pyfstat.py 69.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
""" Classes for various types of searches using ComputeFstatistic """
import os
import sys
import itertools
import logging
import argparse
import copy
import glob
import inspect
from functools import wraps
11
import subprocess
12
from collections import OrderedDict
13
14
15
16
17
18
19
20

import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import emcee
import corner
import dill as pickle
21
import lal
22
23
import lalpulsar

24
plt.rcParams['text.usetex'] = True
25
plt.rcParams['axes.formatter.useoffset'] = False
26

27
28
29
30
31
32
33
config_file = os.path.expanduser('~')+'/.pyfstat.conf'
if os.path.isfile(config_file):
    d = {}
    with open(config_file, 'r') as f:
        for line in f:
            k, v = line.split('=')
            k = k.replace(' ', '')
34
            v = v.replace(' ', '').replace("'", "").replace('"', '').replace('\n', '')
35
36
37
38
39
40
            d[k] = v
    earth_ephem = d['earth_ephem']
    sun_ephem = d['sun_ephem']
else:
    logging.warning('No ~/.pyfstat.conf file found please provide the paths '
                    'when initialising searches')
41
42
43
    earth_ephem = None
    sun_ephem = None

44
45
46
47
48
parser = argparse.ArgumentParser()
parser.add_argument("-q", "--quite", help="Decrease output verbosity",
                    action="store_true")
parser.add_argument("-c", "--clean", help="Don't use cached data",
                    action="store_true")
49
parser.add_argument("-u", "--use-old-data", action="store_true")
50
51
52
53
54
55
56
57
58
59
60
61
62
parser.add_argument('unittest_args', nargs='*')
args, unknown = parser.parse_known_args()
sys.argv[1:] = args.unittest_args

if args.quite:
    log_level = logging.WARNING
else:
    log_level = logging.DEBUG

logging.basicConfig(level=log_level,
                    format='%(asctime)s %(levelname)-8s: %(message)s',
                    datefmt='%H:%M')

63
64

def initializer(func):
65
    """ Automatically assigns the parameters to self """
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    names, varargs, keywords, defaults = inspect.getargspec(func)

    @wraps(func)
    def wrapper(self, *args, **kargs):
        for name, arg in list(zip(names[1:], args)) + list(kargs.items()):
            setattr(self, name, arg)

        for name, default in zip(reversed(names), reversed(defaults)):
            if not hasattr(self, name):
                setattr(self, name, default)

        func(self, *args, **kargs)

    return wrapper


def read_par(label, outdir):
83
    """ Read in a .par file, returns a dictionary of the values """
84
85
86
87
88
89
90
91
92
93
    filename = '{}/{}.par'.format(outdir, label)
    d = {}
    with open(filename, 'r') as f:
        for line in f:
            key, val = line.rstrip('\n').split(' = ')
            d[key] = np.float64(val)
    return d


class BaseSearchClass(object):
94
    """ The base search class, provides ephemeris and general utilities """
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

    def shift_matrix(self, n, dT):
        """ Generate the shift matrix """
        m = np.zeros((n, n))
        factorial = np.math.factorial
        for i in range(n):
            for j in range(n):
                if i == j:
                    m[i, j] = 1.0
                elif i > j:
                    m[i, j] = 0.0
                else:
                    if i == 0:
                        m[i, j] = 2*np.pi*float(dT)**(j-i) / factorial(j-i)
                    else:
                        m[i, j] = float(dT)**(j-i) / factorial(j-i)

        return m

    def shift_coefficients(self, theta, dT):
        """ Shift a set of coefficients by dT

        Parameters
        ----------
        theta: array-like, shape (n,)
            vector of the expansion coefficients to transform starting from the
124
            lowest degree e.g [phi, F0, F1,...].
125
        dT: float
126
            difference between the two reference times as tref_new - tref_old.
127
128
129
130

        Returns
        -------
        theta_new: array-like shape (n,)
131
            vector of the coefficients as evaluate as the new reference time.
132
133
134
135
136
        """
        n = len(theta)
        m = self.shift_matrix(n, dT)
        return np.dot(m, theta)

137
    def calculate_thetas(self, theta, delta_thetas, tbounds, theta0_idx=0):
138
139
140
        """ Calculates the set of coefficients for the post-glitch signal """
        thetas = [theta]
        for i, dt in enumerate(delta_thetas):
141
142
143
144
145
146
147
148
149
150
151
152
153
            if i < theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[0], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch - dt
                thetas.insert(0, self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))

            elif i >= theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[i], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch + dt
                thetas.append(self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))
154
155
156
        return thetas


Gregory Ashton's avatar
Gregory Ashton committed
157
158
159
160
161
162
163
164
class ComputeFstat(object):
    """ Base class providing interface to lalpulsar.ComputeFstat """

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

    @initializer
    def __init__(self, tref, sftlabel=None, sftdir=None,
165
                 minStartTime=None, maxStartTime=None,
Gregory Ashton's avatar
Gregory Ashton committed
166
                 minCoverFreq=None, maxCoverFreq=None,
167
                 detector=None, earth_ephem=None, sun_ephem=None,
168
                 binary=False, transient=True, BSGL=False):
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        """
        Parameters
        ----------
        tref: int
            GPS seconds of the reference time.
        sftlabel, sftdir: str
            A label and directory in which to find the relevant sft file
        minCoverFreq, maxCoverFreq: float
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput.
            If None defaults defined in BaseSearchClass will be used.
        binary: bool
            If true, search of binary parameters.
        transient: bool
            If true, allow for the Fstat to be computed over a transient range.
191
192
        BSGL: bool
            If true, compute the BSGL rather than the twoF value.
193
194

        """
Gregory Ashton's avatar
Gregory Ashton committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        self.init_computefstatistic_single_point()

    def init_computefstatistic_single_point(self):
        """ Initilisation step of run_computefstatistic for a single point """

        logging.info('Initialising SFTCatalog')
        constraints = lalpulsar.SFTConstraints()
        if self.detector:
            constraints.detector = self.detector
210
211
212
213
214
        if self.minStartTime:
            constraints.minStartTime = lal.LIGOTimeGPS(self.minStartTime)
        if self.maxStartTime:
            constraints.maxStartTime = lal.LIGOTimeGPS(self.maxStartTime)

Gregory Ashton's avatar
Gregory Ashton committed
215
216
217
        self.sft_filepath = self.sftdir+'/*_'+self.sftlabel+"*sft"
        SFTCatalog = lalpulsar.SFTdataFind(self.sft_filepath, constraints)
        names = list(set([d.header.name for d in SFTCatalog.data]))
218
219
220
        logging.info(
            'Loaded data from detectors {} matching pattern {}'.format(
                names, self.sft_filepath))
Gregory Ashton's avatar
Gregory Ashton committed
221
222
223
224
225
226

        logging.info('Initialising ephems')
        ephems = lalpulsar.InitBarycenter(self.earth_ephem, self.sun_ephem)

        logging.info('Initialising FstatInput')
        dFreq = 0
227
228
229
230
231
        if self.transient:
            self.whatToCompute = lalpulsar.FSTATQ_ATOMS_PER_DET
        else:
            self.whatToCompute = lalpulsar.FSTATQ_2F

Gregory Ashton's avatar
Gregory Ashton committed
232
233
234
235
236
237
238
239
        FstatOptionalArgs = lalpulsar.FstatOptionalArgsDefaults

        if self.minCoverFreq is None or self.maxCoverFreq is None:
            fA = SFTCatalog.data[0].header.f0
            numBins = SFTCatalog.data[0].numBins
            fB = fA + (numBins-1)*SFTCatalog.data[0].header.deltaF
            self.minCoverFreq = fA + 0.5
            self.maxCoverFreq = fB - 0.5
240
241
242
            logging.info('Min/max cover freqs not provided, using '
                         '{} and {}, est. from SFTs'.format(
                             self.minCoverFreq, self.maxCoverFreq))
Gregory Ashton's avatar
Gregory Ashton committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

        self.FstatInput = lalpulsar.CreateFstatInput(SFTCatalog,
                                                     self.minCoverFreq,
                                                     self.maxCoverFreq,
                                                     dFreq,
                                                     ephems,
                                                     FstatOptionalArgs
                                                     )

        logging.info('Initialising PulsarDoplerParams')
        PulsarDopplerParams = lalpulsar.PulsarDopplerParams()
        PulsarDopplerParams.refTime = self.tref
        PulsarDopplerParams.Alpha = 1
        PulsarDopplerParams.Delta = 1
        PulsarDopplerParams.fkdot = np.array([0, 0, 0, 0, 0, 0, 0])
        self.PulsarDopplerParams = PulsarDopplerParams

        logging.info('Initialising FstatResults')
        self.FstatResults = lalpulsar.FstatResults()

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
        if self.BSGL:
            logging.info('Initialising BSGL: this will fail if numDet < 2')
            # Tuning parameters - to be reviewed
            numDetectors = 2
            Fstar0sc = 40.
            oLGX = np.zeros(10)
            oLGX[:numDetectors] = 0.5
            self.BSGLSetup = lalpulsar.CreateBSGLSetup(numDetectors,
                                                       Fstar0sc,
                                                       oLGX,
                                                       False,
                                                       1)
            self.twoFX = np.zeros(10)
            self.whatToCompute = (lalpulsar.FSTATQ_2F +
                                  lalpulsar.FSTATQ_2F_PER_DET)

279
        if self.transient:
280
            logging.info('Initialising transient parameters')
281
282
283
284
285
286
            self.windowRange = lalpulsar.transientWindowRange_t()
            self.windowRange.type = lalpulsar.TRANSIENT_RECTANGULAR
            self.windowRange.t0Band = 0
            self.windowRange.dt0 = 1
            self.windowRange.tauBand = 0
            self.windowRange.dtau = 1
287

Gregory Ashton's avatar
Gregory Ashton committed
288
    def run_computefstatistic_single_point(self, tstart, tend, F0, F1,
289
290
291
                                           F2, Alpha, Delta, asini=None,
                                           period=None, ecc=None, tp=None,
                                           argp=None):
292
        """ Returns the twoF fully-coherently at a single point """
Gregory Ashton's avatar
Gregory Ashton committed
293
294
295
296

        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
297
298
299
300
301
302
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp
Gregory Ashton's avatar
Gregory Ashton committed
303
304
305
306

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
307
                               1,
Gregory Ashton's avatar
Gregory Ashton committed
308
309
310
                               self.whatToCompute
                               )

311
        if self.transient is False:
312
313
314
315
316
317
318
319
320
            if self.BSGL is False:
                return self.FstatResults.twoF[0]

            twoF = np.float(self.FstatResults.twoF[0])
            self.twoFX[0] = self.FstatResults.twoFPerDet(0)
            self.twoFX[1] = self.FstatResults.twoFPerDet(1)
            BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
                                         self.BSGLSetup)
            return BSGL
321

322
323
        self.windowRange.t0 = int(tstart)  # TYPE UINT4
        self.windowRange.tau = int(tend - tstart)  # TYPE UINT4
324

Gregory Ashton's avatar
Gregory Ashton committed
325
        FS = lalpulsar.ComputeTransientFstatMap(
326
            self.FstatResults.multiFatoms[0], self.windowRange, False)
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

        if self.BSGL is False:
            return 2*FS.F_mn.data[0][0]

        FstatResults_single = copy.copy(self.FstatResults)
        FstatResults_single.lenth = 1
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
        FS0 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
        FS1 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)

        self.twoFX[0] = 2*FS0.F_mn.data[0][0]
        self.twoFX[1] = 2*FS1.F_mn.data[0][0]
        BSGL = lalpulsar.ComputeBSGL(2*FS.F_mn.data[0][0], self.twoFX,
                                     self.BSGLSetup)

        return BSGL
Gregory Ashton's avatar
Gregory Ashton committed
346
347
348


class SemiCoherentGlitchSearch(BaseSearchClass, ComputeFstat):
349
350
351
352
353
354
355
356
357
    """ A semi-coherent glitch search

    This implements a basic `semi-coherent glitch F-stat in which the data
    is divided into two segments either side of the proposed glitch and the
    fully-coherent F-stat in each segment is averaged to give the semi-coherent
    F-stat
    """

    @initializer
Gregory Ashton's avatar
Gregory Ashton committed
358
    def __init__(self, label, outdir, tref, tstart, tend, nglitch=0,
359
360
361
362
                 sftlabel=None, sftdir=None, theta0_idx=0, BSGL=False,
                 minCoverFreq=None, maxCoverFreq=None, minStartTime=None,
                 maxStartTime=None, detector=None, earth_ephem=None,
                 sun_ephem=None):
363
364
365
366
        """
        Parameters
        ----------
        label, outdir: str
367
368
369
370
371
372
            A label and directory to read/write data from/to.
        tref, tstart, tend: int
            GPS seconds of the reference time, and start and end of the data.
        nglitch: int
            The (fixed) number of glitches; this can zero, but occasionally
            this causes issue (in which case just use ComputeFstat).
373
374
        sftlabel, sftdir: str
            A label and directory in which to find the relevant sft file. If
375
            None use label and outdir.
376
377
378
379
        theta0_idx, int
            Index (zero-based) of which segment the theta refers to - uyseful
            if providing a tight prior on theta to allow the signal to jump
            too theta (and not just from)
380
        minCoverFreq, maxCoverFreq: float
381
382
383
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
384
385
        detector: str
            Two character reference to the data to use, specify None for no
386
            contraint.
387
388
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
389
390
            respectively at evenly spaced times, as passed to CreateFstatInput.
            If None defaults defined in BaseSearchClass will be used.
391
392
393
394
395
396
397
398
399
400
401
        """

        if self.sftlabel is None:
            self.sftlabel = self.label
        if self.sftdir is None:
            self.sftdir = self.outdir
        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
        if self.earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if self.sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default
402
403
        self.transient = True
        self.binary = False
404
405
406
        self.init_computefstatistic_single_point()

    def compute_nglitch_fstat(self, F0, F1, F2, Alpha, Delta, *args):
407
        """ Returns the semi-coherent glitch summed twoF """
408
409
410

        args = list(args)
        tboundaries = [self.tstart] + args[-self.nglitch:] + [self.tend]
411
412
413
414
415
416
417
418
        delta_F0s = args[-3*self.nglitch:-2*self.nglitch]
        delta_F1s = args[-2*self.nglitch:-self.nglitch]
        delta_F2 = np.zeros(len(delta_F0s))
        delta_phi = np.zeros(len(delta_F0s))
        theta = [0, F0, F1, F2]
        delta_thetas = np.atleast_2d(
                np.array([delta_phi, delta_F0s, delta_F1s, delta_F2]).T)

419
420
        thetas = self.calculate_thetas(theta, delta_thetas, tboundaries,
                                       theta0_idx=self.theta0_idx)
421
422

        twoFSum = 0
423
        for i, theta_i_at_tref in enumerate(thetas):
424
425
426
            ts, te = tboundaries[i], tboundaries[i+1]

            twoFVal = self.run_computefstatistic_single_point(
427
428
                ts, te, theta_i_at_tref[1], theta_i_at_tref[2],
                theta_i_at_tref[3], Alpha, Delta)
429
430
            twoFSum += twoFVal

431
432
433
        if np.isfinite(twoFSum):
            return twoFSum
        else:
434
            return -np.inf
435
436
437

    def compute_glitch_fstat_single(self, F0, F1, F2, Alpha, Delta, delta_F0,
                                    delta_F1, tglitch):
438
439
440
441
        """ Returns the semi-coherent glitch summed twoF for nglitch=1

        Note: used for testing
        """
442
443
444
445
446
447
448
449
450
451
452

        theta = [F0, F1, F2]
        delta_theta = [delta_F0, delta_F1, 0]
        tref = self.tref

        theta_at_glitch = self.shift_coefficients(theta, tglitch - tref)
        theta_post_glitch_at_glitch = theta_at_glitch + delta_theta
        theta_post_glitch = self.shift_coefficients(
            theta_post_glitch_at_glitch, tref - tglitch)

        twoFsegA = self.run_computefstatistic_single_point(
Gregory Ashton's avatar
Gregory Ashton committed
453
            self.tstart, tglitch, theta[0], theta[1], theta[2], Alpha,
454
455
456
457
458
459
            Delta)

        if tglitch == self.tend:
            return twoFsegA

        twoFsegB = self.run_computefstatistic_single_point(
Gregory Ashton's avatar
Gregory Ashton committed
460
            tglitch, self.tend, theta_post_glitch[0],
461
462
463
464
465
466
            theta_post_glitch[1], theta_post_glitch[2], Alpha,
            Delta)

        return twoFsegA + twoFsegB


Gregory Ashton's avatar
Gregory Ashton committed
467
468
class MCMCSearch(BaseSearchClass):
    """ MCMC search using ComputeFstat"""
469
    @initializer
470
471
    def __init__(self, label, outdir, sftlabel, sftdir, theta_prior, tref,
                 tstart, tend, nsteps=[100, 100, 100], nwalkers=100, ntemps=1,
472
                 log10temperature_min=-5, theta_initial=None, scatter_val=1e-4,
473
474
                 binary=False, BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detector=None, earth_ephem=None, sun_ephem=None, theta0_idx=0):
475
476
477
478
479
480
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
        sftlabel, sftdir: str
            A label and directory in which to find the relevant sft file
481
        theta_prior: dict
482
483
484
485
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
486
487
488
489
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
490
491
492
493
494
495
496
        tref, tstart, tend: int
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
497
498
499
500
501
502
503
504
505
506
507
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
        binary: Bool
            If true, search over binary parameters
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
508
509
510
511
512
513
514
515
516
517
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

518
519
520
        self.minStartTime = tstart
        self.maxStartTime = tend

Gregory Ashton's avatar
Gregory Ashton committed
521
522
523
        logging.info(
            'Set-up MCMC search for model {} on data {}'.format(
                self.label, self.sftlabel))
524
525
526
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
527
528
        self.theta_prior['tstart'] = self.tstart
        self.theta_prior['tend'] = self.tend
529
530
        self.unpack_input_theta()
        self.ndim = len(self.theta_keys)
531
        self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
532
        self.sft_filepath = self.sftdir+'/*_'+self.sftlabel+"*sft"
533

534
535
536
537
538
539
540
541
542
543
544
545
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

        self.old_data_is_okay_to_use = self.check_old_data_is_okay_to_use()

    def inititate_search_object(self):
        logging.info('Setting up search object')
Gregory Ashton's avatar
Gregory Ashton committed
546
547
548
        self.search = ComputeFstat(
            tref=self.tref, sftlabel=self.sftlabel,
            sftdir=self.sftdir, minCoverFreq=self.minCoverFreq,
549
            maxCoverFreq=self.maxCoverFreq, earth_ephem=self.earth_ephem,
550
            sun_ephem=self.sun_ephem, detector=self.detector,
551
            BSGL=self.BSGL, transient=False,
552
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime)
553
554

    def logp(self, theta_vals, theta_prior, theta_keys, search):
Gregory Ashton's avatar
Gregory Ashton committed
555
        H = [self.generic_lnprior(**theta_prior[key])(p) for p, key in
556
557
558
559
560
561
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
Gregory Ashton's avatar
Gregory Ashton committed
562
        FS = search.run_computefstatistic_single_point(*self.fixed_theta)
563
564
565
        return FS

    def unpack_input_theta(self):
Gregory Ashton's avatar
Gregory Ashton committed
566
567
        full_theta_keys = ['tstart', 'tend', 'F0', 'F1', 'F2', 'Alpha',
                           'Delta']
568
569
570
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
571
572
        full_theta_keys_copy = copy.copy(full_theta_keys)

Gregory Ashton's avatar
Gregory Ashton committed
573
574
        full_theta_symbols = ['_', '_', '$f$', '$\dot{f}$', '$\ddot{f}$',
                              r'$\alpha$', r'$\delta$']
575
576
577
578
        if self.binary:
            full_theta_symbols += [
                'asini', 'period', 'period', 'ecc', 'tp', 'argp']

579
580
        self.theta_keys = []
        fixed_theta_dict = {}
581
        for key, val in self.theta_prior.iteritems():
582
583
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
584
                self.theta_keys.append(key)
585
586
587
588
589
590
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
591
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

    def check_initial_points(self, p0):
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

                p0 = self.generate_new_p0_to_fix_initial_points(
                    p0, nt, initial_priors)

    def generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663

    def run(self):

        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
            d = self.get_saved_data()
            self.sampler = d['sampler']
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
            return

        self.inititate_search_object()

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
            loglargs=(self.search,), betas=self.betas)

Gregory Ashton's avatar
Gregory Ashton committed
664
665
        p0 = self.generate_initial_p0()
        p0 = self.apply_corrections_to_p0(p0)
666
667
668
669
670
671
672
        self.check_initial_points(p0)

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
                j, ninit_steps, n))
            sampler.run_mcmc(p0, n)
673
674
            logging.info("Mean acceptance fraction: {0:.3f}"
                         .format(np.mean(sampler.acceptance_fraction)))
Gregory Ashton's avatar
Gregory Ashton committed
675
            fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols)
676
677
678
            fig.savefig('{}/{}_init_{}_walkers.png'.format(
                self.outdir, self.label, j))

679
            p0 = self.get_new_p0(sampler)
Gregory Ashton's avatar
Gregory Ashton committed
680
            p0 = self.apply_corrections_to_p0(p0)
681
682
683
684
685
686
687
688
            self.check_initial_points(p0)
            sampler.reset()

        nburn = self.nsteps[-2]
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
        sampler.run_mcmc(p0, nburn+nprod)
689
690
        logging.info("Mean acceptance fraction: {0:.3f}"
                     .format(np.mean(sampler.acceptance_fraction)))
691

Gregory Ashton's avatar
Gregory Ashton committed
692
        fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols)
693
694
695
696
697
698
699
700
701
702
703
        fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label))

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
        self.sampler = sampler
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
        self.save_data(sampler, samples, lnprobs, lnlikes)

704
    def plot_corner(self, figsize=(7, 7),  tglitch_ratio=False,
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
                    add_prior=False, nstds=None, label_offset=0.4,
                    dpi=300, rc_context={}, **kwargs):

        with plt.rc_context(rc_context):
            fig, axes = plt.subplots(self.ndim, self.ndim,
                                     figsize=figsize)

            samples_plt = copy.copy(self.samples)
            theta_symbols_plt = copy.copy(self.theta_symbols)
            theta_symbols_plt = [s.replace('_{glitch}', r'_\textrm{glitch}') for s
                                 in theta_symbols_plt]

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
                        samples_plt[:, j] = (s - self.tstart)/(
                                             self.tend - self.tstart)
                        theta_symbols_plt[j] = r'$R_{\textrm{glitch}}$'

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
            else:
                _range = None

            fig_triangle = corner.corner(samples_plt,
                                         labels=theta_symbols_plt,
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
                self.add_prior_to_corner(axes, samples_plt)

            fig_triangle.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
765
766
767
768
769
770

    def add_prior_to_corner(self, axes, samples):
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            xlim = ax.get_xlim()
            s = samples[:, i]
Gregory Ashton's avatar
Gregory Ashton committed
771
            prior = self.generic_lnprior(**self.theta_prior[key])
772
773
774
775
776
777
            x = np.linspace(s.min(), s.max(), 100)
            ax2 = ax.twinx()
            ax2.get_yaxis().set_visible(False)
            ax2.plot(x, [prior(xi) for xi in x], '-r')
            ax.set_xlim(xlim)

Gregory Ashton's avatar
Gregory Ashton committed
778
    def generic_lnprior(self, **kwargs):
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
        """ Return a lambda function of the pdf

        Parameters
        ----------
        kwargs: dict
            A dictionary containing 'type' of pdf and shape parameters

        """

        def logunif(x, a, b):
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

        def halfnorm(x, loc, scale):
            if x < 0:
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
            return lambda x: logunif(x, kwargs['lower'], kwargs['upper'])
        elif kwargs['type'] == 'halfnorm':
            return lambda x: halfnorm(x, kwargs['loc'], kwargs['scale'])
821
822
        elif kwargs['type'] == 'neghalfnorm':
            return lambda x: halfnorm(-x, kwargs['loc'], kwargs['scale'])
823
824
825
826
827
828
829
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

Gregory Ashton's avatar
Gregory Ashton committed
830
    def generate_rv(self, **kwargs):
831
832
833
834
835
836
837
838
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
839
840
841
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
842
843
844
845
846
847
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

Gregory Ashton's avatar
Gregory Ashton committed
848
849
    def plot_walkers(self, sampler, symbols=None, alpha=0.4, color="k", temp=0,
                     start=None, stop=None, draw_vline=None):
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
        """ Plot all the chains from a sampler """

        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
            chain = sampler.chain[:, :, :]
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
            chain = sampler.chain[temp, :, :, :]

        with plt.style.context(('classic')):
            fig, axes = plt.subplots(ndim, 1, sharex=True, figsize=(8, 4*ndim))

            if ndim > 1:
                for i in range(ndim):
870
                    axes[i].ticklabel_format(useOffset=False, axis='y')
871
872
                    cs = chain[:, start:stop, i].T
                    axes[i].plot(cs, color="k", alpha=alpha)
873
874
875
876
                    if symbols:
                        axes[i].set_ylabel(symbols[i])
                    if draw_vline is not None:
                        axes[i].axvline(draw_vline, lw=2, ls="--")
877
878
879
880
881

            else:
                cs = chain[:, start:stop, 0].T
                axes.plot(cs, color='k', alpha=alpha)
                axes.ticklabel_format(useOffset=False, axis='y')
882
883
884

        return fig, axes

Gregory Ashton's avatar
Gregory Ashton committed
885
886
887
888
889
    def apply_corrections_to_p0(self, p0):
        """ Apply any correction to the initial p0 values """
        return p0

    def generate_scattered_p0(self, p):
890
        """ Generate a set of p0s scattered about p """
Gregory Ashton's avatar
Gregory Ashton committed
891
        p0 = [[p + self.scatter_val * p * np.random.randn(self.ndim)
892
893
894
895
               for i in xrange(self.nwalkers)]
              for j in xrange(self.ntemps)]
        return p0

Gregory Ashton's avatar
Gregory Ashton committed
896
    def generate_initial_p0(self):
897
898
899
        """ Generate a set of init vals for the walkers """

        if type(self.theta_initial) == dict:
900
901
902
            logging.info('Generate initial values from initial dictionary')
            if self.nglitch > 1:
                raise ValueError('Initial dict not implemented for nglitch>1')
Gregory Ashton's avatar
Gregory Ashton committed
903
            p0 = [[[self.generate_rv(**self.theta_initial[key])
904
905
906
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
907
908
909
910
911
912
        elif type(self.theta_initial) == list:
            logging.info('Generate initial values from list of theta_initial')
            p0 = [[[self.generate_rv(**val)
                    for val in self.theta_initial]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
913
        elif self.theta_initial is None:
914
            logging.info('Generate initial values from prior dictionary')
Gregory Ashton's avatar
Gregory Ashton committed
915
            p0 = [[[self.generate_rv(**self.theta_prior[key])
916
917
918
919
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
        elif len(self.theta_initial) == self.ndim:
Gregory Ashton's avatar
Gregory Ashton committed
920
            p0 = self.generate_scattered_p0(self.theta_initial)
921
922
923
924
925
        else:
            raise ValueError('theta_initial not understood')

        return p0

926
    def get_new_p0(self, sampler):
927
928
929
930
931
932
933
934
935
936
937
938
        """ Returns new initial positions for walkers are burn0 stage

        This returns new positions for all walkers by scattering points about
        the maximum posterior with scale `scatter_val`.

        """
        if sampler.chain[:, :, -1, :].shape[0] == 1:
            ntemps_temp = 1
        else:
            ntemps_temp = self.ntemps
        pF = sampler.chain[:, :, -1, :].reshape(
            ntemps_temp, self.nwalkers, self.ndim)[0, :, :]
939
940
        lnl = sampler.lnlikelihood[:, :, -1].reshape(
            self.ntemps, self.nwalkers)[0, :]
941
942
        lnp = sampler.lnprobability[:, :, -1].reshape(
            self.ntemps, self.nwalkers)[0, :]
943
944

        # General warnings about the state of lnp
945
        if any(np.isnan(lnp)):
946
947
948
949
950
951
952
953
954
955
956
            logging.warning(
                "Of {} lnprobs {} are nan".format(
                    len(lnp), np.sum(np.isnan(lnp))))
        if any(np.isposinf(lnp)):
            logging.warning(
                "Of {} lnprobs {} are +np.inf".format(
                    len(lnp), np.sum(np.isposinf(lnp))))
        if any(np.isneginf(lnp)):
            logging.warning(
                "Of {} lnprobs {} are -np.inf".format(
                    len(lnp), np.sum(np.isneginf(lnp))))
957

958
959
960
        lnp_finite = copy.copy(lnp)
        lnp_finite[np.isinf(lnp)] = np.nan
        p = pF[np.nanargmax(lnp_finite)]
961
962
        logging.info('Generating new p0 from max lnp which had twoF={}'
                     .format(lnl[np.nanargmax(lnp_finite)]))
963
        p0 = self.generate_scattered_p0(p)
964
965
966
967
968
969

        return p0

    def get_save_data_dictionary(self):
        d = dict(nsteps=self.nsteps, nwalkers=self.nwalkers,
                 ntemps=self.ntemps, theta_keys=self.theta_keys,
Gregory Ashton's avatar
Gregory Ashton committed
970
                 theta_prior=self.theta_prior, scatter_val=self.scatter_val,
971
972
                 log10temperature_min=self.log10temperature_min,
                 theta0_idx=self.theta0_idx)
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
        return d

    def save_data(self, sampler, samples, lnprobs, lnlikes):
        d = self.get_save_data_dictionary()
        d['sampler'] = sampler
        d['samples'] = samples
        d['lnprobs'] = lnprobs
        d['lnlikes'] = lnlikes

        if os.path.isfile(self.pickle_path):
            logging.info('Saving backup of {} as {}.old'.format(
                self.pickle_path, self.pickle_path))
            os.rename(self.pickle_path, self.pickle_path+".old")
        with open(self.pickle_path, "wb") as File:
            pickle.dump(d, File)

    def get_list_of_matching_sfts(self):
        matches = glob.glob(self.sft_filepath)
        if len(matches) > 0:
            return matches
        else:
            raise IOError('No sfts found matching {}'.format(
                self.sft_filepath))

    def get_saved_data(self):
        with open(self.pickle_path, "r") as File:
            d = pickle.load(File)
        return d

    def check_old_data_is_okay_to_use(self):
1003
1004
1005
1006
        if args.use_old_data:
            logging.info("Forcing use of old data")
            return True

1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
        if os.path.isfile(self.pickle_path) is False:
            logging.info('No pickled data found')
            return False

        oldest_sft = min([os.path.getmtime(f) for f in
                          self.get_list_of_matching_sfts()])
        if os.path.getmtime(self.pickle_path) < oldest_sft:
            logging.info('Pickled data outdates sft files')
            return False

        old_d = self.get_saved_data().copy()
        new_d = self.get_save_data_dictionary().copy()

        old_d.pop('samples')
        old_d.pop('sampler')
        old_d.pop('lnprobs')
        old_d.pop('lnlikes')

        mod_keys = []
        for key in new_d.keys():
            if key in old_d:
                if new_d[key] != old_d[key]:
                    mod_keys.append((key, old_d[key], new_d[key]))
            else:
1031
                raise ValueError('Keys {} not in old dictionary'.format(key))
1032
1033
1034
1035
1036
1037
1038
1039
1040

        if len(mod_keys) == 0:
            return True
        else:
            logging.warning("Saved data differs from requested")
            logging.info("Differences found in following keys:")
            for key in mod_keys:
                if len(key) == 3:
                    if np.isscalar(key[1]) or key[0] == 'nsteps':
1041
                        logging.info("    {} : {} -> {}".format(*key))
1042
                    else:
1043
                        logging.info("    " + key[0])
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
                else:
                    logging.info(key)
            return False

    def get_max_twoF(self, threshold=0.05):
        """ Returns the max 2F sample and the corresponding 2F value

        Note: the sample is returned as a dictionary along with an estimate of
        the standard deviation calculated from the std of all samples with a
        twoF within `threshold` (relative) to the max twoF

        """
        if any(np.isposinf(self.lnlikes)):
            logging.info('twoF values contain positive infinite values')
        if any(np.isneginf(self.lnlikes)):
            logging.info('twoF values contain negative infinite values')
        if any(np.isnan(self.lnlikes)):
            logging.info('twoF values contain nan')
        idxs = np.isfinite(self.lnlikes)
        jmax = np.nanargmax(self.lnlikes[idxs])
        maxtwoF = self.lnlikes[jmax]
1065
        d = OrderedDict()
1066

Gregory Ashton's avatar
Gregory Ashton committed
1067
        repeats = []
1068
        for i, k in enumerate(self.theta_keys):
Gregory Ashton's avatar
Gregory Ashton committed
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
            if k in d and k not in repeats:
                d[k+'_0'] = d[k]  # relabel the old key
                d.pop(k)
                repeats.append(k)
            if k in repeats:
                k = k + '_0'
                count = 1
                while k in d:
                    k = k.replace('_{}'.format(count-1), '_{}'.format(count))
                    count += 1
1079
1080
1081
1082
1083
            d[k] = self.samples[jmax][i]
        return d, maxtwoF

    def get_median_stds(self):
        """ Returns a dict of the median and std of all production samples """
1084
        d = OrderedDict()
Gregory Ashton's avatar
Gregory Ashton committed
1085
        repeats = []
1086
        for s, k in zip(self.samples.T, self.theta_keys):
Gregory Ashton's avatar
Gregory Ashton committed
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
            if k in d and k not in repeats:
                d[k+'_0'] = d[k]  # relabel the old key
                d[k+'_0_std'] = d[k+'_std']
                d.pop(k)
                d.pop(k+'_std')
                repeats.append(k)
            if k in repeats:
                k = k + '_0'
                count = 1
                while k in d:
                    k = k.replace('_{}'.format(count-1), '_{}'.format(count))
                    count += 1

1100
1101
1102
1103
1104
1105
1106
1107
            d[k] = np.median(s)
            d[k+'_std'] = np.std(s)
        return d

    def write_par(self, method='med'):
        """ Writes a .par of the best-fit params with an estimated std """
        logging.info('Writing {}/{}.par using the {} method'.format(
            self.outdir, self.label, method))
1108
1109
1110
1111
1112
1113
1114

        median_std_d = self.get_median_stds()
        max_twoF_d, max_twoF = self.get_max_twoF()

        filename = '{}/{}.par'.format(self.outdir, self.label)
        with open(filename, 'w+') as f:
            f.write('MaxtwoF = {}\n'.format(max_twoF))
1115
            f.write('theta0_index = {}\n'.format(self.theta0_idx))
1116
            if method == 'med':
1117
1118
                for key, val in median_std_d.iteritems():
                    f.write('{} = {:1.16e}\n'.format(key, val))
1119
            if method == 'twoFmax':
1120
1121
1122
1123
                for key, val in max_twoF_d.iteritems():
                    f.write('{} = {:1.16e}\n'.format(key, val))

    def print_summary(self):
Gregory Ashton's avatar
Gregory Ashton committed
1124
        max_twoFd, max_twoF = self.get_max_twoF()
1125
        median_std_d = self.get_median_stds()
Gregory Ashton's avatar
Gregory Ashton committed
1126
        print('\nSummary:')
1127
        print('theta0 index: {}'.format(self.theta0_idx))
Gregory Ashton's avatar
Gregory Ashton committed
1128
1129
1130
1131
        print('Max twoF: {} with parameters:'.format(max_twoF))
        for k in np.sort(max_twoFd.keys()):
            print('  {:10s} = {:1.9e}'.format(k, max_twoFd[k]))
        print('\nMedian +/- std for production values')
1132
        for k in np.sort(median_std_d.keys()):
1133
            if 'std' not in k:
Gregory Ashton's avatar
Gregory Ashton committed
1134
                print('  {:10s} = {:1.9e} +/- {:1.9e}'.format(
1135
                    k, median_std_d[k], median_std_d[k+'_std']))
1136
1137


Gregory Ashton's avatar
Gregory Ashton committed
1138
1139
1140
1141
class MCMCGlitchSearch(MCMCSearch):
    """ MCMC search using the SemiCoherentGlitchSearch """
    @initializer
    def __init__(self, label, outdir, sftlabel, sftdir, theta_prior, tref,
1142
1143
                 tstart, tend, nglitch=1, nsteps=[100, 100, 100], nwalkers=100,
                 ntemps=1, log10temperature_min=-5, theta_initial=None,
1144
                 scatter_val=1e-4, dtglitchmin=1*86400, theta0_idx=0,
1145
                 detector=None, BSGL=False,
1146
                 minCoverFreq=None, maxCoverFreq=None, earth_ephem=None,
Gregory Ashton's avatar
Gregory Ashton committed
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
                 sun_ephem=None):
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
        sftlabel, sftdir: str
            A label and directory in which to find the relevant sft file
        theta_prior: dict
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
1163
1164
1165
1166
        scatter_val, float or ndim array
            Size of scatter to use about the initialisation step, if given as
            an array it must be of length ndim and the order is given by
            theta_keys
Gregory Ashton's avatar
Gregory Ashton committed
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
        nglitch: int
            The number of glitches to allow
        tref, tstart, tend: int
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
        dtglitchmin: int
            The minimum duration (in seconds) of a segment between two glitches
            or a glitch and the start/end of the data
1179
1180
1181
1182
1183
1184
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
1185
1186
1187
1188
        theta0_idx, int
            Index (zero-based) of which segment the theta refers to - uyseful
            if providing a tight prior on theta to allow the signal to jump
            too theta (and not just from)
1189
1190
1191
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
Gregory Ashton's avatar
Gregory Ashton committed
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

        logging.info(('Set-up MCMC glitch search with {} glitches for model {}'
                      ' on data {}').format(self.nglitch, self.label,
                                            self.sftlabel))
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
1207
1208
        self.minStartTime = tstart
        self.maxStartTime = tend
Gregory Ashton's avatar
Gregory Ashton committed
1209
1210
1211
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
        self.unpack_input_theta()
        self.ndim = len(self.theta_keys)
1212
        self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
Gregory Ashton's avatar
Gregory Ashton committed
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
        self.sft_filepath = self.sftdir+'/*_'+self.sftlabel+"*sft"
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

        self.old_data_is_okay_to_use = self.check_old_data_is_okay_to_use()

    def inititate_search_object(self):
        logging.info('Setting up search object')
        self.search = SemiCoherentGlitchSearch(
            label=self.label, outdir=self.outdir, sftlabel=self.sftlabel,
            sftdir=self.sftdir, tref=self.tref, tstart=self.tstart,
            tend=self.tend, minCoverFreq=self.minCoverFreq,
            maxCoverFreq=self.maxCoverFreq, earth_ephem=self.earth_ephem,
1231
            sun_ephem=self.sun_ephem, detector=self.detector, BSGL=self.BSGL,
1232
1233
            nglitch=self.nglitch, theta0_idx=self.theta0_idx,
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime)
Gregory Ashton's avatar
Gregory Ashton committed
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

    def logp(self, theta_vals, theta_prior, theta_keys, search):
        if self.nglitch > 1:
            ts = [self.tstart] + theta_vals[-self.nglitch:] + [self.tend]
            if np.array_equal(ts, np.sort(ts)) is False:
                return -np.inf
            if any(np.diff(ts) < self.dtglitchmin):
                return -np.inf

        H = [self.generic_lnprior(**theta_prior[key])(p) for p, key in
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
        FS = search.compute_nglitch_fstat(*self.fixed_theta)
        return FS

    def unpack_input_theta(self):
        glitch_keys = ['delta_F0', 'delta_F1', 'tglitch']
        full_glitch_keys = list(np.array(
            [[gk]*self.nglitch for gk in glitch_keys]).flatten())
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']+full_glitch_keys
        full_theta_keys_copy = copy.copy(full_theta_keys)

        glitch_symbols = ['$\delta f$', '$\delta \dot{f}$', r'$t_{glitch}$']
        full_glitch_symbols = list(np.array(
            [[gs]*self.nglitch for gs in glitch_symbols]).flatten())
        full_theta_symbols = (['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                               r'$\delta$'] + full_glitch_symbols)
        self.theta_keys = []
        fixed_theta_dict = {}
        for key, val in self.theta_prior.iteritems():
            if type(val) is dict:
                fixed_theta_dict[key] = 0
                if key in glitch_keys:
                    for i in range(self.nglitch):
                        self.theta_keys.append(key)
                else:
                    self.theta_keys.append(key)
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
            if key in glitch_keys:
                for i in range(self.nglitch):
                    full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
            else:
                full_theta_keys_copy.pop(full_theta_keys_copy.index(key))

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

        # Correct for number of glitches in the idxs
        self.theta_idxs = np.array(self.theta_idxs)
        while np.sum(self.theta_idxs[:-1] == self.theta_idxs[1:]) > 0:
            for i, idx in enumerate(self.theta_idxs):
                if idx in self.theta_idxs[:i]:
                    self.theta_idxs[i] += 1

    def apply_corrections_to_p0(self, p0):
        p0 = np.array(p0)
        if self.nglitch > 1:
            p0[:, :, -self.nglitch:] = np.sort(p0[:, :, -self.nglitch:],
                                               axis=2)
        return p0


Gregory Ashton's avatar
Gregory Ashton committed
1316
1317
class GridSearch(BaseSearchClass):
    """ Gridded search using ComputeFstat """
1318
1319
    @initializer
    def __init__(self, label, outdir, sftlabel=None, sftdir=None, F0s=[0],
Gregory Ashton's avatar
Gregory Ashton committed
1320
1321
                 F1s=[0], F2s=[0], Alphas=[0], Deltas=[0], tref=None,
                 tstart=None, tend=None, minCoverFreq=None, maxCoverFreq=None,
1322
                 earth_ephem=None, sun_ephem=None, detector=None, BSGL=False):
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
        sftlabel, sftdir: str
            A label and directory in which to find the relevant sft file
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0].
        tref, tstart, tend: int
            GPS seconds of the reference time, start time and end time
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """
1343
1344
1345
1346

        minStartTime = tstart
        maxStartTime = tend

1347
1348
1349
1350
1351
1352
1353
1354
1355
        if sftlabel is None:
            self.sftlabel = self.label
        if sftdir is None:
            self.sftdir = self.outdir
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

Gregory Ashton's avatar
Gregory Ashton committed
1356
1357
1358
1359
        self.search = ComputeFstat(
            tref=self.tref, sftlabel=self.sftlabel,
            sftdir=self.sftdir, minCoverFreq=self.minCoverFreq,
            maxCoverFreq=self.maxCoverFreq, earth_ephem=self.earth_ephem,
1360
            sun_ephem=self.sun_ephem, detector=self.detector, transient=False,
1361
1362
            minStartTime=minStartTime, maxStartTime=maxStartTime,
            BSGL=BSGL)
1363
1364
1365
1366

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.out_file = '{}/{}_gridFS.txt'.format(self.outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
1367
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
1368
1369
1370
1371
1372
1373
1374
1375
1376

    def get_array_from_tuple(self, x):
        if len(x) == 1:
            return np.array(x)
        else:
            return np.arange(x[0], x[1]*(1+1e-15), x[2])

    def get_input_data_array(self):
        arrays = []
Gregory Ashton's avatar
Gregory Ashton committed
1377
1378
        for tup in ([self.tstart], [self.tend], self.F0s, self.F1s, self.F2s,
                    self.Alphas, self.Deltas):
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        self.arrays = arrays
        self.input_data = np.array(input_data)

    def check_old_data_is_okay_to_use(self):
        if os.path.isfile(self.out_file) is False:
            logging.info('No old data found, continuing with grid search')
            return False
        data = np.atleast_2d(np.genfromtxt(self.out_file, delimiter=' '))
        if np.all(data[:, 0:-1] == self.input_data):
            logging.info(
                'Old data found with matching input, no search performed')
            return data
        else:
            logging.info(
                'Old data found, input differs, continuing with grid search')
            return False

1402
    def run(self, return_data=False):
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
        self.get_input_data_array()
        old_data = self.check_old_data_is_okay_to_use()
        if old_data is not False:
            self.data = old_data
            return

        logging.info('Total number of grid points is {}'.format(
            len(self.input_data)))

        data = []
        for vals in self.input_data:
Gregory Ashton's avatar
Gregory Ashton committed
1414
            FS = self.search.run_computefstatistic_single_point(*vals)
1415
1416
            data.append(list(vals) + [FS])

1417
1418
1419
1420
1421
1422
1423
        data = np.array(data)
        if return_data:
            return data
        else:
            logging.info('Saving data to {}'.format(self.out_file))
            np.savetxt(self.out_file, data, delimiter=' ')
            self.data = data
1424

Gregory Ashton's avatar
Gregory Ashton committed
1425
1426
1427
1428
1429
1430
1431
1432
    def plot_1D(self, xkey):
        fig, ax = plt.subplots()
        xidx = self.keys.index(xkey)
        x = np.unique(self.data[:, xidx])
        z = self.data[:, -1]
        plt.plot(x, z)
        fig.savefig('{}/{}_1D.png'.format(self.outdir, self.label))

1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
    def plot_2D(self, xkey, ykey):
        fig, ax = plt.subplots()
        xidx = self.keys.index(xkey)
        yidx = self.keys.index(ykey)
        x = np.unique(self.data[:, xidx])
        y = np.unique(self.data[:, yidx])
        z = self.data[:, -1]

        X, Y = np.meshgrid(x, y)
        Z = z.reshape(X.shape)

        pax = ax.pcolormesh(X, Y, Z, cmap=plt.cm.viridis)
        fig.colorbar(pax)
        ax.set_xlim(x[0], x[-1])
        ax.set_ylim(y[0], y[-1])
        ax.set_xlabel(xkey)
        ax.set_ylabel(ykey)

        fig.tight_layout()
        fig.savefig('{}/{}_2D.png'.format(self.outdir, self.label))

    def get_max_twoF(self):
        twoF = self.data[:, -1]
        return np.max(twoF)

1458

Gregory Ashton's avatar
Gregory Ashton committed
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485