mcmc_based_searches.py 92.6 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" Searches using MCMC-based methods """
2
from __future__ import division, absolute_import, print_function
Gregory Ashton's avatar
Gregory Ashton committed
3

4
import sys
Gregory Ashton's avatar
Gregory Ashton committed
5
import os
6
import copy
Gregory Ashton's avatar
Gregory Ashton committed
7
import logging
8
from collections import OrderedDict
9
import subprocess
10
11
12
13
14
15
16
17

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import emcee
import corner
import dill as pickle

18
19
import pyfstat.core as core
from pyfstat.core import tqdm, args, earth_ephem, sun_ephem, read_par
20
from pyfstat.optimal_setup_functions import get_Nstar_estimate, get_optimal_setup
21
import pyfstat.helper_functions as helper_functions
22
23


24
class MCMCSearch(core.BaseSearchClass):
Gregory Ashton's avatar
Gregory Ashton committed
25
    """ MCMC search using ComputeFstat"""
26
27

    symbol_dictionary = dict(
28
        F0='$f$', F1='$\dot{f}$', F2='$\ddot{f}$', Alpha=r'$\alpha$',
29
30
        Delta='$\delta$', asini='asini', period='P', ecc='ecc', tp='tp',
        argp='argp')
31
    unit_dictionary = dict(
32
33
        F0='Hz', F1='Hz/s', F2='Hz/s$^2$', Alpha=r'rad', Delta='rad',
        asini='', period='s', ecc='', tp='', argp='')
34
35
36
    rescale_dictionary = {}


Gregory Ashton's avatar
Gregory Ashton committed
37
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
38
    def __init__(self, label, outdir, theta_prior, tref, minStartTime,
39
                 maxStartTime, sftfilepattern=None, nsteps=[100, 100],
40
                 nwalkers=100, ntemps=1, log10temperature_min=-5,
41
                 theta_initial=None, scatter_val=1e-10, rhohatmax=1000,
42
                 binary=False, BSGL=False, minCoverFreq=None, SSBprec=None,
43
                 maxCoverFreq=None, detectors=None, earth_ephem=None,
44
                 sun_ephem=None, injectSources=None, assumeSqrtSX=None):
45
46
47
48
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
49
        sftfilepattern: str
50
51
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
52
        theta_prior: dict
53
54
55
56
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
57
58
59
60
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
61
        tref, minStartTime, maxStartTime: int
62
63
64
65
66
67
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
68
69
70
71
72
73
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
74
75
76
77
        rhohatmax: float
            Upper bound for the SNR scale parameter (required to normalise the
            Bayes factor) - this needs to be carefully set when using the
            evidence.
78
79
        binary: Bool
            If true, search over binary parameters
80
        detectors: str
81
82
            Two character reference to the data to use, specify None for no
            contraint.
83
84
85
86
87
88
89
90
91
92
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

Gregory Ashton's avatar
Gregory Ashton committed
93
94
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
95
        self._add_log_file()
96
        logging.info('Set-up MCMC search for model {}'.format(self.label))
97
98
        if sftfilepattern:
            logging.info('Using data {}'.format(self.sftfilepattern))
99
        else:
100
            logging.info('No sftfilepattern given')
101
102
        if injectSources:
            logging.info('Inject sources: {}'.format(injectSources))
103
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
104
        self._unpack_input_theta()
105
        self.ndim = len(self.theta_keys)
106
107
108
109
        if self.log10temperature_min:
            self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
        else:
            self.betas = None
110

111
112
113
114
115
116
117
118
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

119
120
121
122
        self._set_likelihoodcoef()

    def _set_likelihoodcoef(self):
        self.likelihoodcoef = np.log(70./self.rhohatmax**4)
123

124
        self._log_input()
125

126
    def _log_input(self):
127
        logging.info('theta_prior = {}'.format(self.theta_prior))
128
        logging.info('nwalkers={}'.format(self.nwalkers))
129
130
131
132
        logging.info('scatter_val = {}'.format(self.scatter_val))
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
        logging.info('log10temperature_min = {}'.format(
133
            self.log10temperature_min))
134

135
    def _initiate_search_object(self):
136
        logging.info('Setting up search object')
137
        self.search = core.ComputeFstat(
138
            tref=self.tref, sftfilepattern=self.sftfilepattern,
139
140
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
141
            detectors=self.detectors, BSGL=self.BSGL, transient=False,
142
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
143
            binary=self.binary, injectSources=self.injectSources,
144
            assumeSqrtSX=self.assumeSqrtSX, SSBprec=self.SSBprec)
145
146

    def logp(self, theta_vals, theta_prior, theta_keys, search):
147
        H = [self._generic_lnprior(**theta_prior[key])(p) for p, key in
148
149
150
151
152
153
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
154
155
        FS = search.compute_fullycoherent_det_stat_single_point(
            *self.fixed_theta)
156
        return FS + self.likelihoodcoef
157

158
    def _unpack_input_theta(self):
159
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']
160
161
162
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
163
164
        full_theta_keys_copy = copy.copy(full_theta_keys)

165
166
        full_theta_symbols = ['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                              r'$\delta$']
167
168
        if self.binary:
            full_theta_symbols += [
169
                'asini', 'period', 'ecc', 'tp', 'argp']
170

171
172
        self.theta_keys = []
        fixed_theta_dict = {}
173
        for key, val in self.theta_prior.iteritems():
174
175
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
176
                self.theta_keys.append(key)
177
178
179
180
181
182
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
183
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

199
    def _check_initial_points(self, p0):
200
201
202
203
204
205
206
207
208
209
210
211
212
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

213
                p0 = self._generate_new_p0_to_fix_initial_points(
214
215
                    p0, nt, initial_priors)

216
    def _generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
236

237
    def _OLD_run_sampler_with_progress_bar(self, sampler, ns, p0):
238
239
        for result in tqdm(sampler.sample(p0, iterations=ns), total=ns):
            pass
Gregory Ashton's avatar
Gregory Ashton committed
240
241
        return sampler

242
243
    def setup_burnin_convergence_testing(
            self, n=10, test_type='autocorr', windowed=False, **kwargs):
244
245
246
247
248
        """
        If called, convergence testing is used during the MCMC simulation

        Parameters
        ----------
249
250
251
252
253
254
255
256
257
        n: int
            Number of steps after which to test convergence
        test_type: str ['autocorr', 'GR']
            If 'autocorr' use the exponential autocorrelation time (kwargs
            passed to `get_autocorr_convergence`). If 'GR' use the Gelman-Rubin
            statistic (kwargs passed to `get_GR_convergence`)
        windowed: bool
            If True, only calculate the convergence test in a window of length
            `n`
258
        """
259
        logging.info('Setting up convergence testing')
260
261
262
263
        self.convergence_n = n
        self.convergence_windowed = windowed
        self.convergence_test_type = test_type
        self.convergence_kwargs = kwargs
264
265
        self.convergence_diagnostic = []
        self.convergence_diagnosticx = []
266
267
268
        if test_type in ['autocorr']:
            self._get_convergence_test = self.test_autocorr_convergence
        elif test_type in ['GR']:
Gregory Ashton's avatar
Gregory Ashton committed
269
            self._get_convergence_test = self.test_GR_convergence
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        else:
            raise ValueError('test_type {} not understood'.format(test_type))

    def test_autocorr_convergence(self, i, sampler, test=True, n_cut=5):
        try:
            acors = np.zeros((self.ntemps, self.ndim))
            for temp in range(self.ntemps):
                if self.convergence_windowed:
                    j = i-self.convergence_n
                else:
                    j = 0
                x = np.mean(sampler.chain[temp, :, j:i, :], axis=0)
                acors[temp, :] = emcee.autocorr.exponential_time(x)
            c = np.max(acors, axis=0)
        except emcee.autocorr.AutocorrError:
Gregory Ashton's avatar
Gregory Ashton committed
285
286
287
288
            logging.info('Failed to calculate exponential autocorrelation')
            c = np.zeros(self.ndim) + np.nan
        except AttributeError:
            logging.info('Unable to calculate exponential autocorrelation')
289
290
291
292
293
294
295
296
297
298
299
300
301
302
            c = np.zeros(self.ndim) + np.nan

        self.convergence_diagnosticx.append(i - self.convergence_n/2.)
        self.convergence_diagnostic.append(list(c))

        if test:
            return i > n_cut * np.max(c)

    def test_GR_convergence(self, i, sampler, test=True, R=1.1):
        if self.convergence_windowed:
            s = sampler.chain[0, :, i-self.convergence_n+1:i+1, :]
        else:
            s = sampler.chain[0, :, :i+1, :]
        N = float(self.convergence_n)
303
304
        M = float(self.nwalkers)
        W = np.mean(np.var(s, axis=1), axis=0)
305
306
        per_walker_mean = np.mean(s, axis=1)
        mean = np.mean(per_walker_mean, axis=0)
307
308
        B = N / (M-1.) * np.sum((per_walker_mean-mean)**2, axis=0)
        Vhat = (N-1)/N * W + (M+1)/(M*N) * B
309
        c = np.sqrt(Vhat/W)
310
        self.convergence_diagnostic.append(c)
311
        self.convergence_diagnosticx.append(i - self.convergence_n/2.)
312

313
314
315
        if test and np.max(c) < R:
            return True
        else:
316
            return False
317
318
319
320

    def _test_convergence(self, i, sampler, **kwargs):
        if np.mod(i+1, self.convergence_n) == 0:
            return self._get_convergence_test(i, sampler, **kwargs)
321
        else:
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
            return False

    def _run_sampler_with_conv_test(self, sampler, p0, nprod=0, nburn=0):
        logging.info('Running {} burn-in steps with convergence testing'
                     .format(nburn))
        iterator = tqdm(sampler.sample(p0, iterations=nburn), total=nburn)
        for i, output in enumerate(iterator):
            if self._test_convergence(i, sampler, test=True,
                                      **self.convergence_kwargs):
                logging.info(
                    'Converged at {} before max number {} of steps reached'
                    .format(i, nburn))
                self.convergence_idx = i
                break
        iterator.close()
        logging.info('Running {} production steps'.format(nprod))
        j = nburn
        iterator = tqdm(sampler.sample(output[0], iterations=nprod),
                        total=nprod)
        for result in iterator:
            self._test_convergence(j, sampler, test=False,
                                   **self.convergence_kwargs)
            j += 1
        return sampler
346

347
    def _run_sampler(self, sampler, p0, nprod=0, nburn=0):
348
349
        if hasattr(self, 'convergence_n'):
            self._run_sampler_with_conv_test(sampler, p0, nprod, nburn)
350
351
352
353
        else:
            for result in tqdm(sampler.sample(p0, iterations=nburn+nprod),
                               total=nburn+nprod):
                pass
354

355
356
        self.mean_acceptance_fraction = np.mean(
            sampler.acceptance_fraction, axis=1)
357
        logging.info("Mean acceptance fraction: {}"
358
                     .format(self.mean_acceptance_fraction))
359
        if self.ntemps > 1:
360
            self.tswap_acceptance_fraction = sampler.tswap_acceptance_fraction
361
362
363
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
        try:
364
            self.autocorr_time = sampler.get_autocorr_time(c=4)
365
            logging.info("Autocorrelation length: {}".format(
366
                self.autocorr_time))
367
        except emcee.autocorr.AutocorrError as e:
368
            self.autocorr_time = np.nan
369
370
371
372
373
            logging.warning(
                'Autocorrelation calculation failed with message {}'.format(e))

        return sampler

374
    def _estimate_run_time(self):
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
        """ Print the estimated run time

        Uses timing coefficients based on a Lenovo T460p Intel(R)
        Core(TM) i5-6300HQ CPU @ 2.30GHz.

        """
        # Todo: add option to time on a machine, and move coefficients to
        # ~/.pyfstat.conf
        if (type(self.theta_prior['Alpha']) == dict or
                type(self.theta_prior['Delta']) == dict):
            tau0S = 7.3e-5
            tau0LD = 4.2e-7
        else:
            tau0S = 5.0e-5
            tau0LD = 6.2e-8
390
        Nsfts = (self.maxStartTime - self.minStartTime) / 1800.
391
392
393
        numb_evals = np.sum(self.nsteps)*self.nwalkers*self.ntemps
        a = tau0S * numb_evals
        b = tau0LD * Nsfts * numb_evals
394
395
396
        logging.info('Estimated run-time = {} s = {:1.0f}:{:1.0f} m'.format(
            a+b, *divmod(a+b, 60)))

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
    def run(self, proposal_scale_factor=2, create_plots=True, c=5, **kwargs):
        """ Run the MCMC simulatation

        Parameters
        ----------
        proposal_scale_factor: float
            The proposal scale factor used by the sampler, see Goodman & Weare
            (2010). If the acceptance fraction is too low, you can raise it by
            decreasing the a parameter; and if it is too high, you can reduce
            it by increasing the a parameter [Foreman-Mackay (2013)].
        create_plots: bool
            If true, save trace plots of the walkers
        c: int
            The minimum number of autocorrelation times needed to trust the
            result when estimating the autocorrelation time (see
            emcee.autocorr.integrated_time for further details. Default is 5
        **kwargs:
            Passed to _plot_walkers to control the figures

        """
417

418
        self.old_data_is_okay_to_use = self._check_old_data_is_okay_to_use()
419
420
421
        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
422
            d = self.get_saved_data_dictionary()
423
424
425
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
426
            self.all_lnlikelihood = d['all_lnlikelihood']
427
428
            return

429
        self._initiate_search_object()
430
        self._estimate_run_time()
431
432
433
434

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
435
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
436

437
438
439
        p0 = self._generate_initial_p0()
        p0 = self._apply_corrections_to_p0(p0)
        self._check_initial_points(p0)
440
441
442
443

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
Gregory Ashton's avatar
Gregory Ashton committed
444
                j, ninit_steps, n))
445
            sampler = self._run_sampler(sampler, p0, nburn=n)
446
            if create_plots:
447
                fig, axes = self._plot_walkers(sampler,
448
449
                                               symbols=self.theta_symbols,
                                               **kwargs)
450
451
                fig.tight_layout()
                fig.savefig('{}/{}_init_{}_walkers.png'.format(
Gregory Ashton's avatar
Gregory Ashton committed
452
                    self.outdir, self.label, j))
453

454
455
456
            p0 = self._get_new_p0(sampler)
            p0 = self._apply_corrections_to_p0(p0)
            self._check_initial_points(p0)
457
458
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
459
460
461
462
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
463
464
465
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
466
        sampler = self._run_sampler(sampler, p0, nburn=nburn, nprod=nprod)
467
        if create_plots:
468
            fig, axes = self._plot_walkers(sampler, symbols=self.theta_symbols,
469
                                           nprod=nprod, **kwargs)
470
471
            fig.tight_layout()
            fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label),
Gregory Ashton's avatar
Gregory Ashton committed
472
                        )
473
474
475
476

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
477
        all_lnlikelihood = sampler.lnlikelihood[:, :, nburn:]
478
479
480
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
481
482
        self.all_lnlikelihood = all_lnlikelihood
        self._save_data(sampler, samples, lnprobs, lnlikes, all_lnlikelihood)
Gregory Ashton's avatar
Gregory Ashton committed
483
        return sampler
484

485
    def _get_rescale_multiplier_for_key(self, key):
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
        """ Get the rescale multiplier from the rescale_dictionary

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
        if key not in self.rescale_dictionary:
            return 1

        if 'multiplier' in self.rescale_dictionary[key]:
            val = self.rescale_dictionary[key]['multiplier']
            if type(val) == str:
                if hasattr(self, val):
                    multiplier = getattr(
                        self, self.rescale_dictionary[key]['multiplier'])
                else:
                    raise ValueError(
                        "multiplier {} not a class attribute".format(val))
            else:
                multiplier = val
        else:
            multiplier = 1
        return multiplier

510
    def _get_rescale_subtractor_for_key(self, key):
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
        """ Get the rescale subtractor from the rescale_dictionary

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
        if key not in self.rescale_dictionary:
            return 0

        if 'subtractor' in self.rescale_dictionary[key]:
            val = self.rescale_dictionary[key]['subtractor']
            if type(val) == str:
                if hasattr(self, val):
                    subtractor = getattr(
                        self, self.rescale_dictionary[key]['subtractor'])
                else:
                    raise ValueError(
                        "subtractor {} not a class attribute".format(val))
            else:
                subtractor = val
        else:
            subtractor = 0
        return subtractor

535
    def _scale_samples(self, samples, theta_keys):
536
        """ Scale the samples using the rescale_dictionary """
537
538
539
540
        for key in theta_keys:
            if key in self.rescale_dictionary:
                idx = theta_keys.index(key)
                s = samples[:, idx]
541
                subtractor = self._get_rescale_subtractor_for_key(key)
542
                s = s - subtractor
543
                multiplier = self._get_rescale_multiplier_for_key(key)
544
                s *= multiplier
545
546
                samples[:, idx] = s

547
548
        return samples

549
    def _get_labels(self):
550
        """ Combine the units, symbols and rescaling to give labels """
551

552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
        labels = []
        for key in self.theta_keys:
            label = None
            s = self.symbol_dictionary[key]
            s.replace('_{glitch}', r'_\textrm{glitch}')
            u = self.unit_dictionary[key]
            if key in self.rescale_dictionary:
                if 'symbol' in self.rescale_dictionary[key]:
                    s = self.rescale_dictionary[key]['symbol']
                if 'label' in self.rescale_dictionary[key]:
                    label = self.rescale_dictionary[key]['label']
                if 'unit' in self.rescale_dictionary[key]:
                    u = self.rescale_dictionary[key]['unit']
            if label is None:
                label = '{} \n [{}]'.format(s, u)
            labels.append(label)
        return labels
569

570
571
    def plot_corner(self, figsize=(7, 7), add_prior=False, nstds=None,
                    label_offset=0.4, dpi=300, rc_context={},
572
                    tglitch_ratio=False, fig_and_axes=None, save_fig=True,
573
                    **kwargs):
574
575
576
577
578
579
580
581
582
        """ Generate a corner plot of the posterior

        Using the `corner` package (https://pypi.python.org/pypi/corner/),
        generate estimates of the posterior from the production samples.

        Parameters
        ----------
        figsize: tuple (7, 7)
            Figure size in inches (passed to plt.subplots)
583
584
585
        add_prior: bool, str
            If true, plot the prior as a red line. If 'full' then for uniform
            priors plot the full extent of the prior.
586
587
588
589
590
591
592
593
594
595
596
597
598
599
        nstds: float
            The number of standard deviations to plot centered on the mean
        label_offset: float
            Offset the labels from the plot: useful to precent overlapping the
            tick labels with the axis labels
        dpi: int
            Passed to plt.savefig
        rc_context: dict
            Dictionary of rc values to set while generating the figure (see
            matplotlib rc for more details)
        tglitch_ratio: bool
            If true, and tglitch is a parameter, plot posteriors as the
            fractional time at which the glitch occurs instead of the actual
            time
600
601
602
603
604
        fig_and_axes: tuple
            fig and axes to plot on, the axes must be of the right shape,
            namely (ndim, ndim)
        save_fig: bool
            If true, save the figure, else return the fig, axes
605

606
        Note: kwargs are passed on to corner.corner
607
608

        """
609

610
611
612
613
        if 'truths' in kwargs and len(kwargs['truths']) != self.ndim:
            logging.warning('len(Truths) != ndim, Truths will be ignored')
            kwargs['truths'] = None

Gregory Ashton's avatar
Gregory Ashton committed
614
615
        if self.ndim < 2:
            with plt.rc_context(rc_context):
616
617
618
619
                if fig_and_axes is None:
                    fig, ax = plt.subplots(figsize=figsize)
                else:
                    fig, ax = fig_and_axes
Gregory Ashton's avatar
Gregory Ashton committed
620
621
622
623
624
625
626
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

627
        with plt.rc_context(rc_context):
628
629
630
631
632
            if fig_and_axes is None:
                fig, axes = plt.subplots(self.ndim, self.ndim,
                                         figsize=figsize)
            else:
                fig, axes = fig_and_axes
633
634

            samples_plt = copy.copy(self.samples)
635
            labels = self._get_labels()
636

637
            samples_plt = self._scale_samples(samples_plt, self.theta_keys)
638
639
640
641
642

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
643
644
645
                        samples_plt[:, j] = (
                            s - self.minStartTime)/(
                                self.maxStartTime - self.minStartTime)
646
                        labels[j] = r'$R_{\textrm{glitch}}$'
647
648
649
650
651
652
653

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
654
655
            elif 'range' in kwargs:
                _range = kwargs.pop('range')
656
657
658
            else:
                _range = None

659
660
661
662
            hist_kwargs = kwargs.pop('hist_kwargs', dict())
            if 'normed' not in hist_kwargs:
                hist_kwargs['normed'] = True

663
            fig_triangle = corner.corner(samples_plt,
664
                                         labels=labels,
665
666
667
668
669
670
671
672
673
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
674
                                         hist_kwargs=hist_kwargs,
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
691
                self._add_prior_to_corner(axes, self.samples, add_prior)
692

693
694
695
696
697
            if save_fig:
                fig_triangle.savefig('{}/{}_corner.png'.format(
                    self.outdir, self.label), dpi=dpi)
            else:
                return fig, axes
698

699
    def _add_prior_to_corner(self, axes, samples, add_prior):
700
701
702
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            s = samples[:, i]
703
704
705
706
707
708
709
710
711
712
            lnprior = self._generic_lnprior(**self.theta_prior[key])
            if add_prior == 'full' and self.theta_prior[key]['type'] == 'unif':
                lower = self.theta_prior[key]['lower']
                upper = self.theta_prior[key]['upper']
                r = upper-lower
                xlim = [lower-0.05*r, upper+0.05*r]
                x = np.linspace(xlim[0], xlim[1], 1000)
            else:
                xlim = ax.get_xlim()
                x = np.linspace(s.min(), s.max(), 1000)
713
714
            multiplier = self._get_rescale_multiplier_for_key(key)
            subtractor = self._get_rescale_subtractor_for_key(key)
715
716
717
718
719
720
721
722
            ax.plot((x-subtractor)*multiplier,
                    [np.exp(lnprior(xi)) for xi in x], '-C3',
                    label='prior')

            for j in range(i, self.ndim):
                axes[j][i].set_xlim(xlim[0], xlim[1])
            for k in range(0, i):
                axes[i][k].set_ylim(xlim[0], xlim[1])
723

724
725
726
727
728
729
730
731
    def plot_prior_posterior(self, normal_stds=2):
        """ Plot the posterior in the context of the prior """
        fig, axes = plt.subplots(nrows=self.ndim, figsize=(8, 4*self.ndim))
        N = 1000
        from scipy.stats import gaussian_kde

        for i, (ax, key) in enumerate(zip(axes, self.theta_keys)):
            prior_dict = self.theta_prior[key]
732
            prior_func = self._generic_lnprior(**prior_dict)
733
734
735
736
737
            if prior_dict['type'] == 'unif':
                x = np.linspace(prior_dict['lower'], prior_dict['upper'], N)
                prior = prior_func(x)
                prior[0] = 0
                prior[-1] = 0
Gregory Ashton's avatar
Gregory Ashton committed
738
739
740
741
742
            elif prior_dict['type'] == 'log10unif':
                upper = prior_dict['log10upper']
                lower = prior_dict['log10lower']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
743
744
745
746
747
            elif prior_dict['type'] == 'norm':
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = prior_func(x)
748
749
750
751
752
            elif prior_dict['type'] == 'halfnorm':
                lower = prior_dict['loc']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
Gregory Ashton's avatar
Gregory Ashton committed
753
754
755
756
757
            elif prior_dict['type'] == 'neghalfnorm':
                upper = prior_dict['loc']
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
758
759
760
            else:
                raise ValueError('Not implemented for prior type {}'.format(
                    prior_dict['type']))
761
            priorln = ax.plot(x, prior, 'C3', label='prior')
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
            ax.set_xlabel(self.theta_symbols[i])

            s = self.samples[:, i]
            while len(s) > 10**4:
                # random downsample to avoid slow calculation of kde
                s = np.random.choice(s, size=int(len(s)/2.))
            kde = gaussian_kde(s)
            ax2 = ax.twinx()
            postln = ax2.plot(x, kde.pdf(x), 'k', label='posterior')
            ax2.set_yticklabels([])
            ax.set_yticklabels([])

        lns = priorln + postln
        labs = [l.get_label() for l in lns]
        axes[0].legend(lns, labs, loc=1, framealpha=0.8)

        fig.savefig('{}/{}_prior_posterior.png'.format(
            self.outdir, self.label))

781
    def plot_cumulative_max(self, **kwargs):
782
783
784
785
        """ Plot the cumulative twoF for the maximum posterior estimate

        See the pyfstat.core.plot_twoF_cumulative function for further details
        """
Gregory Ashton's avatar
Gregory Ashton committed
786
787
788
789
        d, maxtwoF = self.get_max_twoF()
        for key, val in self.theta_prior.iteritems():
            if key not in d:
                d[key] = val
790
791

        if hasattr(self, 'search') is False:
792
            self._initiate_search_object()
793
794
795
        if self.binary is False:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
796
                Alpha=d['Alpha'], Delta=d['Delta'],
797
                tstart=self.minStartTime, tend=self.maxStartTime,
798
                **kwargs)
799
800
801
802
803
        else:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
                Alpha=d['Alpha'], Delta=d['Delta'], asini=d['asini'],
                period=d['period'], ecc=d['ecc'], argp=d['argp'], tp=d['argp'],
804
                tstart=self.minStartTime, tend=self.maxStartTime, **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
805

806
    def _generic_lnprior(self, **kwargs):
807
808
809
810
811
812
813
814
815
        """ Return a lambda function of the pdf

        Parameters
        ----------
        kwargs: dict
            A dictionary containing 'type' of pdf and shape parameters

        """

Gregory Ashton's avatar
Gregory Ashton committed
816
        def log_of_unif(x, a, b):
817
818
819
820
821
822
823
824
825
826
827
828
829
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

Gregory Ashton's avatar
Gregory Ashton committed
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
        def log_of_log10unif(x, log10lower, log10upper):
            log10x = np.log10(x)
            above = log10x < log10upper
            below = log10x > log10lower
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(x*np.log(10)*(log10upper-log10lower))
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(x*np.log(10)*(log10upper-log10lower))
                return p

        def log_of_halfnorm(x, loc, scale):
846
            if x < loc:
847
848
849
850
851
852
853
854
855
856
857
858
859
860
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
Gregory Ashton's avatar
Gregory Ashton committed
861
862
863
864
            return lambda x: log_of_unif(x, kwargs['lower'], kwargs['upper'])
        if kwargs['type'] == 'log10unif':
            return lambda x: log_of_log10unif(
                x, kwargs['log10lower'], kwargs['log10upper'])
865
        elif kwargs['type'] == 'halfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
866
            return lambda x: log_of_halfnorm(x, kwargs['loc'], kwargs['scale'])
867
        elif kwargs['type'] == 'neghalfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
868
869
            return lambda x: log_of_halfnorm(
                -x, kwargs['loc'], kwargs['scale'])
870
871
872
873
874
875
876
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

877
    def _generate_rv(self, **kwargs):
878
879
880
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
Gregory Ashton's avatar
Gregory Ashton committed
881
882
883
        if dist_type == "log10unif":
            return 10**(np.random.uniform(low=kwargs['log10lower'],
                                          high=kwargs['log10upper']))
884
885
886
887
888
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
889
890
891
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
892
893
894
895
896
897
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

898
    def _plot_walkers(self, sampler, symbols=None, alpha=0.8, color="k",
899
900
                      temp=0, lw=0.1, nprod=0, add_det_stat_burnin=False,
                      fig=None, axes=None, xoffset=0, plot_det_stat=False,
901
                      context='ggplot', subtractions=None, labelpad=0.05):
902
903
        """ Plot all the chains from a sampler """

904
905
906
907
908
        if context not in plt.style.available:
            raise ValueError((
                'The requested context {} is not available; please select a'
                ' context from `plt.style.available`').format(context))

909
910
911
        if np.ndim(axes) > 1:
            axes = axes.flatten()

912
913
914
915
916
917
918
919
920
921
922
923
924
        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
            chain = sampler.chain[:, :, :]
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
            chain = sampler.chain[temp, :, :, :]

925
926
        if subtractions is None:
            subtractions = [0 for i in range(ndim)]
927
928
929
        else:
            if len(subtractions) != self.ndim:
                raise ValueError('subtractions must be of length ndim')
930

931
932
933
934
        if plot_det_stat:
            extra_subplots = 1
        else:
            extra_subplots = 0
935
        with plt.style.context((context)):
Gregory Ashton's avatar
Gregory Ashton committed
936
            plt.rcParams['text.usetex'] = True
Gregory Ashton's avatar
Gregory Ashton committed
937
            if fig is None and axes is None:
938
                fig = plt.figure(figsize=(4, 3.0*ndim))
939
940
                ax = fig.add_subplot(ndim+extra_subplots, 1, 1)
                axes = [ax] + [fig.add_subplot(ndim+extra_subplots, 1, i)
Gregory Ashton's avatar
Gregory Ashton committed
941
                               for i in range(2, ndim+1)]
942

Gregory Ashton's avatar
Gregory Ashton committed
943
            idxs = np.arange(chain.shape[1])
944
945
946
947
948
            burnin_idx = chain.shape[1] - nprod
            if hasattr(self, 'convergence_idx'):
                convergence_idx = self.convergence_idx
            else:
                convergence_idx = burnin_idx
949
950
            if ndim > 1:
                for i in range(ndim):
951
                    axes[i].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
952
                    cs = chain[:, :, i].T
953
                    if burnin_idx > 0:
954
955
                        axes[i].plot(xoffset+idxs[:convergence_idx+1],
                                     cs[:convergence_idx+1]-subtractions[i],
956
                                     color="C3", alpha=alpha,
Gregory Ashton's avatar
Gregory Ashton committed
957
                                     lw=lw)
958
                        axes[i].axvline(xoffset+convergence_idx,
959
                                        color='k', ls='--', lw=0.25)
960
961
                    axes[i].plot(xoffset+idxs[burnin_idx:],
                                 cs[burnin_idx:]-subtractions[i],
Gregory Ashton's avatar
Gregory Ashton committed
962
                                 color="k", alpha=alpha, lw=lw)
Gregory Ashton's avatar
Gregory Ashton committed
963
964

                    axes[i].set_xlim(0, xoffset+idxs[-1])
965
                    if symbols:
966
                        if subtractions[i] == 0:
967
                            axes[i].set_ylabel(symbols[i], labelpad=labelpad)
968
969
                        else:
                            axes[i].set_ylabel(
970
971
                                symbols[i]+'$-$'+symbols[i]+'$_0$',
                                labelpad=labelpad)
972

973
974
                    if hasattr(self, 'convergence_diagnostic'):
                        ax = axes[i].twinx()
975
976
                        axes[i].set_zorder(ax.get_zorder()+1)
                        axes[i].patch.set_visible(False)
977
978
                        c_x = np.array(self.convergence_diagnosticx)
                        c_y = np.array(self.convergence_diagnostic)
979
                        break_idx = np.argmin(np.abs(c_x - burnin_idx))
980
981
982
983
                        ax.plot(c_x[:break_idx], c_y[:break_idx, i], '-C0',
                                zorder=-10)
                        ax.plot(c_x[break_idx:], c_y[break_idx:, i], '-C0',
                                zorder=-10)
984
985
986
987
                        if self.convergence_test_type == 'autocorr':
                            ax.set_ylabel(r'$\tau_\mathrm{exp}$')
                        elif self.convergence_test_type == 'GR':
                            ax.set_ylabel('PSRF')
988
                        ax.ticklabel_format(useOffset=False)
989
            else:
Gregory Ashton's avatar
Gregory Ashton committed
990
                axes[0].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
991
                cs = chain[:, :, temp].T
Gregory Ashton's avatar
Gregory Ashton committed
992
993
                if burnin_idx:
                    axes[0].plot(idxs[:burnin_idx], cs[:burnin_idx],
994
                                 color="C3", alpha=alpha, lw=lw)
Gregory Ashton's avatar
Gregory Ashton committed
995
996
997
                axes[0].plot(idxs[burnin_idx:], cs[burnin_idx:], color="k",
                             alpha=alpha, lw=lw)
                if symbols:
998
                    axes[0].set_ylabel(symbols[0], labelpad=labelpad)
999

Gregory Ashton's avatar
Gregory Ashton committed
1000
            axes[-1].set_xlabel(r'$\textrm{Number of steps}$', labelpad=0.2)
For faster browsing, not all history is shown. View entire blame