mcmc_based_searches.py 92.7 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" Searches using MCMC-based methods """
2
from __future__ import division, absolute_import, print_function
Gregory Ashton's avatar
Gregory Ashton committed
3

4
import sys
Gregory Ashton's avatar
Gregory Ashton committed
5
import os
6
import copy
Gregory Ashton's avatar
Gregory Ashton committed
7
import logging
8
from collections import OrderedDict
9
import subprocess
10
11
12
13

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
Gregory Ashton's avatar
Gregory Ashton committed
14
from ptemcee import Sampler as PTSampler
15
16
17
import corner
import dill as pickle

18
import pyfstat.core as core
19
20
from pyfstat.core import tqdm, args, read_par
import pyfstat.optimal_setup_functions as optimal_setup_functions
21
import pyfstat.helper_functions as helper_functions
22
23


24
class MCMCSearch(core.BaseSearchClass):
Gregory Ashton's avatar
Gregory Ashton committed
25
    """MCMC search using ComputeFstat
26
27
28
29
30
31
32
33
34

    Parameters
    ----------
    theta_prior: dict
        Dictionary of priors and fixed values for the search parameters.
        For each parameters (key of the dict), if it is to be held fixed
        the value should be the constant float, if it is be searched, the
        value should be a dictionary of the prior.
    tref, minStartTime, maxStartTime: int
35
36
37
38
39
40
41
        GPS seconds of the reference time, start time and end time. While tref
        is requirede, minStartTime and maxStartTime default to None in which
        case all available data is used.
    label, outdir: str
        A label and output directory (optional, defaults is `'data'`) to
        name files
    sftfilepattern: str, optional
Gregory Ashton's avatar
Gregory Ashton committed
42
43
        Pattern to match SFTs using wildcards (*?) and ranges [0-9];
        mutiple patterns can be given separated by colons.
44
    detectors: str, optional
Gregory Ashton's avatar
Gregory Ashton committed
45
46
        Two character reference to the detectors to use, specify None for no
        contraint and comma separate for multiple references.
47
    nsteps: list (2,), optional
48
49
50
        Number of burn-in and production steps to take, [nburn, nprod]. See
        `pyfstat.MCMCSearch.setup_initialisation()` for details on adding
        initialisation steps.
51
    nwalkers, ntemps: int, optional
52
53
        The number of walkers and temperates to use in the parallel
        tempered PTSampler.
54
    log10beta_min float < 0, optional
55
56
        The  log_10(beta) value, if given the set of betas passed to PTSampler
        are generated from `np.logspace(0, log10beta_min, ntemps)` (given
Gregory Ashton's avatar
Gregory Ashton committed
57
        in descending order to ptemcee).
58
    theta_initial: dict, array, optional
59
60
        A dictionary of distribution about which to distribute the
        initial walkers about
61
    rhohatmax: float, optional
62
63
64
        Upper bound for the SNR scale parameter (required to normalise the
        Bayes factor) - this needs to be carefully set when using the
        evidence.
65
    binary: bool, optional
66
        If true, search over binary parameters
67
    BSGL: bool, optional
Gregory Ashton's avatar
Gregory Ashton committed
68
        If true, use the BSGL statistic
69
    SSBPrec: int, optional
Gregory Ashton's avatar
Gregory Ashton committed
70
        SSBPrec (SSB precision) to use when calling ComputeFstat
71
    minCoverFreq, maxCoverFreq: float, optional
72
73
        Minimum and maximum instantaneous frequency which will be covered
        over the SFT time span as passed to CreateFstatInput
74
    injectSources: dict, optional
Gregory Ashton's avatar
Gregory Ashton committed
75
76
        If given, inject these properties into the SFT files before running
        the search
77
    assumeSqrtSX: float, optional
Gregory Ashton's avatar
Gregory Ashton committed
78
        Don't estimate noise-floors, but assume (stationary) per-IFO sqrt{SX}
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

    Attributes
    ----------
    symbol_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), to Latex math
        symbols for plots
    unit_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), and the
        units (i.e. `Hz`)
    transform_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), where the key is
        itself a dictionary which can item `multiplier`, `subtractor`, or
        `unit` by which to transform by and update the units.

    """
94
95

    symbol_dictionary = dict(
96
        F0='$f$', F1='$\dot{f}$', F2='$\ddot{f}$', Alpha=r'$\alpha$',
97
98
        Delta='$\delta$', asini='asini', period='P', ecc='ecc', tp='tp',
        argp='argp')
99
    unit_dictionary = dict(
100
101
        F0='Hz', F1='Hz/s', F2='Hz/s$^2$', Alpha=r'rad', Delta='rad',
        asini='', period='s', ecc='', tp='', argp='')
102
    transform_dictionary = {}
103

Gregory Ashton's avatar
Gregory Ashton committed
104
    @helper_functions.initializer
105
106
107
    def __init__(self, theta_prior, tref, label, outdir='data',
                 minStartTime=None, maxStartTime=None, sftfilepattern=None,
                 detectors=None, nsteps=[100, 100], nwalkers=100, ntemps=1,
108
                 log10beta_min=-5, theta_initial=None,
109
                 rhohatmax=1000, binary=False, BSGL=False,
Gregory Ashton's avatar
Gregory Ashton committed
110
                 SSBprec=None, minCoverFreq=None, maxCoverFreq=None,
111
                 injectSources=None, assumeSqrtSX=None):
112

Gregory Ashton's avatar
Gregory Ashton committed
113
114
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
115
        self._add_log_file()
116
        logging.info('Set-up MCMC search for model {}'.format(self.label))
117
118
        if sftfilepattern:
            logging.info('Using data {}'.format(self.sftfilepattern))
119
        else:
120
            logging.info('No sftfilepattern given')
121
122
        if injectSources:
            logging.info('Inject sources: {}'.format(injectSources))
123
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
124
        self._unpack_input_theta()
125
        self.ndim = len(self.theta_keys)
126
127
        if self.log10beta_min:
            self.betas = np.logspace(0, self.log10beta_min, self.ntemps)
128
129
        else:
            self.betas = None
130

131
132
133
        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

134
        self._set_likelihoodcoef()
135
        self._log_input()
136
137
138

    def _set_likelihoodcoef(self):
        self.likelihoodcoef = np.log(70./self.rhohatmax**4)
139

140
    def _log_input(self):
141
        logging.info('theta_prior = {}'.format(self.theta_prior))
142
        logging.info('nwalkers={}'.format(self.nwalkers))
143
144
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
145
146
        logging.info('log10beta_min = {}'.format(
            self.log10beta_min))
147

148
    def _initiate_search_object(self):
149
        logging.info('Setting up search object')
150
        self.search = core.ComputeFstat(
151
            tref=self.tref, sftfilepattern=self.sftfilepattern,
152
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
153
            detectors=self.detectors, BSGL=self.BSGL, transient=False,
154
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
155
            binary=self.binary, injectSources=self.injectSources,
156
            assumeSqrtSX=self.assumeSqrtSX, SSBprec=self.SSBprec)
157
158
159
160
        if self.minStartTime is None:
            self.minStartTime = self.search.minStartTime
        if self.maxStartTime is None:
            self.maxStartTime = self.search.maxStartTime
161
162

    def logp(self, theta_vals, theta_prior, theta_keys, search):
163
        H = [self._generic_lnprior(**theta_prior[key])(p) for p, key in
164
165
166
167
168
169
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
170
171
172
        twoF = search.get_fullycoherent_twoF(
            self.minStartTime, self.maxStartTime, *self.fixed_theta)
        return twoF/2.0 + self.likelihoodcoef
173

174
    def _unpack_input_theta(self):
175
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']
176
177
178
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
179
180
        full_theta_keys_copy = copy.copy(full_theta_keys)

181
182
        full_theta_symbols = ['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                              r'$\delta$']
183
184
        if self.binary:
            full_theta_symbols += [
185
                'asini', 'period', 'ecc', 'tp', 'argp']
186

187
188
        self.theta_keys = []
        fixed_theta_dict = {}
189
        for key, val in self.theta_prior.iteritems():
190
191
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
192
                self.theta_keys.append(key)
193
194
195
196
197
198
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
199
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

215
    def _check_initial_points(self, p0):
216
217
218
219
220
221
222
223
224
225
226
227
228
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

229
                p0 = self._generate_new_p0_to_fix_initial_points(
230
231
                    p0, nt, initial_priors)

232
    def _generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
252

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    def setup_initialisation(self, nburn0, scatter_val=1e-10):
        """ Add an initialisation step to the MCMC run

        If called prior to `run()`, adds an intial step in which the MCMC
        simulation is run for `nburn0` steps. After this, the MCMC simulation
        continues in the usual manner (i.e. for nburn and nprod steps), but the
        walkers are reset scattered around the maximum likelihood position
        of the initialisation step.

        Parameters
        ----------
        nburn0: int
            Number of initialisation steps to take
        scatter_val: float
            Relative number to scatter walkers around the maximum likelihood
            position after the initialisation step

        """

        logging.info('Setting up initialisation with nburn0={}, scatter_val={}'
                     .format(nburn0, scatter_val))
        self.nsteps = [nburn0] + self.nsteps
        self.scatter_val = scatter_val

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
#    def setup_burnin_convergence_testing(
#            self, n=10, test_type='autocorr', windowed=False, **kwargs):
#        """ Set up convergence testing during the MCMC simulation
#
#        Parameters
#        ----------
#        n: int
#            Number of steps after which to test convergence
#        test_type: str ['autocorr', 'GR']
#            If 'autocorr' use the exponential autocorrelation time (kwargs
#            passed to `get_autocorr_convergence`). If 'GR' use the Gelman-Rubin
#            statistic (kwargs passed to `get_GR_convergence`)
#        windowed: bool
#            If True, only calculate the convergence test in a window of length
#            `n`
#        **kwargs:
#            Passed to either `_test_autocorr_convergence()` or
#            `_test_GR_convergence()` depending on `test_type`.
#
#        """
#        logging.info('Setting up convergence testing')
#        self.convergence_n = n
#        self.convergence_windowed = windowed
#        self.convergence_test_type = test_type
#        self.convergence_kwargs = kwargs
#        self.convergence_diagnostic = []
#        self.convergence_diagnosticx = []
#        if test_type in ['autocorr']:
#            self._get_convergence_test = self._test_autocorr_convergence
#        elif test_type in ['GR']:
#            self._get_convergence_test = self._test_GR_convergence
#        else:
#            raise ValueError('test_type {} not understood'.format(test_type))
#
#
#    def _test_autocorr_convergence(self, i, sampler, test=True, n_cut=5):
#        try:
#            acors = np.zeros((self.ntemps, self.ndim))
#            for temp in range(self.ntemps):
#                if self.convergence_windowed:
#                    j = i-self.convergence_n
#                else:
#                    j = 0
#                x = np.mean(sampler.chain[temp, :, j:i, :], axis=0)
#                acors[temp, :] = emcee.autocorr.exponential_time(x)
#            c = np.max(acors, axis=0)
#        except emcee.autocorr.AutocorrError:
#            logging.info('Failed to calculate exponential autocorrelation')
#            c = np.zeros(self.ndim) + np.nan
#        except AttributeError:
#            logging.info('Unable to calculate exponential autocorrelation')
#            c = np.zeros(self.ndim) + np.nan
#
#        self.convergence_diagnosticx.append(i - self.convergence_n/2.)
#        self.convergence_diagnostic.append(list(c))
#
#        if test:
#            return i > n_cut * np.max(c)
#
#    def _test_GR_convergence(self, i, sampler, test=True, R=1.1):
#        if self.convergence_windowed:
#            s = sampler.chain[0, :, i-self.convergence_n+1:i+1, :]
#        else:
#            s = sampler.chain[0, :, :i+1, :]
#        N = float(self.convergence_n)
#        M = float(self.nwalkers)
#        W = np.mean(np.var(s, axis=1), axis=0)
#        per_walker_mean = np.mean(s, axis=1)
#        mean = np.mean(per_walker_mean, axis=0)
#        B = N / (M-1.) * np.sum((per_walker_mean-mean)**2, axis=0)
#        Vhat = (N-1)/N * W + (M+1)/(M*N) * B
#        c = np.sqrt(Vhat/W)
#        self.convergence_diagnostic.append(c)
#        self.convergence_diagnosticx.append(i - self.convergence_n/2.)
#
#        if test and np.max(c) < R:
#            return True
#        else:
#            return False
#
#    def _test_convergence(self, i, sampler, **kwargs):
#        if np.mod(i+1, self.convergence_n) == 0:
#            return self._get_convergence_test(i, sampler, **kwargs)
#        else:
#            return False
#
#    def _run_sampler_with_conv_test(self, sampler, p0, nprod=0, nburn=0):
#        logging.info('Running {} burn-in steps with convergence testing'
#                     .format(nburn))
#        iterator = tqdm(sampler.sample(p0, iterations=nburn), total=nburn)
#        for i, output in enumerate(iterator):
#            if self._test_convergence(i, sampler, test=True,
#                                      **self.convergence_kwargs):
#                logging.info(
#                    'Converged at {} before max number {} of steps reached'
#                    .format(i, nburn))
#                self.convergence_idx = i
#                break
#        iterator.close()
#        logging.info('Running {} production steps'.format(nprod))
#        j = nburn
#        iterator = tqdm(sampler.sample(output[0], iterations=nprod),
#                        total=nprod)
#        for result in iterator:
#            self._test_convergence(j, sampler, test=False,
#                                   **self.convergence_kwargs)
#            j += 1
#        return sampler

    def _run_sampler(self, sampler, p0, nprod=0, nburn=0, window=50):
        for result in tqdm(sampler.sample(p0, iterations=nburn+nprod),
                           total=nburn+nprod):
            pass
390

391
392
        self.mean_acceptance_fraction = np.mean(
            sampler.acceptance_fraction, axis=1)
393
        logging.info("Mean acceptance fraction: {}"
394
                     .format(self.mean_acceptance_fraction))
395
        if self.ntemps > 1:
396
            self.tswap_acceptance_fraction = sampler.tswap_acceptance_fraction
397
398
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
Gregory Ashton's avatar
Gregory Ashton committed
399
400
401
        self.autocorr_time = sampler.get_autocorr_time(window=window)
        logging.info("Autocorrelation length: {}".format(
            self.autocorr_time))
402
403
404

        return sampler

405
    def _estimate_run_time(self):
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
        """ Print the estimated run time

        Uses timing coefficients based on a Lenovo T460p Intel(R)
        Core(TM) i5-6300HQ CPU @ 2.30GHz.

        """
        # Todo: add option to time on a machine, and move coefficients to
        # ~/.pyfstat.conf
        if (type(self.theta_prior['Alpha']) == dict or
                type(self.theta_prior['Delta']) == dict):
            tau0S = 7.3e-5
            tau0LD = 4.2e-7
        else:
            tau0S = 5.0e-5
            tau0LD = 6.2e-8
421
        Nsfts = (self.maxStartTime - self.minStartTime) / 1800.
422
423
424
        numb_evals = np.sum(self.nsteps)*self.nwalkers*self.ntemps
        a = tau0S * numb_evals
        b = tau0LD * Nsfts * numb_evals
425
426
427
        logging.info('Estimated run-time = {} s = {:1.0f}:{:1.0f} m'.format(
            a+b, *divmod(a+b, 60)))

Gregory Ashton's avatar
Gregory Ashton committed
428
429
    def run(self, proposal_scale_factor=2, create_plots=True, window=50,
            **kwargs):
430
431
432
433
434
435
436
437
438
439
440
        """ Run the MCMC simulatation

        Parameters
        ----------
        proposal_scale_factor: float
            The proposal scale factor used by the sampler, see Goodman & Weare
            (2010). If the acceptance fraction is too low, you can raise it by
            decreasing the a parameter; and if it is too high, you can reduce
            it by increasing the a parameter [Foreman-Mackay (2013)].
        create_plots: bool
            If true, save trace plots of the walkers
Gregory Ashton's avatar
Gregory Ashton committed
441
        window: int
442
443
            The minimum number of autocorrelation times needed to trust the
            result when estimating the autocorrelation time (see
Gregory Ashton's avatar
Gregory Ashton committed
444
            ptemcee.Sampler.get_autocorr_time for further details.
445
446
447
        **kwargs:
            Passed to _plot_walkers to control the figures

448
449
        Returns
        -------
Gregory Ashton's avatar
Gregory Ashton committed
450
451
        sampler: ptemcee.Sampler
            The ptemcee ptsampler object
452

453
        """
454

455
        self.old_data_is_okay_to_use = self._check_old_data_is_okay_to_use()
456
457
458
        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
459
            d = self.get_saved_data_dictionary()
460
461
462
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
463
            self.all_lnlikelihood = d['all_lnlikelihood']
464
465
            return

466
        self._initiate_search_object()
467
        self._estimate_run_time()
468

Gregory Ashton's avatar
Gregory Ashton committed
469
470
471
        sampler = PTSampler(
            ntemps=self.ntemps, nwalkers=self.nwalkers, dim=self.ndim,
            logl=self.logl, logp=self.logp,
472
            logpargs=(self.theta_prior, self.theta_keys, self.search),
473
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
474

475
476
477
        p0 = self._generate_initial_p0()
        p0 = self._apply_corrections_to_p0(p0)
        self._check_initial_points(p0)
478

479
        # Run initialisation steps if required
480
481
482
        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
Gregory Ashton's avatar
Gregory Ashton committed
483
                j, ninit_steps, n))
Gregory Ashton's avatar
Gregory Ashton committed
484
            sampler = self._run_sampler(sampler, p0, nburn=n, window=window)
485
            if create_plots:
486
                fig, axes = self._plot_walkers(sampler,
487
488
                                               symbols=self.theta_symbols,
                                               **kwargs)
489
490
                fig.tight_layout()
                fig.savefig('{}/{}_init_{}_walkers.png'.format(
Gregory Ashton's avatar
Gregory Ashton committed
491
                    self.outdir, self.label, j))
492

493
494
495
            p0 = self._get_new_p0(sampler)
            p0 = self._apply_corrections_to_p0(p0)
            self._check_initial_points(p0)
496
497
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
498
499
500
501
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
502
503
504
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
505
        sampler = self._run_sampler(sampler, p0, nburn=nburn, nprod=nprod)
506
        if create_plots:
507
            fig, axes = self._plot_walkers(sampler, symbols=self.theta_symbols,
508
                                           nprod=nprod, **kwargs)
509
510
            fig.tight_layout()
            fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label),
Gregory Ashton's avatar
Gregory Ashton committed
511
                        )
512
513

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
Gregory Ashton's avatar
Gregory Ashton committed
514
515
516
        lnprobs = sampler.logprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.loglikelihood[0, :, nburn:].reshape((-1))
        all_lnlikelihood = sampler.loglikelihood[:, :, nburn:]
517
518
519
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
520
521
        self.all_lnlikelihood = all_lnlikelihood
        self._save_data(sampler, samples, lnprobs, lnlikes, all_lnlikelihood)
Gregory Ashton's avatar
Gregory Ashton committed
522
        return sampler
523

524
    def _get_rescale_multiplier_for_key(self, key):
525
        """ Get the rescale multiplier from the transform_dictionary
526
527
528
529
530

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
531
        if key not in self.transform_dictionary:
532
533
            return 1

534
535
        if 'multiplier' in self.transform_dictionary[key]:
            val = self.transform_dictionary[key]['multiplier']
536
537
538
            if type(val) == str:
                if hasattr(self, val):
                    multiplier = getattr(
539
                        self, self.transform_dictionary[key]['multiplier'])
540
541
542
543
544
545
546
547
548
                else:
                    raise ValueError(
                        "multiplier {} not a class attribute".format(val))
            else:
                multiplier = val
        else:
            multiplier = 1
        return multiplier

549
    def _get_rescale_subtractor_for_key(self, key):
550
        """ Get the rescale subtractor from the transform_dictionary
551
552
553
554
555

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
556
        if key not in self.transform_dictionary:
557
558
            return 0

559
560
        if 'subtractor' in self.transform_dictionary[key]:
            val = self.transform_dictionary[key]['subtractor']
561
562
563
            if type(val) == str:
                if hasattr(self, val):
                    subtractor = getattr(
564
                        self, self.transform_dictionary[key]['subtractor'])
565
566
567
568
569
570
571
572
573
                else:
                    raise ValueError(
                        "subtractor {} not a class attribute".format(val))
            else:
                subtractor = val
        else:
            subtractor = 0
        return subtractor

574
    def _scale_samples(self, samples, theta_keys):
575
        """ Scale the samples using the transform_dictionary """
576
        for key in theta_keys:
577
            if key in self.transform_dictionary:
578
579
                idx = theta_keys.index(key)
                s = samples[:, idx]
580
                subtractor = self._get_rescale_subtractor_for_key(key)
581
                s = s - subtractor
582
                multiplier = self._get_rescale_multiplier_for_key(key)
583
                s *= multiplier
584
585
                samples[:, idx] = s

586
587
        return samples

588
    def _get_labels(self):
589
        """ Combine the units, symbols and rescaling to give labels """
590

591
592
593
594
595
596
        labels = []
        for key in self.theta_keys:
            label = None
            s = self.symbol_dictionary[key]
            s.replace('_{glitch}', r'_\textrm{glitch}')
            u = self.unit_dictionary[key]
597
598
599
600
601
602
603
            if key in self.transform_dictionary:
                if 'symbol' in self.transform_dictionary[key]:
                    s = self.transform_dictionary[key]['symbol']
                if 'label' in self.transform_dictionary[key]:
                    label = self.transform_dictionary[key]['label']
                if 'unit' in self.transform_dictionary[key]:
                    u = self.transform_dictionary[key]['unit']
604
605
606
607
            if label is None:
                label = '{} \n [{}]'.format(s, u)
            labels.append(label)
        return labels
608

609
610
    def plot_corner(self, figsize=(7, 7), add_prior=False, nstds=None,
                    label_offset=0.4, dpi=300, rc_context={},
611
                    tglitch_ratio=False, fig_and_axes=None, save_fig=True,
612
                    **kwargs):
613
614
615
616
617
618
619
620
621
        """ Generate a corner plot of the posterior

        Using the `corner` package (https://pypi.python.org/pypi/corner/),
        generate estimates of the posterior from the production samples.

        Parameters
        ----------
        figsize: tuple (7, 7)
            Figure size in inches (passed to plt.subplots)
622
623
624
        add_prior: bool, str
            If true, plot the prior as a red line. If 'full' then for uniform
            priors plot the full extent of the prior.
625
626
627
628
629
630
631
632
633
634
635
636
637
638
        nstds: float
            The number of standard deviations to plot centered on the mean
        label_offset: float
            Offset the labels from the plot: useful to precent overlapping the
            tick labels with the axis labels
        dpi: int
            Passed to plt.savefig
        rc_context: dict
            Dictionary of rc values to set while generating the figure (see
            matplotlib rc for more details)
        tglitch_ratio: bool
            If true, and tglitch is a parameter, plot posteriors as the
            fractional time at which the glitch occurs instead of the actual
            time
639
640
641
642
643
        fig_and_axes: tuple
            fig and axes to plot on, the axes must be of the right shape,
            namely (ndim, ndim)
        save_fig: bool
            If true, save the figure, else return the fig, axes
644
645
        **kwargs:
            Passed to corner.corner
646

647
648
649
650
        Returns
        -------
        fig, axes:
            The matplotlib figure and axes, only returned if save_fig = False
651
652

        """
653

654
655
656
657
        if 'truths' in kwargs and len(kwargs['truths']) != self.ndim:
            logging.warning('len(Truths) != ndim, Truths will be ignored')
            kwargs['truths'] = None

Gregory Ashton's avatar
Gregory Ashton committed
658
659
        if self.ndim < 2:
            with plt.rc_context(rc_context):
660
661
662
663
                if fig_and_axes is None:
                    fig, ax = plt.subplots(figsize=figsize)
                else:
                    fig, ax = fig_and_axes
Gregory Ashton's avatar
Gregory Ashton committed
664
665
666
667
668
669
670
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

671
        with plt.rc_context(rc_context):
672
673
674
675
676
            if fig_and_axes is None:
                fig, axes = plt.subplots(self.ndim, self.ndim,
                                         figsize=figsize)
            else:
                fig, axes = fig_and_axes
677
678

            samples_plt = copy.copy(self.samples)
679
            labels = self._get_labels()
680

681
            samples_plt = self._scale_samples(samples_plt, self.theta_keys)
682
683
684
685
686

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
687
688
689
                        samples_plt[:, j] = (
                            s - self.minStartTime)/(
                                self.maxStartTime - self.minStartTime)
690
                        labels[j] = r'$R_{\textrm{glitch}}$'
691
692
693
694
695
696
697

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
698
699
            elif 'range' in kwargs:
                _range = kwargs.pop('range')
700
701
702
            else:
                _range = None

703
704
705
706
            hist_kwargs = kwargs.pop('hist_kwargs', dict())
            if 'normed' not in hist_kwargs:
                hist_kwargs['normed'] = True

707
            fig_triangle = corner.corner(samples_plt,
708
                                         labels=labels,
709
710
711
712
713
714
715
716
717
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
718
                                         hist_kwargs=hist_kwargs,
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
735
                self._add_prior_to_corner(axes, self.samples, add_prior)
736

737
738
739
740
741
            if save_fig:
                fig_triangle.savefig('{}/{}_corner.png'.format(
                    self.outdir, self.label), dpi=dpi)
            else:
                return fig, axes
742

743
    def _add_prior_to_corner(self, axes, samples, add_prior):
744
745
746
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            s = samples[:, i]
747
748
749
750
751
752
753
754
755
756
            lnprior = self._generic_lnprior(**self.theta_prior[key])
            if add_prior == 'full' and self.theta_prior[key]['type'] == 'unif':
                lower = self.theta_prior[key]['lower']
                upper = self.theta_prior[key]['upper']
                r = upper-lower
                xlim = [lower-0.05*r, upper+0.05*r]
                x = np.linspace(xlim[0], xlim[1], 1000)
            else:
                xlim = ax.get_xlim()
                x = np.linspace(s.min(), s.max(), 1000)
757
758
            multiplier = self._get_rescale_multiplier_for_key(key)
            subtractor = self._get_rescale_subtractor_for_key(key)
759
760
761
762
763
764
765
766
            ax.plot((x-subtractor)*multiplier,
                    [np.exp(lnprior(xi)) for xi in x], '-C3',
                    label='prior')

            for j in range(i, self.ndim):
                axes[j][i].set_xlim(xlim[0], xlim[1])
            for k in range(0, i):
                axes[i][k].set_ylim(xlim[0], xlim[1])
767

768
769
770
771
772
773
774
775
    def plot_prior_posterior(self, normal_stds=2):
        """ Plot the posterior in the context of the prior """
        fig, axes = plt.subplots(nrows=self.ndim, figsize=(8, 4*self.ndim))
        N = 1000
        from scipy.stats import gaussian_kde

        for i, (ax, key) in enumerate(zip(axes, self.theta_keys)):
            prior_dict = self.theta_prior[key]
776
            prior_func = self._generic_lnprior(**prior_dict)
777
778
779
780
781
            if prior_dict['type'] == 'unif':
                x = np.linspace(prior_dict['lower'], prior_dict['upper'], N)
                prior = prior_func(x)
                prior[0] = 0
                prior[-1] = 0
Gregory Ashton's avatar
Gregory Ashton committed
782
783
784
785
786
            elif prior_dict['type'] == 'log10unif':
                upper = prior_dict['log10upper']
                lower = prior_dict['log10lower']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
787
788
789
790
791
            elif prior_dict['type'] == 'norm':
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = prior_func(x)
792
793
794
795
796
            elif prior_dict['type'] == 'halfnorm':
                lower = prior_dict['loc']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
Gregory Ashton's avatar
Gregory Ashton committed
797
798
799
800
801
            elif prior_dict['type'] == 'neghalfnorm':
                upper = prior_dict['loc']
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
802
803
804
            else:
                raise ValueError('Not implemented for prior type {}'.format(
                    prior_dict['type']))
805
            priorln = ax.plot(x, prior, 'C3', label='prior')
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
            ax.set_xlabel(self.theta_symbols[i])

            s = self.samples[:, i]
            while len(s) > 10**4:
                # random downsample to avoid slow calculation of kde
                s = np.random.choice(s, size=int(len(s)/2.))
            kde = gaussian_kde(s)
            ax2 = ax.twinx()
            postln = ax2.plot(x, kde.pdf(x), 'k', label='posterior')
            ax2.set_yticklabels([])
            ax.set_yticklabels([])

        lns = priorln + postln
        labs = [l.get_label() for l in lns]
        axes[0].legend(lns, labs, loc=1, framealpha=0.8)

        fig.savefig('{}/{}_prior_posterior.png'.format(
            self.outdir, self.label))

825
    def plot_cumulative_max(self, **kwargs):
826
827
828
829
        """ Plot the cumulative twoF for the maximum posterior estimate

        See the pyfstat.core.plot_twoF_cumulative function for further details
        """
Gregory Ashton's avatar
Gregory Ashton committed
830
831
832
833
        d, maxtwoF = self.get_max_twoF()
        for key, val in self.theta_prior.iteritems():
            if key not in d:
                d[key] = val
834

835
836
837
        if 'add_pfs' in kwargs:
            self.generate_loudest()

838
        if hasattr(self, 'search') is False:
839
            self._initiate_search_object()
840
841
842
        if self.binary is False:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
843
                Alpha=d['Alpha'], Delta=d['Delta'],
844
                tstart=self.minStartTime, tend=self.maxStartTime,
845
                **kwargs)
846
847
848
849
850
        else:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
                Alpha=d['Alpha'], Delta=d['Delta'], asini=d['asini'],
                period=d['period'], ecc=d['ecc'], argp=d['argp'], tp=d['argp'],
851
                tstart=self.minStartTime, tend=self.maxStartTime, **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
852

853
    def _generic_lnprior(self, **kwargs):
854
855
856
857
        """ Return a lambda function of the pdf

        Parameters
        ----------
858
        **kwargs:
859
860
861
862
            A dictionary containing 'type' of pdf and shape parameters

        """

Gregory Ashton's avatar
Gregory Ashton committed
863
        def log_of_unif(x, a, b):
864
865
866
867
868
869
870
871
872
873
874
875
876
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

Gregory Ashton's avatar
Gregory Ashton committed
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
        def log_of_log10unif(x, log10lower, log10upper):
            log10x = np.log10(x)
            above = log10x < log10upper
            below = log10x > log10lower
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(x*np.log(10)*(log10upper-log10lower))
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(x*np.log(10)*(log10upper-log10lower))
                return p

        def log_of_halfnorm(x, loc, scale):
893
            if x < loc:
894
895
896
897
898
899
900
901
902
903
904
905
906
907
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
Gregory Ashton's avatar
Gregory Ashton committed
908
909
910
911
            return lambda x: log_of_unif(x, kwargs['lower'], kwargs['upper'])
        if kwargs['type'] == 'log10unif':
            return lambda x: log_of_log10unif(
                x, kwargs['log10lower'], kwargs['log10upper'])
912
        elif kwargs['type'] == 'halfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
913
            return lambda x: log_of_halfnorm(x, kwargs['loc'], kwargs['scale'])
914
        elif kwargs['type'] == 'neghalfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
915
916
            return lambda x: log_of_halfnorm(
                -x, kwargs['loc'], kwargs['scale'])
917
918
919
920
921
922
923
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

924
    def _generate_rv(self, **kwargs):
925
926
927
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
Gregory Ashton's avatar
Gregory Ashton committed
928
929
930
        if dist_type == "log10unif":
            return 10**(np.random.uniform(low=kwargs['log10lower'],
                                          high=kwargs['log10upper']))
931
932
933
934
935
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
936
937
938
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
939
940
941
942
943
944
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

945
    def _plot_walkers(self, sampler, symbols=None, alpha=0.8, color="k",
946
947
                      temp=0, lw=0.1, nprod=0, add_det_stat_burnin=False,
                      fig=None, axes=None, xoffset=0, plot_det_stat=False,
948
                      context='ggplot', subtractions=None, labelpad=0.05):
949
950
        """ Plot all the chains from a sampler """

951
952
953
954
955
        if context not in plt.style.available:
            raise ValueError((
                'The requested context {} is not available; please select a'
                ' context from `plt.style.available`').format(context))

956
957
958
        if np.ndim(axes) > 1:
            axes = axes.flatten()

959
960
961
962
963
964
965
966
967
968
969
970
971
        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
            chain = sampler.chain[:, :, :]
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
            chain = sampler.chain[temp, :, :, :]

972
973
        if subtractions is None:
            subtractions = [0 for i in range(ndim)]
974
975
976
        else:
            if len(subtractions) != self.ndim:
                raise ValueError('subtractions must be of length ndim')
977

978
979
980
981
        if plot_det_stat:
            extra_subplots = 1
        else:
            extra_subplots = 0
982
        with plt.style.context((context)):
Gregory Ashton's avatar
Gregory Ashton committed
983
            plt.rcParams['text.usetex'] = True
Gregory Ashton's avatar
Gregory Ashton committed
984
            if fig is None and axes is None:
985
                fig = plt.figure(figsize=(4, 3.0*ndim))
986
987
                ax = fig.add_subplot(ndim+extra_subplots, 1, 1)
                axes = [ax] + [fig.add_subplot(ndim+extra_subplots, 1, i)
Gregory Ashton's avatar
Gregory Ashton committed
988
                               for i in range(2, ndim+1)]
989

Gregory Ashton's avatar
Gregory Ashton committed
990
            idxs = np.arange(chain.shape[1])
991
            burnin_idx = chain.shape[1] - nprod
992
993
994
995
            #if hasattr(self, 'convergence_idx'):
            #    last_idx = self.convergence_idx
            #else:
            last_idx = burnin_idx
996
997
            if ndim > 1:
                for i in range(ndim):
998
                    axes[i].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
999
                    cs = chain[:, :, i].T
1000
                    if burnin_idx > 0:
1001
1002
                        axes[i].plot(xoffset+idxs[:last_idx+1],
                                     cs[:last_idx+1]-subtractions[i],
1003
                                     color="C3", alpha=alpha,
Gregory Ashton's avatar
Gregory Ashton committed
1004
                                     lw=lw)
1005
                        axes[i].axvline(xoffset+last_idx,
1006
                                        color='k', ls='--', lw=0.5)
1007
1008
                    axes[i].plot(xoffset+idxs[burnin_idx:],
                                 cs[burnin_idx:]-subtractions[i],
Gregory Ashton's avatar
Gregory Ashton committed
1009
                                 color="k", alpha=alpha, lw=lw)
Gregory Ashton's avatar
Gregory Ashton committed
1010
1011

                    axes[i].set_xlim(0, xoffset+idxs[-1])
1012
                    if symbols:
1013
                        if subtractions[i] == 0:
1014
                            axes[i].set_ylabel(symbols[i], labelpad=labelpad)
1015
1016
                        else:
                            axes[i].set_ylabel(
1017
                                symbols[i]+'$-$'+symbols[i]+'$^\mathrm{s}$',
1018
                                labelpad=labelpad)
1019

1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
#                    if hasattr(self, 'convergence_diagnostic'):
#                        ax = axes[i].twinx()
#                        axes[i].set_zorder(ax.get_zorder()+1)
#                        axes[i].patch.set_visible(False)
#                        c_x = np.array(self.convergence_diagnosticx)
#                        c_y = np.array(self.convergence_diagnostic)
#                        break_idx = np.argmin(np.abs(c_x - burnin_idx))
#                        ax.plot(c_x[:break_idx], c_y[:break_idx, i], '-C0',
#                                zorder=-10)
#                        ax.plot(c_x[break_idx:], c_y[break_idx:, i], '-C0',
#                                zorder=-10)
#                        if self.convergence_test_type == 'autocorr':
#                            ax.set_ylabel(r'$\tau_\mathrm{exp}$')
#                        elif self.convergence_test_type == 'GR':
#                            ax.set_ylabel('PSRF')
#                        ax.ticklabel_format(useOffset=False)
1036
            else:
Gregory Ashton's avatar
Gregory Ashton committed
1037
                axes[0].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
1038
                cs = chain[:, :, temp].T
Gregory Ashton's avatar
Gregory Ashton committed
1039
1040
                if burnin_idx:
                    axes[0].plot(idxs[:burnin_idx], cs[:burnin_idx],
1041
                                 color="C3", alpha=alpha, lw=lw)
Gregory Ashton's avatar
Gregory Ashton committed
1042
1043
1044
                axes[0].plot(idxs[burnin_idx:], cs[burnin_idx:], color="k",
                             alpha=alpha, lw=lw)
                if symbols:
1045
                    axes[0].set_ylabel(symbols[0], labelpad=labelpad)
1046

Gregory Ashton's avatar
Gregory Ashton committed
1047
1048
            axes[-1].set_xlabel(r'$\textrm{Number of steps}$', labelpad=0.2)

1049
            if plot_det_stat:
1050
1051
1052
                if len(axes) == ndim:
                    axes.append(fig.add_subplot(ndim+1, 1, ndim+1))

Gregory Ashton's avatar
Gregory Ashton committed
1053
                lnl = sampler.loglikelihood[temp, :, :]
1054
1055
                if burnin_idx and add_det_stat_burnin:
                    burn_in_vals = lnl[:, :burnin_idx].flatten()
1056
                    try:
1057
1058
1059
1060
                        twoF_burnin = (burn_in_vals[~np.isnan(burn_in_vals)]
                                       - self.likelihoodcoef)
                        axes[-1].hist(twoF_burnin, bins=50, histtype='step',
                                      color='C3')
1061
1062
1063
1064
                    except ValueError:
                        logging.info('Det. Stat. hist failed, most likely all '
                                     'values where the same')
                        pass
1065
                else:
1066
                    twoF_burnin = []
1067
                prod_vals = lnl[:, burnin_idx:].flatten()
1068
                try:
1069
1070
                    twoF = prod_vals[~np.isnan(prod_vals)]-self.likelihoodcoef
                    axes[-1].hist(twoF, bins=50, histtype='step', color='k')
1071
1072
1073
1074
                except ValueError:
                    logging.info('Det. Stat. hist failed, most likely all '
                                 'values where the same')
                    pass
1075
1076
1077
1078
1079
                if self.BSGL:
                    axes[-1].set_xlabel(r'$\mathcal{B}_\mathrm{S/GL}$')
                else:
                    axes[-1].set_xlabel(r'$\widetilde{2\mathcal{F}}$')
                axes[-1].set_ylabel(r'$\textrm{Counts}$')
1080
                combined_vals = np.append(twoF_burnin, twoF)
1081
1082
1083
1084
1085
1086
                if len(combined_vals) > 0:
                    minv = np.min(combined_vals)
                    maxv = np.max(combined_vals)
                    Range = abs(maxv-minv)
                    axes[-1].set_xlim(minv-0.1*Range, maxv+0.1*Range)

1087
                xfmt = matplotlib.ticker.ScalarFormatter()
1088
                xfmt.set_powerlimits((-4, 4))
1089
1090
                axes[-1].xaxis.set_major_formatter(xfmt)

1091
1092
        return fig, axes

1093
    def _apply_corrections_to_p0(self, p0):
Gregory Ashton's avatar
Gregory Ashton committed
1094
1095
1096
        """ Apply any correction to the initial p0 values """
        return p0

1097
    def _generate_scattered_p0(self, p):
1098
        """ Generate a set of p0s scattered about p """
Gregory Ashton's avatar
Gregory Ashton committed
1099
        p0 = [[p + self.scatter_val * p * np.random.randn(self.ndim)
1100
1101
1102
1103
               for i in xrange(self.nwalkers)]
              for j in xrange(self.ntemps)]
        return p0