mcmc_based_searches.py 92.3 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
2
""" Searches using MCMC-based methods """

3
import sys
Gregory Ashton's avatar
Gregory Ashton committed
4
import os
5
import copy
Gregory Ashton's avatar
Gregory Ashton committed
6
import logging
7
from collections import OrderedDict
8
import subprocess
9
10
11
12
13
14
15
16

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import emcee
import corner
import dill as pickle

17
import core
18
from core import tqdm, args, earth_ephem, sun_ephem, read_par
19
from optimal_setup_functions import get_V_estimate
Gregory Ashton's avatar
Gregory Ashton committed
20
21
from optimal_setup_functions import get_optimal_setup
import helper_functions
22
23


24
class MCMCSearch(core.BaseSearchClass):
Gregory Ashton's avatar
Gregory Ashton committed
25
    """ MCMC search using ComputeFstat"""
26
27

    symbol_dictionary = dict(
28
        F0='$f$', F1='$\dot{f}$', F2='$\ddot{f}$', Alpha=r'$\alpha$',
29
30
        Delta='$\delta$', asini='asini', period='P', ecc='ecc', tp='tp',
        argp='argp')
31
    unit_dictionary = dict(
32
33
        F0='Hz', F1='Hz/s', F2='Hz/s$^2$', Alpha=r'rad', Delta='rad',
        asini='', period='s', ecc='', tp='', argp='')
34
35
36
    rescale_dictionary = {}


Gregory Ashton's avatar
Gregory Ashton committed
37
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
38
    def __init__(self, label, outdir, theta_prior, tref, minStartTime,
39
                 maxStartTime, sftfilepattern=None, nsteps=[100, 100],
40
                 nwalkers=100, ntemps=1, log10temperature_min=-5,
41
                 theta_initial=None, scatter_val=1e-10, rhohatmax=1000,
42
                 binary=False, BSGL=False, minCoverFreq=None, SSBprec=None,
43
                 maxCoverFreq=None, detectors=None, earth_ephem=None,
44
                 sun_ephem=None, injectSources=None, assumeSqrtSX=None):
45
46
47
48
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
49
        sftfilepattern: str
50
51
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
52
        theta_prior: dict
53
54
55
56
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
57
58
59
60
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
61
        tref, minStartTime, maxStartTime: int
62
63
64
65
66
67
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
68
69
70
71
72
73
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
74
75
76
77
        rhohatmax: float
            Upper bound for the SNR scale parameter (required to normalise the
            Bayes factor) - this needs to be carefully set when using the
            evidence.
78
79
        binary: Bool
            If true, search over binary parameters
80
        detectors: str
81
82
            Two character reference to the data to use, specify None for no
            contraint.
83
84
85
86
87
88
89
90
91
92
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

Gregory Ashton's avatar
Gregory Ashton committed
93
94
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
95
        self._add_log_file()
96
        logging.info('Set-up MCMC search for model {}'.format(self.label))
97
98
        if sftfilepattern:
            logging.info('Using data {}'.format(self.sftfilepattern))
99
        else:
100
            logging.info('No sftfilepattern given')
101
102
        if injectSources:
            logging.info('Inject sources: {}'.format(injectSources))
103
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
104
        self._unpack_input_theta()
105
        self.ndim = len(self.theta_keys)
106
107
108
109
        if self.log10temperature_min:
            self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
        else:
            self.betas = None
110

111
112
113
114
115
116
117
118
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

119
120
121
122
        self._set_likelihoodcoef()

    def _set_likelihoodcoef(self):
        self.likelihoodcoef = np.log(70./self.rhohatmax**4)
123

124
        self._log_input()
125

126
    def _log_input(self):
127
        logging.info('theta_prior = {}'.format(self.theta_prior))
128
        logging.info('nwalkers={}'.format(self.nwalkers))
129
130
131
132
        logging.info('scatter_val = {}'.format(self.scatter_val))
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
        logging.info('log10temperature_min = {}'.format(
133
            self.log10temperature_min))
134

135
    def _initiate_search_object(self):
136
        logging.info('Setting up search object')
137
        self.search = core.ComputeFstat(
138
            tref=self.tref, sftfilepattern=self.sftfilepattern,
139
140
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
141
            detectors=self.detectors, BSGL=self.BSGL, transient=False,
142
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
143
            binary=self.binary, injectSources=self.injectSources,
144
            assumeSqrtSX=self.assumeSqrtSX, SSBprec=self.SSBprec)
145
146

    def logp(self, theta_vals, theta_prior, theta_keys, search):
147
        H = [self._generic_lnprior(**theta_prior[key])(p) for p, key in
148
149
150
151
152
153
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
154
155
        FS = search.compute_fullycoherent_det_stat_single_point(
            *self.fixed_theta)
156
        return FS + self.likelihoodcoef
157

158
    def _unpack_input_theta(self):
159
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']
160
161
162
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
163
164
        full_theta_keys_copy = copy.copy(full_theta_keys)

165
166
        full_theta_symbols = ['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                              r'$\delta$']
167
168
        if self.binary:
            full_theta_symbols += [
169
                'asini', 'period', 'ecc', 'tp', 'argp']
170

171
172
        self.theta_keys = []
        fixed_theta_dict = {}
173
        for key, val in self.theta_prior.iteritems():
174
175
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
176
                self.theta_keys.append(key)
177
178
179
180
181
182
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
183
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

199
    def _check_initial_points(self, p0):
200
201
202
203
204
205
206
207
208
209
210
211
212
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

213
                p0 = self._generate_new_p0_to_fix_initial_points(
214
215
                    p0, nt, initial_priors)

216
    def _generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
236

237
    def _OLD_run_sampler_with_progress_bar(self, sampler, ns, p0):
238
239
        for result in tqdm(sampler.sample(p0, iterations=ns), total=ns):
            pass
Gregory Ashton's avatar
Gregory Ashton committed
240
241
        return sampler

242
243
    def setup_burnin_convergence_testing(
            self, n=10, test_type='autocorr', windowed=False, **kwargs):
244
245
246
247
248
        """
        If called, convergence testing is used during the MCMC simulation

        Parameters
        ----------
249
250
251
252
253
254
255
256
257
        n: int
            Number of steps after which to test convergence
        test_type: str ['autocorr', 'GR']
            If 'autocorr' use the exponential autocorrelation time (kwargs
            passed to `get_autocorr_convergence`). If 'GR' use the Gelman-Rubin
            statistic (kwargs passed to `get_GR_convergence`)
        windowed: bool
            If True, only calculate the convergence test in a window of length
            `n`
258
        """
259
        logging.info('Setting up convergence testing')
260
261
262
263
        self.convergence_n = n
        self.convergence_windowed = windowed
        self.convergence_test_type = test_type
        self.convergence_kwargs = kwargs
264
265
        self.convergence_diagnostic = []
        self.convergence_diagnosticx = []
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        if test_type in ['autocorr']:
            self._get_convergence_test = self.test_autocorr_convergence
        elif test_type in ['GR']:
            self._get_convergence_test= self.test_GR_convergence
        else:
            raise ValueError('test_type {} not understood'.format(test_type))

    def test_autocorr_convergence(self, i, sampler, test=True, n_cut=5):
        try:
            acors = np.zeros((self.ntemps, self.ndim))
            for temp in range(self.ntemps):
                if self.convergence_windowed:
                    j = i-self.convergence_n
                else:
                    j = 0
                x = np.mean(sampler.chain[temp, :, j:i, :], axis=0)
                acors[temp, :] = emcee.autocorr.exponential_time(x)
            c = np.max(acors, axis=0)
        except emcee.autocorr.AutocorrError:
            c = np.zeros(self.ndim) + np.nan

        self.convergence_diagnosticx.append(i - self.convergence_n/2.)
        self.convergence_diagnostic.append(list(c))

        if test:
            return i > n_cut * np.max(c)

    def test_GR_convergence(self, i, sampler, test=True, R=1.1):
        if self.convergence_windowed:
            s = sampler.chain[0, :, i-self.convergence_n+1:i+1, :]
        else:
            s = sampler.chain[0, :, :i+1, :]
        N = float(self.convergence_n)
299
300
        M = float(self.nwalkers)
        W = np.mean(np.var(s, axis=1), axis=0)
301
302
        per_walker_mean = np.mean(s, axis=1)
        mean = np.mean(per_walker_mean, axis=0)
303
304
        B = N / (M-1.) * np.sum((per_walker_mean-mean)**2, axis=0)
        Vhat = (N-1)/N * W + (M+1)/(M*N) * B
305
        c = np.sqrt(Vhat/W)
306
        self.convergence_diagnostic.append(c)
307
        self.convergence_diagnosticx.append(i - self.convergence_n/2.)
308

309
310
311
        if test and np.max(c) < R:
            return True
        else:
312
            return False
313
314
315
316

    def _test_convergence(self, i, sampler, **kwargs):
        if np.mod(i+1, self.convergence_n) == 0:
            return self._get_convergence_test(i, sampler, **kwargs)
317
        else:
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
            return False

    def _run_sampler_with_conv_test(self, sampler, p0, nprod=0, nburn=0):
        logging.info('Running {} burn-in steps with convergence testing'
                     .format(nburn))
        iterator = tqdm(sampler.sample(p0, iterations=nburn), total=nburn)
        for i, output in enumerate(iterator):
            if self._test_convergence(i, sampler, test=True,
                                      **self.convergence_kwargs):
                logging.info(
                    'Converged at {} before max number {} of steps reached'
                    .format(i, nburn))
                self.convergence_idx = i
                break
        iterator.close()
        logging.info('Running {} production steps'.format(nprod))
        j = nburn
        iterator = tqdm(sampler.sample(output[0], iterations=nprod),
                        total=nprod)
        for result in iterator:
            self._test_convergence(j, sampler, test=False,
                                   **self.convergence_kwargs)
            j += 1
        return sampler
342

343
    def _run_sampler(self, sampler, p0, nprod=0, nburn=0):
344
345
        if hasattr(self, 'convergence_n'):
            self._run_sampler_with_conv_test(sampler, p0, nprod, nburn)
346
347
348
349
        else:
            for result in tqdm(sampler.sample(p0, iterations=nburn+nprod),
                               total=nburn+nprod):
                pass
350

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
        logging.info("Mean acceptance fraction: {}"
                     .format(np.mean(sampler.acceptance_fraction, axis=1)))
        if self.ntemps > 1:
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
        try:
            logging.info("Autocorrelation length: {}".format(
                sampler.get_autocorr_time(c=5)))
        except emcee.autocorr.AutocorrError as e:
            logging.warning(
                'Autocorrelation calculation failed with message {}'.format(e))

        return sampler

    def run(self, proposal_scale_factor=2, create_plots=True, c=5, **kwargs):
        """ Run the MCMC simulatation

        Parameters
        ----------
        proposal_scale_factor: float
            The proposal scale factor used by the sampler, see Goodman & Weare
            (2010). If the acceptance fraction is too low, you can raise it by
            decreasing the a parameter; and if it is too high, you can reduce
            it by increasing the a parameter [Foreman-Mackay (2013)].
        create_plots: bool
            If true, save trace plots of the walkers
        c: int
            The minimum number of autocorrelation times needed to trust the
            result when estimating the autocorrelation time (see
            emcee.autocorr.integrated_time for further details. Default is 5
        **kwargs:
            Passed to _plot_walkers to control the figures

        """
385

386
        self.old_data_is_okay_to_use = self._check_old_data_is_okay_to_use()
387
388
389
        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
390
            d = self.get_saved_data_dictionary()
391
392
393
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
394
            self.all_lnlikelihood = d['all_lnlikelihood']
395
396
            return

397
        self._initiate_search_object()
398
399
400
401

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
402
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
403

404
405
406
        p0 = self._generate_initial_p0()
        p0 = self._apply_corrections_to_p0(p0)
        self._check_initial_points(p0)
407
408
409
410

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
Gregory Ashton's avatar
Gregory Ashton committed
411
                j, ninit_steps, n))
412
            sampler = self._run_sampler(sampler, p0, nburn=n)
413
            if create_plots:
414
                fig, axes = self._plot_walkers(sampler,
415
416
                                               symbols=self.theta_symbols,
                                               **kwargs)
417
418
                fig.tight_layout()
                fig.savefig('{}/{}_init_{}_walkers.png'.format(
419
                    self.outdir, self.label, j), dpi=400)
420

421
422
423
            p0 = self._get_new_p0(sampler)
            p0 = self._apply_corrections_to_p0(p0)
            self._check_initial_points(p0)
424
425
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
426
427
428
429
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
430
431
432
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
433
        sampler = self._run_sampler(sampler, p0, nburn=nburn, nprod=nprod)
434
        if create_plots:
435
            fig, axes = self._plot_walkers(sampler, symbols=self.theta_symbols,
436
                                           nprod=nprod, **kwargs)
437
438
439
            fig.tight_layout()
            fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label),
                        dpi=200)
440
441
442
443

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
444
        all_lnlikelihood = sampler.lnlikelihood[:, :, nburn:]
445
446
447
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
448
449
        self.all_lnlikelihood = all_lnlikelihood
        self._save_data(sampler, samples, lnprobs, lnlikes, all_lnlikelihood)
450

451
    def _get_rescale_multiplier_for_key(self, key):
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
        """ Get the rescale multiplier from the rescale_dictionary

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
        if key not in self.rescale_dictionary:
            return 1

        if 'multiplier' in self.rescale_dictionary[key]:
            val = self.rescale_dictionary[key]['multiplier']
            if type(val) == str:
                if hasattr(self, val):
                    multiplier = getattr(
                        self, self.rescale_dictionary[key]['multiplier'])
                else:
                    raise ValueError(
                        "multiplier {} not a class attribute".format(val))
            else:
                multiplier = val
        else:
            multiplier = 1
        return multiplier

476
    def _get_rescale_subtractor_for_key(self, key):
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
        """ Get the rescale subtractor from the rescale_dictionary

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
        if key not in self.rescale_dictionary:
            return 0

        if 'subtractor' in self.rescale_dictionary[key]:
            val = self.rescale_dictionary[key]['subtractor']
            if type(val) == str:
                if hasattr(self, val):
                    subtractor = getattr(
                        self, self.rescale_dictionary[key]['subtractor'])
                else:
                    raise ValueError(
                        "subtractor {} not a class attribute".format(val))
            else:
                subtractor = val
        else:
            subtractor = 0
        return subtractor

501
    def _scale_samples(self, samples, theta_keys):
502
        """ Scale the samples using the rescale_dictionary """
503
504
505
506
        for key in theta_keys:
            if key in self.rescale_dictionary:
                idx = theta_keys.index(key)
                s = samples[:, idx]
507
                subtractor = self._get_rescale_subtractor_for_key(key)
508
                s = s - subtractor
509
                multiplier = self._get_rescale_multiplier_for_key(key)
510
                s *= multiplier
511
512
                samples[:, idx] = s

513
514
        return samples

515
    def _get_labels(self):
516
        """ Combine the units, symbols and rescaling to give labels """
517

518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
        labels = []
        for key in self.theta_keys:
            label = None
            s = self.symbol_dictionary[key]
            s.replace('_{glitch}', r'_\textrm{glitch}')
            u = self.unit_dictionary[key]
            if key in self.rescale_dictionary:
                if 'symbol' in self.rescale_dictionary[key]:
                    s = self.rescale_dictionary[key]['symbol']
                if 'label' in self.rescale_dictionary[key]:
                    label = self.rescale_dictionary[key]['label']
                if 'unit' in self.rescale_dictionary[key]:
                    u = self.rescale_dictionary[key]['unit']
            if label is None:
                label = '{} \n [{}]'.format(s, u)
            labels.append(label)
        return labels
535

536
537
    def plot_corner(self, figsize=(7, 7), add_prior=False, nstds=None,
                    label_offset=0.4, dpi=300, rc_context={},
538
                    tglitch_ratio=False, fig_and_axes=None, save_fig=True,
539
                    **kwargs):
540
541
542
543
544
545
546
547
548
        """ Generate a corner plot of the posterior

        Using the `corner` package (https://pypi.python.org/pypi/corner/),
        generate estimates of the posterior from the production samples.

        Parameters
        ----------
        figsize: tuple (7, 7)
            Figure size in inches (passed to plt.subplots)
549
550
551
        add_prior: bool, str
            If true, plot the prior as a red line. If 'full' then for uniform
            priors plot the full extent of the prior.
552
553
554
555
556
557
558
559
560
561
562
563
564
565
        nstds: float
            The number of standard deviations to plot centered on the mean
        label_offset: float
            Offset the labels from the plot: useful to precent overlapping the
            tick labels with the axis labels
        dpi: int
            Passed to plt.savefig
        rc_context: dict
            Dictionary of rc values to set while generating the figure (see
            matplotlib rc for more details)
        tglitch_ratio: bool
            If true, and tglitch is a parameter, plot posteriors as the
            fractional time at which the glitch occurs instead of the actual
            time
566
567
568
569
570
        fig_and_axes: tuple
            fig and axes to plot on, the axes must be of the right shape,
            namely (ndim, ndim)
        save_fig: bool
            If true, save the figure, else return the fig, axes
571

572
        Note: kwargs are passed on to corner.corner
573
574

        """
575

576
577
578
579
        if 'truths' in kwargs and len(kwargs['truths']) != self.ndim:
            logging.warning('len(Truths) != ndim, Truths will be ignored')
            kwargs['truths'] = None

Gregory Ashton's avatar
Gregory Ashton committed
580
581
        if self.ndim < 2:
            with plt.rc_context(rc_context):
582
583
584
585
                if fig_and_axes is None:
                    fig, ax = plt.subplots(figsize=figsize)
                else:
                    fig, ax = fig_and_axes
Gregory Ashton's avatar
Gregory Ashton committed
586
587
588
589
590
591
592
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

593
        with plt.rc_context(rc_context):
594
595
596
597
598
            if fig_and_axes is None:
                fig, axes = plt.subplots(self.ndim, self.ndim,
                                         figsize=figsize)
            else:
                fig, axes = fig_and_axes
599
600

            samples_plt = copy.copy(self.samples)
601
            labels = self._get_labels()
602

603
            samples_plt = self._scale_samples(samples_plt, self.theta_keys)
604
605
606
607
608

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
609
610
611
                        samples_plt[:, j] = (
                            s - self.minStartTime)/(
                                self.maxStartTime - self.minStartTime)
612
                        labels[j] = r'$R_{\textrm{glitch}}$'
613
614
615
616
617
618
619

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
620
621
            elif 'range' in kwargs:
                _range = kwargs.pop('range')
622
623
624
            else:
                _range = None

625
626
627
628
            hist_kwargs = kwargs.pop('hist_kwargs', dict())
            if 'normed' not in hist_kwargs:
                hist_kwargs['normed'] = True

629
            fig_triangle = corner.corner(samples_plt,
630
                                         labels=labels,
631
632
633
634
635
636
637
638
639
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
640
                                         hist_kwargs=hist_kwargs,
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
657
                self._add_prior_to_corner(axes, self.samples, add_prior)
658

659
660
661
662
663
            if save_fig:
                fig_triangle.savefig('{}/{}_corner.png'.format(
                    self.outdir, self.label), dpi=dpi)
            else:
                return fig, axes
664

665
    def _add_prior_to_corner(self, axes, samples, add_prior):
666
667
668
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            s = samples[:, i]
669
670
671
672
673
674
675
676
677
678
            lnprior = self._generic_lnprior(**self.theta_prior[key])
            if add_prior == 'full' and self.theta_prior[key]['type'] == 'unif':
                lower = self.theta_prior[key]['lower']
                upper = self.theta_prior[key]['upper']
                r = upper-lower
                xlim = [lower-0.05*r, upper+0.05*r]
                x = np.linspace(xlim[0], xlim[1], 1000)
            else:
                xlim = ax.get_xlim()
                x = np.linspace(s.min(), s.max(), 1000)
679
680
            multiplier = self._get_rescale_multiplier_for_key(key)
            subtractor = self._get_rescale_subtractor_for_key(key)
681
682
683
684
685
686
687
688
            ax.plot((x-subtractor)*multiplier,
                    [np.exp(lnprior(xi)) for xi in x], '-C3',
                    label='prior')

            for j in range(i, self.ndim):
                axes[j][i].set_xlim(xlim[0], xlim[1])
            for k in range(0, i):
                axes[i][k].set_ylim(xlim[0], xlim[1])
689

690
691
692
693
694
695
696
697
    def plot_prior_posterior(self, normal_stds=2):
        """ Plot the posterior in the context of the prior """
        fig, axes = plt.subplots(nrows=self.ndim, figsize=(8, 4*self.ndim))
        N = 1000
        from scipy.stats import gaussian_kde

        for i, (ax, key) in enumerate(zip(axes, self.theta_keys)):
            prior_dict = self.theta_prior[key]
698
            prior_func = self._generic_lnprior(**prior_dict)
699
700
701
702
703
            if prior_dict['type'] == 'unif':
                x = np.linspace(prior_dict['lower'], prior_dict['upper'], N)
                prior = prior_func(x)
                prior[0] = 0
                prior[-1] = 0
Gregory Ashton's avatar
Gregory Ashton committed
704
705
706
707
708
            elif prior_dict['type'] == 'log10unif':
                upper = prior_dict['log10upper']
                lower = prior_dict['log10lower']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
709
710
711
712
713
            elif prior_dict['type'] == 'norm':
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = prior_func(x)
714
715
716
717
718
            elif prior_dict['type'] == 'halfnorm':
                lower = prior_dict['loc']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
Gregory Ashton's avatar
Gregory Ashton committed
719
720
721
722
723
            elif prior_dict['type'] == 'neghalfnorm':
                upper = prior_dict['loc']
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
724
725
726
            else:
                raise ValueError('Not implemented for prior type {}'.format(
                    prior_dict['type']))
727
            priorln = ax.plot(x, prior, 'C3', label='prior')
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
            ax.set_xlabel(self.theta_symbols[i])

            s = self.samples[:, i]
            while len(s) > 10**4:
                # random downsample to avoid slow calculation of kde
                s = np.random.choice(s, size=int(len(s)/2.))
            kde = gaussian_kde(s)
            ax2 = ax.twinx()
            postln = ax2.plot(x, kde.pdf(x), 'k', label='posterior')
            ax2.set_yticklabels([])
            ax.set_yticklabels([])

        lns = priorln + postln
        labs = [l.get_label() for l in lns]
        axes[0].legend(lns, labs, loc=1, framealpha=0.8)

        fig.savefig('{}/{}_prior_posterior.png'.format(
            self.outdir, self.label))

747
    def plot_cumulative_max(self, **kwargs):
748
749
750
751
        """ Plot the cumulative twoF for the maximum posterior estimate

        See the pyfstat.core.plot_twoF_cumulative function for further details
        """
Gregory Ashton's avatar
Gregory Ashton committed
752
753
754
755
        d, maxtwoF = self.get_max_twoF()
        for key, val in self.theta_prior.iteritems():
            if key not in d:
                d[key] = val
756
757

        if hasattr(self, 'search') is False:
758
            self._initiate_search_object()
759
760
761
        if self.binary is False:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
762
                Alpha=d['Alpha'], Delta=d['Delta'],
763
                tstart=self.minStartTime, tend=self.maxStartTime,
764
                **kwargs)
765
766
767
768
769
        else:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
                Alpha=d['Alpha'], Delta=d['Delta'], asini=d['asini'],
                period=d['period'], ecc=d['ecc'], argp=d['argp'], tp=d['argp'],
770
                tstart=self.minStartTime, tend=self.maxStartTime, **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
771

772
    def _generic_lnprior(self, **kwargs):
773
774
775
776
777
778
779
780
781
        """ Return a lambda function of the pdf

        Parameters
        ----------
        kwargs: dict
            A dictionary containing 'type' of pdf and shape parameters

        """

Gregory Ashton's avatar
Gregory Ashton committed
782
        def log_of_unif(x, a, b):
783
784
785
786
787
788
789
790
791
792
793
794
795
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

Gregory Ashton's avatar
Gregory Ashton committed
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
        def log_of_log10unif(x, log10lower, log10upper):
            log10x = np.log10(x)
            above = log10x < log10upper
            below = log10x > log10lower
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(x*np.log(10)*(log10upper-log10lower))
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(x*np.log(10)*(log10upper-log10lower))
                return p

        def log_of_halfnorm(x, loc, scale):
812
            if x < loc:
813
814
815
816
817
818
819
820
821
822
823
824
825
826
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
Gregory Ashton's avatar
Gregory Ashton committed
827
828
829
830
            return lambda x: log_of_unif(x, kwargs['lower'], kwargs['upper'])
        if kwargs['type'] == 'log10unif':
            return lambda x: log_of_log10unif(
                x, kwargs['log10lower'], kwargs['log10upper'])
831
        elif kwargs['type'] == 'halfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
832
            return lambda x: log_of_halfnorm(x, kwargs['loc'], kwargs['scale'])
833
        elif kwargs['type'] == 'neghalfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
834
835
            return lambda x: log_of_halfnorm(
                -x, kwargs['loc'], kwargs['scale'])
836
837
838
839
840
841
842
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

843
    def _generate_rv(self, **kwargs):
844
845
846
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
Gregory Ashton's avatar
Gregory Ashton committed
847
848
849
        if dist_type == "log10unif":
            return 10**(np.random.uniform(low=kwargs['log10lower'],
                                          high=kwargs['log10upper']))
850
851
852
853
854
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
855
856
857
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
858
859
860
861
862
863
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

864
    def _plot_walkers(self, sampler, symbols=None, alpha=0.8, color="k",
865
866
                      temp=0, lw=0.1, nprod=0, add_det_stat_burnin=False,
                      fig=None, axes=None, xoffset=0, plot_det_stat=False,
867
                      context='ggplot', subtractions=None, labelpad=0.05):
868
869
        """ Plot all the chains from a sampler """

870
871
872
873
874
        if context not in plt.style.available:
            raise ValueError((
                'The requested context {} is not available; please select a'
                ' context from `plt.style.available`').format(context))

875
876
877
        if np.ndim(axes) > 1:
            axes = axes.flatten()

878
879
880
881
882
883
884
885
886
887
888
889
890
        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
            chain = sampler.chain[:, :, :]
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
            chain = sampler.chain[temp, :, :, :]

891
892
        if subtractions is None:
            subtractions = [0 for i in range(ndim)]
893
894
895
        else:
            if len(subtractions) != self.ndim:
                raise ValueError('subtractions must be of length ndim')
896

897
898
899
900
        if plot_det_stat:
            extra_subplots = 1
        else:
            extra_subplots = 0
901
        with plt.style.context((context)):
Gregory Ashton's avatar
Gregory Ashton committed
902
            plt.rcParams['text.usetex'] = True
Gregory Ashton's avatar
Gregory Ashton committed
903
            if fig is None and axes is None:
904
                fig = plt.figure(figsize=(4, 3.0*ndim))
905
906
                ax = fig.add_subplot(ndim+extra_subplots, 1, 1)
                axes = [ax] + [fig.add_subplot(ndim+extra_subplots, 1, i)
Gregory Ashton's avatar
Gregory Ashton committed
907
                               for i in range(2, ndim+1)]
908

Gregory Ashton's avatar
Gregory Ashton committed
909
            idxs = np.arange(chain.shape[1])
910
911
912
913
914
            burnin_idx = chain.shape[1] - nprod
            if hasattr(self, 'convergence_idx'):
                convergence_idx = self.convergence_idx
            else:
                convergence_idx = burnin_idx
915
916
            if ndim > 1:
                for i in range(ndim):
917
                    axes[i].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
918
                    cs = chain[:, :, i].T
919
                    if burnin_idx > 0:
920
921
                        axes[i].plot(xoffset+idxs[:convergence_idx+1],
                                     cs[:convergence_idx+1]-subtractions[i],
922
                                     color="C3", alpha=alpha,
Gregory Ashton's avatar
Gregory Ashton committed
923
                                     lw=lw)
924
                        axes[i].axvline(xoffset+convergence_idx,
925
                                        color='k', ls='--', lw=0.25)
926
927
                    axes[i].plot(xoffset+idxs[burnin_idx:],
                                 cs[burnin_idx:]-subtractions[i],
Gregory Ashton's avatar
Gregory Ashton committed
928
                                 color="k", alpha=alpha, lw=lw)
929
                    if symbols:
930
                        if subtractions[i] == 0:
931
                            axes[i].set_ylabel(symbols[i], labelpad=labelpad)
932
933
                        else:
                            axes[i].set_ylabel(
934
935
                                symbols[i]+'$-$'+symbols[i]+'$_0$',
                                labelpad=labelpad)
936

937
938
                    if hasattr(self, 'convergence_diagnostic'):
                        ax = axes[i].twinx()
939
940
                        axes[i].set_zorder(ax.get_zorder()+1)
                        axes[i].patch.set_visible(False)
941
942
                        c_x = np.array(self.convergence_diagnosticx)
                        c_y = np.array(self.convergence_diagnostic)
943
                        break_idx = np.argmin(np.abs(c_x - burnin_idx))
944
945
946
947
                        ax.plot(c_x[:break_idx], c_y[:break_idx, i], '-C0',
                                zorder=-10)
                        ax.plot(c_x[break_idx:], c_y[break_idx:, i], '-C0',
                                zorder=-10)
948
949
950
951
                        if self.convergence_test_type == 'autocorr':
                            ax.set_ylabel(r'$\tau_\mathrm{exp}$')
                        elif self.convergence_test_type == 'GR':
                            ax.set_ylabel('PSRF')
952
                        ax.ticklabel_format(useOffset=False)
953
            else:
Gregory Ashton's avatar
Gregory Ashton committed
954
                axes[0].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
955
                cs = chain[:, :, temp].T
Gregory Ashton's avatar
Gregory Ashton committed
956
957
                if burnin_idx:
                    axes[0].plot(idxs[:burnin_idx], cs[:burnin_idx],
958
                                 color="C3", alpha=alpha, lw=lw)
Gregory Ashton's avatar
Gregory Ashton committed
959
960
961
                axes[0].plot(idxs[burnin_idx:], cs[burnin_idx:], color="k",
                             alpha=alpha, lw=lw)
                if symbols:
962
                    axes[0].set_ylabel(symbols[0], labelpad=labelpad)
963

Gregory Ashton's avatar
Gregory Ashton committed
964
965
            axes[-1].set_xlabel(r'$\textrm{Number of steps}$', labelpad=0.2)

966
            if plot_det_stat:
967
968
969
                if len(axes) == ndim:
                    axes.append(fig.add_subplot(ndim+1, 1, ndim+1))

970
971
972
                lnl = sampler.lnlikelihood[temp, :, :]
                if burnin_idx and add_det_stat_burnin:
                    burn_in_vals = lnl[:, :burnin_idx].flatten()
973
974
                    try:
                        axes[-1].hist(burn_in_vals[~np.isnan(burn_in_vals)],
975
                                      bins=50, histtype='step', color='C3')
976
977
978
979
                    except ValueError:
                        logging.info('Det. Stat. hist failed, most likely all '
                                     'values where the same')
                        pass
980
981
982
                else:
                    burn_in_vals = []
                prod_vals = lnl[:, burnin_idx:].flatten()
983
984
985
986
987
988
989
                try:
                    axes[-1].hist(prod_vals[~np.isnan(prod_vals)], bins=50,
                                  histtype='step', color='k')
                except ValueError:
                    logging.info('Det. Stat. hist failed, most likely all '
                                 'values where the same')
                    pass
990
991
992
993
994
995
996
997
998
999
1000
1001
                if self.BSGL:
                    axes[-1].set_xlabel(r'$\mathcal{B}_\mathrm{S/GL}$')
                else:
                    axes[-1].set_xlabel(r'$\widetilde{2\mathcal{F}}$')
                axes[-1].set_ylabel(r'$\textrm{Counts}$')
                combined_vals = np.append(burn_in_vals, prod_vals)
                if len(combined_vals) > 0:
                    minv = np.min(combined_vals)
                    maxv = np.max(combined_vals)
                    Range = abs(maxv-minv)
                    axes[-1].set_xlim(minv-0.1*Range, maxv+0.1*Range)

1002
                xfmt = matplotlib.ticker.ScalarFormatter()
1003
                xfmt.set_powerlimits((-4, 4))
1004
1005
                axes[-1].xaxis.set_major_formatter(xfmt)

1006
1007
        return fig, axes

1008
    def _apply_corrections_to_p0(self, p0):
Gregory Ashton's avatar
Gregory Ashton committed
1009
1010
1011
        """ Apply any correction to the initial p0 values """
        return p0

1012
    def _generate_scattered_p0(self, p):
1013
        """ Generate a set of p0s scattered about p """
Gregory Ashton's avatar
Gregory Ashton committed
1014
        p0 = [[p + self.scatter_val * p * np.random.randn(self.ndim)
1015
1016
1017
1018
               for i in xrange(self.nwalkers)]
              for j in xrange(self.ntemps)]
        return p0

1019
    def _generate_initial_p0(self):
1020
1021
1022
        """ Generate a set of init vals for the walkers """

        if type(self.theta_initial) == dict:
1023
            logging.info('Generate initial values from initial dictionary')
1024
            if hasattr(self, 'nglitch') and self.nglitch > 1:
1025
                raise ValueError('Initial dict not implemented for nglitch>1')
1026
            p0 = [[[self._generate_rv(**self.theta_initial[key])
1027
1028
1029
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
1030
1031
        elif type(self.theta_initial) == list:
            logging.info('Generate initial values from list of theta_initial')
1032
            p0 = [[[self._generate_rv(**val)
1033
1034
1035
                    for val in self.theta_initial]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
1036
        elif self.theta_initial is None:
1037
            logging.info('Generate initial values from prior dictionary')
1038
            p0 = [[[self._generate_rv(**self.theta_prior[key])
1039
1040
1041
1042
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
        elif len(self.theta_initial) == self.ndim:
1043
            p0 = self._generate_scattered_p0(self.theta_initial)
1044
1045
1046
1047
1048
        else:
            raise ValueError('theta_initial not understood')

        return p0

1049
    def _get_new_p0(self, sampler):
1050
1051
1052
1053
1054
1055
        """ Returns new initial positions for walkers are burn0 stage

        This returns new positions for all walkers by scattering points about
        the maximum posterior with scale `scatter_val`.

        """
Gregory Ashton's avatar
Gregory Ashton committed
1056
1057
1058
1059
        temp_idx = 0
        pF = sampler.chain[temp_idx, :, :, :]
        lnl = sampler.lnlikelihood[temp_idx, :, :]
        lnp = sampler.lnprobability[temp_idx, :, :]
1060
1061

        # General warnings about the state of lnp
Gregory Ashton's avatar
Gregory Ashton committed
1062
        if np.any(np.isnan(lnp)):
1063
1064
            logging.warning(
                "Of {} lnprobs {} are nan".format(
Gregory Ashton's avatar
Gregory Ashton committed
1065
1066
                    np.shape(lnp), np.sum(np.isnan(lnp))))
        if np.any(np.isposinf(lnp)):
1067
1068
            logging.warning(
                "Of {} lnprobs {} are +np.inf".format(
Gregory Ashton's avatar
Gregory Ashton committed
1069
1070
                    np.shape(lnp), np.sum(np.isposinf(lnp))))
        if np.any(np.isneginf(lnp)):
1071
1072
            logging.warning(
                "Of {} lnprobs {} are -np.inf".format(
Gregory Ashton's avatar
Gregory Ashton committed
1073
                    np.shape(lnp), np.sum(np.isneginf(lnp))))
1074

1075
1076
        lnp_finite = copy.copy(lnp)
        lnp_finite[np.isinf(lnp)] = np.nan
Gregory Ashton's avatar
Gregory Ashton committed
1077
1078
        idx = np.unravel_index(np.nanargmax(lnp_finite), lnp_finite.shape)
        p = pF[idx]
1079
        p0 = self._generate_scattered_p0(p)
1080

1081
1082
1083
1084
1085
1086
1087
1088
        self.search.BSGL = False
        twoF = self.logl(p, self.search)
        self.search.BSGL = self.BSGL

        logging.info(('Gen. new p0 from pos {} which had det. stat.={:2.1f},'
                      ' twoF={:2.1f} and lnp={:2.1f}')
                     .format(idx[1], lnl[idx], twoF, lnp_finite[idx]))

1089
1090
        return p0

1091
    def _get_data_dictionary_to_save(self):
1092
1093
        d = dict(nsteps=self.nsteps, nwalkers=self.nwalkers,
                 ntemps=self.ntemps, theta_keys=self.theta_keys,