArgs = lalpulsar.FstatOptionalArgsDefaults

        if self.minCoverFreq is None or self.maxCoverFreq is None:
            fA = SFTCatalog.data[0].header.f0
            numBins = SFTCatalog.data[0].numBins
            fB = fA + (numBins-1)*SFTCatalog.data[0].header.deltaF
            self.minCoverFreq = fA + 0.5
            self.maxCoverFreq = fB - 0.5
230
231
232
            logging.info('Min/max cover freqs not provided, using '
                         '{} and {}, est. from SFTs'.format(
                             self.minCoverFreq, self.maxCoverFreq))
Gregory Ashton's avatar
Gregory Ashton committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

        self.FstatInput = lalpulsar.CreateFstatInput(SFTCatalog,
                                                     self.minCoverFreq,
                                                     self.maxCoverFreq,
                                                     dFreq,
                                                     ephems,
                                                     FstatOptionalArgs
                                                     )

        logging.info('Initialising PulsarDoplerParams')
        PulsarDopplerParams = lalpulsar.PulsarDopplerParams()
        PulsarDopplerParams.refTime = self.tref
        PulsarDopplerParams.Alpha = 1
        PulsarDopplerParams.Delta = 1
        PulsarDopplerParams.fkdot = np.array([0, 0, 0, 0, 0, 0, 0])
        self.PulsarDopplerParams = PulsarDopplerParams

        logging.info('Initialising FstatResults')
        self.FstatResults = lalpulsar.FstatResults()

253
254
255
256
257
258
259
        if self.transient:
            self.windowRange = lalpulsar.transientWindowRange_t()
            self.windowRange.type = lalpulsar.TRANSIENT_RECTANGULAR
            self.windowRange.t0Band = 0
            self.windowRange.dt0 = 1
            self.windowRange.tauBand = 0
            self.windowRange.dtau = 1
260

Gregory Ashton's avatar
Gregory Ashton committed
261
    def run_computefstatistic_single_point(self, tstart, tend, F0, F1,
262
263
264
                                           F2, Alpha, Delta, asini=None,
                                           period=None, ecc=None, tp=None,
                                           argp=None):
265
        """ Returns the twoF fully-coherently at a single point """
Gregory Ashton's avatar
Gregory Ashton committed
266
267
268
269

        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
270
271
272
273
274
275
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp
Gregory Ashton's avatar
Gregory Ashton committed
276
277
278
279

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
280
                               1,
Gregory Ashton's avatar
Gregory Ashton committed
281
282
283
                               self.whatToCompute
                               )

284
285
286
        if self.transient is False:
            return self.FstatResults.twoF[0]

287
288
        self.windowRange.t0 = int(tstart)  # TYPE UINT4
        self.windowRange.tau = int(tend - tstart)  # TYPE UINT4
Gregory Ashton's avatar
Gregory Ashton committed
289
        FS = lalpulsar.ComputeTransientFstatMap(
290
            self.FstatResults.multiFatoms[0], self.windowRange, False)
Gregory Ashton's avatar
Gregory Ashton committed
291
292
293
294
        return 2*FS.F_mn.data[0][0]


class SemiCoherentGlitchSearch(BaseSearchClass, ComputeFstat):
295
296
297
298
299
300
301
302
303
    """ A semi-coherent glitch search

    This implements a basic `semi-coherent glitch F-stat in which the data
    is divided into two segments either side of the proposed glitch and the
    fully-coherent F-stat in each segment is averaged to give the semi-coherent
    F-stat
    """

    @initializer
Gregory Ashton's avatar
Gregory Ashton committed
304
    def __init__(self, label, outdir, tref, tstart, tend, nglitch=0,
305
                 sftlabel=None, sftdir=None, theta0_idx=0, minCoverFreq=None,
306
307
                 maxCoverFreq=None, detector=None, earth_ephem=None,
                 sun_ephem=None):
308
309
310
311
        """
        Parameters
        ----------
        label, outdir: str
312
313
314
315
316
317
            A label and directory to read/write data from/to.
        tref, tstart, tend: int
            GPS seconds of the reference time, and start and end of the data.
        nglitch: int
            The (fixed) number of glitches; this can zero, but occasionally
            this causes issue (in which case just use ComputeFstat).
318
319
        sftlabel, sftdir: str
            A label and directory in which to find the relevant sft file. If
320
            None use label and outdir.
321
322
323
324
        theta0_idx, int
            Index (zero-based) of which segment the theta refers to - uyseful
            if providing a tight prior on theta to allow the signal to jump
            too theta (and not just from)
325
        minCoverFreq, maxCoverFreq: float
326
327
328
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
329
330
        detector: str
            Two character reference to the data to use, specify None for no
331
            contraint.
332
333
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
334
335
            respectively at evenly spaced times, as passed to CreateFstatInput.
            If None defaults defined in BaseSearchClass will be used.
336
337
338
339
340
341
342
343
344
345
346
        """

        if self.sftlabel is None:
            self.sftlabel = self.label
        if self.sftdir is None:
            self.sftdir = self.outdir
        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
        if self.earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if self.sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default
347
348
        self.transient = True
        self.binary = False
349
350
351
        self.init_computefstatistic_single_point()

    def compute_nglitch_fstat(self, F0, F1, F2, Alpha, Delta, *args):
352
        """ Returns the semi-coherent glitch summed twoF """
353
354
355

        args = list(args)
        tboundaries = [self.tstart] + args[-self.nglitch:] + [self.tend]
356
357
358
359
360
361
362
363
        delta_F0s = args[-3*self.nglitch:-2*self.nglitch]
        delta_F1s = args[-2*self.nglitch:-self.nglitch]
        delta_F2 = np.zeros(len(delta_F0s))
        delta_phi = np.zeros(len(delta_F0s))
        theta = [0, F0, F1, F2]
        delta_thetas = np.atleast_2d(
                np.array([delta_phi, delta_F0s, delta_F1s, delta_F2]).T)

364
365
        thetas = self.calculate_thetas(theta, delta_thetas, tboundaries,
                                       theta0_idx=self.theta0_idx)
366
367

        twoFSum = 0
368
        for i, theta_i_at_tref in enumerate(thetas):
369
370
371
            ts, te = tboundaries[i], tboundaries[i+1]

            twoFVal = self.run_computefstatistic_single_point(
372
373
                ts, te, theta_i_at_tref[1], theta_i_at_tref[2],
                theta_i_at_tref[3], Alpha, Delta)
374
375
376
377
378
379
            twoFSum += twoFVal

        return twoFSum

    def compute_glitch_fstat_single(self, F0, F1, F2, Alpha, Delta, delta_F0,
                                    delta_F1, tglitch):
380
381
382
383
        """ Returns the semi-coherent glitch summed twoF for nglitch=1

        Note: used for testing
        """
384
385
386
387
388
389
390
391
392
393
394

        theta = [F0, F1, F2]
        delta_theta = [delta_F0, delta_F1, 0]
        tref = self.tref

        theta_at_glitch = self.shift_coefficients(theta, tglitch - tref)
        theta_post_glitch_at_glitch = theta_at_glitch + delta_theta
        theta_post_glitch = self.shift_coefficients(
            theta_post_glitch_at_glitch, tref - tglitch)

        twoFsegA = self.run_computefstatistic_single_point(
Gregory Ashton's avatar
Gregory Ashton committed
395
            self.tstart, tglitch, theta[0], theta[1], theta[2], Alpha,
396
397
398
399
400
401
            Delta)

        if tglitch == self.tend:
            return twoFsegA

        twoFsegB = self.run_computefstatistic_single_point(
Gregory Ashton's avatar
Gregory Ashton committed
402
            tglitch, self.tend, theta_post_glitch[0],
403
404
405
406
407
408
            theta_post_glitch[1], theta_post_glitch[2], Alpha,
            Delta)

        return twoFsegA + twoFsegB


Gregory Ashton's avatar
Gregory Ashton committed
409
410
class MCMCSearch(BaseSearchClass):
    """ MCMC search using ComputeFstat"""
411
    @initializer
412
413
    def __init__(self, label, outdir, sftlabel, sftdir, theta_prior, tref,
                 tstart, tend, nsteps=[100, 100, 100], nwalkers=100, ntemps=1,
414
415
                 log10temperature_min=-5, theta_initial=None, scatter_val=1e-4,
                 binary=False, minCoverFreq=None, maxCoverFreq=None,
Gregory Ashton's avatar
Gregory Ashton committed
416
                 detector=None, earth_ephem=None, sun_ephem=None):
417
418
419
420
421
422
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
        sftlabel, sftdir: str
            A label and directory in which to find the relevant sft file
423
        theta_prior: dict
424
425
426
427
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
428
429
430
431
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
432
433
434
435
436
437
438
        tref, tstart, tend: int
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
439
440
441
442
443
444
445
446
447
448
449
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
        binary: Bool
            If true, search over binary parameters
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
450
451
452
453
454
455
456
457
458
459
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

Gregory Ashton's avatar
Gregory Ashton committed
460
461
462
        logging.info(
            'Set-up MCMC search for model {} on data {}'.format(
                self.label, self.sftlabel))
463
464
465
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
466
467
        self.theta_prior['tstart'] = self.tstart
        self.theta_prior['tend'] = self.tend
468
469
        self.unpack_input_theta()
        self.ndim = len(self.theta_keys)
470
        self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
471
        self.sft_filepath = self.sftdir+'/*_'+self.sftlabel+"*sft"
472

473
474
475
476
477
478
479
480
481
482
483
484
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

        self.old_data_is_okay_to_use = self.check_old_data_is_okay_to_use()

    def inititate_search_object(self):
        logging.info('Setting up search object')
Gregory Ashton's avatar
Gregory Ashton committed
485
486
487
        self.search = ComputeFstat(
            tref=self.tref, sftlabel=self.sftlabel,
            sftdir=self.sftdir, minCoverFreq=self.minCoverFreq,
488
            maxCoverFreq=self.maxCoverFreq, earth_ephem=self.earth_ephem,
489
            sun_ephem=self.sun_ephem, detector=self.detector, transient=False)
490
491

    def logp(self, theta_vals, theta_prior, theta_keys, search):
Gregory Ashton's avatar
Gregory Ashton committed
492
        H = [self.generic_lnprior(**theta_prior[key])(p) for p, key in
493
494
495
496
497
498
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
Gregory Ashton's avatar
Gregory Ashton committed
499
        FS = search.run_computefstatistic_single_point(*self.fixed_theta)
500
501
502
        return FS

    def unpack_input_theta(self):
Gregory Ashton's avatar
Gregory Ashton committed
503
504
        full_theta_keys = ['tstart', 'tend', 'F0', 'F1', 'F2', 'Alpha',
                           'Delta']
505
506
507
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
508
509
        full_theta_keys_copy = copy.copy(full_theta_keys)

Gregory Ashton's avatar
Gregory Ashton committed
510
511
        full_theta_symbols = ['_', '_', '$f$', '$\dot{f}$', '$\ddot{f}$',
                              r'$\alpha$', r'$\delta$']
512
513
514
515
        if self.binary:
            full_theta_symbols += [
                'asini', 'period', 'period', 'ecc', 'tp', 'argp']

516
517
        self.theta_keys = []
        fixed_theta_dict = {}
518
        for key, val in self.theta_prior.iteritems():
519
520
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
521
                self.theta_keys.append(key)
522
523
524
525
526
527
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
528
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

    def check_initial_points(self, p0):
        initial_priors = np.array([
            self.logp(p, self.theta_prior, self.theta_keys, self.search)
            for p in p0[0]])
        number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)
        if number_of_initial_out_of_bounds > 0:
            logging.warning(
                'Of {} initial values, {} are -np.inf due to the prior'.format(
                    len(initial_priors), number_of_initial_out_of_bounds))

    def run(self):

        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
            d = self.get_saved_data()
            self.sampler = d['sampler']
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
            return

        self.inititate_search_object()

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
            loglargs=(self.search,), betas=self.betas)

Gregory Ashton's avatar
Gregory Ashton committed
573
574
        p0 = self.generate_initial_p0()
        p0 = self.apply_corrections_to_p0(p0)
575
576
577
578
579
580
581
        self.check_initial_points(p0)

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
                j, ninit_steps, n))
            sampler.run_mcmc(p0, n)
582
583
            logging.info("Mean acceptance fraction: {0:.3f}"
                         .format(np.mean(sampler.acceptance_fraction)))
Gregory Ashton's avatar
Gregory Ashton committed
584
            fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols)
585
586
587
            fig.savefig('{}/{}_init_{}_walkers.png'.format(
                self.outdir, self.label, j))

588
            p0 = self.get_new_p0(sampler)
Gregory Ashton's avatar
Gregory Ashton committed
589
            p0 = self.apply_corrections_to_p0(p0)
590
591
592
593
594
595
596
597
            self.check_initial_points(p0)
            sampler.reset()

        nburn = self.nsteps[-2]
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
        sampler.run_mcmc(p0, nburn+nprod)
598
599
        logging.info("Mean acceptance fraction: {0:.3f}"
                     .format(np.mean(sampler.acceptance_fraction)))
600

Gregory Ashton's avatar
Gregory Ashton committed
601
        fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols)
602
603
604
605
606
607
608
609
610
611
612
        fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label))

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
        self.sampler = sampler
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
        self.save_data(sampler, samples, lnprobs, lnlikes)

613
    def plot_corner(self, figsize=(7, 7),  tglitch_ratio=False,
614
615
616
                    add_prior=False, nstds=None, label_offset=0.4, **kwargs):

        fig, axes = plt.subplots(self.ndim, self.ndim,
617
                                 figsize=figsize)
618
619
620
621
622
623

        samples_plt = copy.copy(self.samples)
        theta_symbols_plt = copy.copy(self.theta_symbols)
        theta_symbols_plt = [s.replace('_{glitch}', r'_\textrm{glitch}') for s
                             in theta_symbols_plt]

624
625
626
627
628
629
630
        if tglitch_ratio:
            for j, k in enumerate(self.theta_keys):
                if k == 'tglitch':
                    s = samples_plt[:, j]
                    samples_plt[:, j] = (s - self.tstart)/(
                                         self.tend - self.tstart)
                    theta_symbols_plt[j] = r'$R_{\textrm{glitch}}$'
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677

        if type(nstds) is int and 'range' not in kwargs:
            _range = []
            for j, s in enumerate(samples_plt.T):
                median = np.median(s)
                std = np.std(s)
                _range.append((median - nstds*std, median + nstds*std))
        else:
            _range = None

        fig_triangle = corner.corner(samples_plt,
                                     labels=theta_symbols_plt,
                                     fig=fig,
                                     bins=50,
                                     max_n_ticks=4,
                                     plot_contours=True,
                                     plot_datapoints=True,
                                     label_kwargs={'fontsize': 8},
                                     data_kwargs={'alpha': 0.1,
                                                  'ms': 0.5},
                                     range=_range,
                                     **kwargs)

        axes_list = fig_triangle.get_axes()
        axes = np.array(axes_list).reshape(self.ndim, self.ndim)
        plt.draw()
        for ax in axes[:, 0]:
            ax.yaxis.set_label_coords(-label_offset, 0.5)
        for ax in axes[-1, :]:
            ax.xaxis.set_label_coords(0.5, -label_offset)
        for ax in axes_list:
            ax.set_rasterized(True)
            ax.set_rasterization_zorder(-10)
        plt.tight_layout(h_pad=0.0, w_pad=0.0)
        fig.subplots_adjust(hspace=0.05, wspace=0.05)

        if add_prior:
            self.add_prior_to_corner(axes, samples_plt)

        fig_triangle.savefig('{}/{}_corner.png'.format(
            self.outdir, self.label))

    def add_prior_to_corner(self, axes, samples):
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            xlim = ax.get_xlim()
            s = samples[:, i]
Gregory Ashton's avatar
Gregory Ashton committed
678
            prior = self.generic_lnprior(**self.theta_prior[key])
679
680
681
682
683
684
            x = np.linspace(s.min(), s.max(), 100)
            ax2 = ax.twinx()
            ax2.get_yaxis().set_visible(False)
            ax2.plot(x, [prior(xi) for xi in x], '-r')
            ax.set_xlim(xlim)

Gregory Ashton's avatar
Gregory Ashton committed
685
    def generic_lnprior(self, **kwargs):
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
        """ Return a lambda function of the pdf

        Parameters
        ----------
        kwargs: dict
            A dictionary containing 'type' of pdf and shape parameters

        """

        def logunif(x, a, b):
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

        def halfnorm(x, loc, scale):
            if x < 0:
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
            return lambda x: logunif(x, kwargs['lower'], kwargs['upper'])
        elif kwargs['type'] == 'halfnorm':
            return lambda x: halfnorm(x, kwargs['loc'], kwargs['scale'])
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

Gregory Ashton's avatar
Gregory Ashton committed
735
    def generate_rv(self, **kwargs):
736
737
738
739
740
741
742
743
744
745
746
747
748
749
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

Gregory Ashton's avatar
Gregory Ashton committed
750
751
    def plot_walkers(self, sampler, symbols=None, alpha=0.4, color="k", temp=0,
                     start=None, stop=None, draw_vline=None):
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
        """ Plot all the chains from a sampler """

        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
            chain = sampler.chain[:, :, :]
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
            chain = sampler.chain[temp, :, :, :]

        with plt.style.context(('classic')):
            fig, axes = plt.subplots(ndim, 1, sharex=True, figsize=(8, 4*ndim))

            if ndim > 1:
                for i in range(ndim):
772
                    axes[i].ticklabel_format(useOffset=False, axis='y')
773
774
                    cs = chain[:, start:stop, i].T
                    axes[i].plot(cs, color="k", alpha=alpha)
775
776
777
778
                    if symbols:
                        axes[i].set_ylabel(symbols[i])
                    if draw_vline is not None:
                        axes[i].axvline(draw_vline, lw=2, ls="--")
779
780
781
782
783

            else:
                cs = chain[:, start:stop, 0].T
                axes.plot(cs, color='k', alpha=alpha)
                axes.ticklabel_format(useOffset=False, axis='y')
784
785
786

        return fig, axes

Gregory Ashton's avatar
Gregory Ashton committed
787
788
789
790
791
    def apply_corrections_to_p0(self, p0):
        """ Apply any correction to the initial p0 values """
        return p0

    def generate_scattered_p0(self, p):
792
        """ Generate a set of p0s scattered about p """
Gregory Ashton's avatar
Gregory Ashton committed
793
        p0 = [[p + self.scatter_val * p * np.random.randn(self.ndim)
794
795
796
797
               for i in xrange(self.nwalkers)]
              for j in xrange(self.ntemps)]
        return p0

Gregory Ashton's avatar
Gregory Ashton committed
798
    def generate_initial_p0(self):
799
800
801
        """ Generate a set of init vals for the walkers """

        if type(self.theta_initial) == dict:
Gregory Ashton's avatar
Gregory Ashton committed
802
            p0 = [[[self.generate_rv(**self.theta_initial[key])
803
804
805
806
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
        elif self.theta_initial is None:
Gregory Ashton's avatar
Gregory Ashton committed
807
            p0 = [[[self.generate_rv(**self.theta_prior[key])
808
809
810
811
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
        elif len(self.theta_initial) == self.ndim:
Gregory Ashton's avatar
Gregory Ashton committed
812
            p0 = self.generate_scattered_p0(self.theta_initial)
813
814
815
816
817
        else:
            raise ValueError('theta_initial not understood')

        return p0

818
    def get_new_p0(self, sampler):
819
820
821
822
823
824
825
826
827
828
829
830
831
832
        """ Returns new initial positions for walkers are burn0 stage

        This returns new positions for all walkers by scattering points about
        the maximum posterior with scale `scatter_val`.

        """
        if sampler.chain[:, :, -1, :].shape[0] == 1:
            ntemps_temp = 1
        else:
            ntemps_temp = self.ntemps
        pF = sampler.chain[:, :, -1, :].reshape(
            ntemps_temp, self.nwalkers, self.ndim)[0, :, :]
        lnp = sampler.lnprobability[:, :, -1].reshape(
            self.ntemps, self.nwalkers)[0, :]
833
834

        # General warnings about the state of lnp
835
        if any(np.isnan(lnp)):
836
837
838
839
840
841
842
843
844
845
846
            logging.warning(
                "Of {} lnprobs {} are nan".format(
                    len(lnp), np.sum(np.isnan(lnp))))
        if any(np.isposinf(lnp)):
            logging.warning(
                "Of {} lnprobs {} are +np.inf".format(
                    len(lnp), np.sum(np.isposinf(lnp))))
        if any(np.isneginf(lnp)):
            logging.warning(
                "Of {} lnprobs {} are -np.inf".format(
                    len(lnp), np.sum(np.isneginf(lnp))))
847

848
849
850
        lnp_finite = copy.copy(lnp)
        lnp_finite[np.isinf(lnp)] = np.nan
        p = pF[np.nanargmax(lnp_finite)]
851
        p0 = self.generate_scattered_p0(p)
852
853
854
855
856
857

        return p0

    def get_save_data_dictionary(self):
        d = dict(nsteps=self.nsteps, nwalkers=self.nwalkers,
                 ntemps=self.ntemps, theta_keys=self.theta_keys,
Gregory Ashton's avatar
Gregory Ashton committed
858
                 theta_prior=self.theta_prior, scatter_val=self.scatter_val,
859
860
                 log10temperature_min=self.log10temperature_min,
                 theta0_idx=self.theta0_idx)
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
        return d

    def save_data(self, sampler, samples, lnprobs, lnlikes):
        d = self.get_save_data_dictionary()
        d['sampler'] = sampler
        d['samples'] = samples
        d['lnprobs'] = lnprobs
        d['lnlikes'] = lnlikes

        if os.path.isfile(self.pickle_path):
            logging.info('Saving backup of {} as {}.old'.format(
                self.pickle_path, self.pickle_path))
            os.rename(self.pickle_path, self.pickle_path+".old")
        with open(self.pickle_path, "wb") as File:
            pickle.dump(d, File)

    def get_list_of_matching_sfts(self):
        matches = glob.glob(self.sft_filepath)
        if len(matches) > 0:
            return matches
        else:
            raise IOError('No sfts found matching {}'.format(
                self.sft_filepath))

    def get_saved_data(self):
        with open(self.pickle_path, "r") as File:
            d = pickle.load(File)
        return d

    def check_old_data_is_okay_to_use(self):
891
892
893
894
        if args.use_old_data:
            logging.info("Forcing use of old data")
            return True

895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
        if os.path.isfile(self.pickle_path) is False:
            logging.info('No pickled data found')
            return False

        oldest_sft = min([os.path.getmtime(f) for f in
                          self.get_list_of_matching_sfts()])
        if os.path.getmtime(self.pickle_path) < oldest_sft:
            logging.info('Pickled data outdates sft files')
            return False

        old_d = self.get_saved_data().copy()
        new_d = self.get_save_data_dictionary().copy()

        old_d.pop('samples')
        old_d.pop('sampler')
        old_d.pop('lnprobs')
        old_d.pop('lnlikes')

        mod_keys = []
        for key in new_d.keys():
            if key in old_d:
                if new_d[key] != old_d[key]:
                    mod_keys.append((key, old_d[key], new_d[key]))
            else:
919
                raise ValueError('Keys {} not in old dictionary'.format(key))
920
921
922
923
924
925
926
927
928

        if len(mod_keys) == 0:
            return True
        else:
            logging.warning("Saved data differs from requested")
            logging.info("Differences found in following keys:")
            for key in mod_keys:
                if len(key) == 3:
                    if np.isscalar(key[1]) or key[0] == 'nsteps':
929
                        logging.info("    {} : {} -> {}".format(*key))
930
                    else:
931
                        logging.info("    " + key[0])
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
                else:
                    logging.info(key)
            return False

    def get_max_twoF(self, threshold=0.05):
        """ Returns the max 2F sample and the corresponding 2F value

        Note: the sample is returned as a dictionary along with an estimate of
        the standard deviation calculated from the std of all samples with a
        twoF within `threshold` (relative) to the max twoF

        """
        if any(np.isposinf(self.lnlikes)):
            logging.info('twoF values contain positive infinite values')
        if any(np.isneginf(self.lnlikes)):
            logging.info('twoF values contain negative infinite values')
        if any(np.isnan(self.lnlikes)):
            logging.info('twoF values contain nan')
        idxs = np.isfinite(self.lnlikes)
        jmax = np.nanargmax(self.lnlikes[idxs])
        maxtwoF = self.lnlikes[jmax]
953
        d = OrderedDict()
954
955
956
957
958
959
960
961
962
963
964
965
966
967
        close_idxs = abs((maxtwoF - self.lnlikes[idxs]) / maxtwoF) < threshold
        for i, k in enumerate(self.theta_keys):
            base_key = copy.copy(k)
            ng = 1
            while k in d:
                k = base_key + '_{}'.format(ng)
            d[k] = self.samples[jmax][i]

            s = self.samples[:, i][close_idxs]
            d[k + '_std'] = np.std(s)
        return d, maxtwoF

    def get_median_stds(self):
        """ Returns a dict of the median and std of all production samples """
968
        d = OrderedDict()
969
970
971
972
973
974
975
976
977
        for s, k in zip(self.samples.T, self.theta_keys):
            d[k] = np.median(s)
            d[k+'_std'] = np.std(s)
        return d

    def write_par(self, method='med'):
        """ Writes a .par of the best-fit params with an estimated std """
        logging.info('Writing {}/{}.par using the {} method'.format(
            self.outdir, self.label, method))
978
979
980
981
982
983
984

        median_std_d = self.get_median_stds()
        max_twoF_d, max_twoF = self.get_max_twoF()

        filename = '{}/{}.par'.format(self.outdir, self.label)
        with open(filename, 'w+') as f:
            f.write('MaxtwoF = {}\n'.format(max_twoF))
985
            f.write('theta0_index = {}\n'.format(self.theta0_idx))
986
            if method == 'med':
987
988
                for key, val in median_std_d.iteritems():
                    f.write('{} = {:1.16e}\n'.format(key, val))
989
            if method == 'twoFmax':
990
991
992
993
994
995
                for key, val in max_twoF_d.iteritems():
                    f.write('{} = {:1.16e}\n'.format(key, val))

    def print_summary(self):
        d, max_twoF = self.get_max_twoF()
        print('Max twoF: {}'.format(max_twoF))
996
        print('theta0 index: {}'.format(self.theta0_idx))
997
998
999
1000
        for k in np.sort(d.keys()):
            if 'std' not in k:
                print('{:10s} = {:1.9e} +/- {:1.9e}'.format(
                    k, d[k], d[k+'_std']))
For faster browsing, not all history is shown. View entire blame