mcmc_based_searches.py 93.2 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
2
""" Searches using MCMC-based methods """

3
import sys
Gregory Ashton's avatar
Gregory Ashton committed
4
import os
5
import copy
Gregory Ashton's avatar
Gregory Ashton committed
6
import logging
7
from collections import OrderedDict
8
import subprocess
9
10
11
12
13
14
15
16

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import emcee
import corner
import dill as pickle

17
import core
18
from core import tqdm, args, earth_ephem, sun_ephem, read_par
19
from optimal_setup_functions import get_V_estimate
Gregory Ashton's avatar
Gregory Ashton committed
20
21
from optimal_setup_functions import get_optimal_setup
import helper_functions
22
23


24
class MCMCSearch(core.BaseSearchClass):
Gregory Ashton's avatar
Gregory Ashton committed
25
    """ MCMC search using ComputeFstat"""
26
27

    symbol_dictionary = dict(
28
        F0='$f$', F1='$\dot{f}$', F2='$\ddot{f}$', Alpha=r'$\alpha$',
29
30
        Delta='$\delta$', asini='asini', period='P', ecc='ecc', tp='tp',
        argp='argp')
31
    unit_dictionary = dict(
32
33
        F0='Hz', F1='Hz/s', F2='Hz/s$^2$', Alpha=r'rad', Delta='rad',
        asini='', period='s', ecc='', tp='', argp='')
34
35
36
    rescale_dictionary = {}


Gregory Ashton's avatar
Gregory Ashton committed
37
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
38
39
    def __init__(self, label, outdir, theta_prior, tref, minStartTime,
                 maxStartTime, sftfilepath=None, nsteps=[100, 100],
40
                 nwalkers=100, ntemps=1, log10temperature_min=-5,
41
                 theta_initial=None, scatter_val=1e-10, rhohatmax=1000,
42
                 binary=False, BSGL=False, minCoverFreq=None, SSBprec=None,
43
                 maxCoverFreq=None, detectors=None, earth_ephem=None,
44
                 sun_ephem=None, injectSources=None, assumeSqrtSX=None):
45
46
47
48
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
49
        sftfilepath: str
50
51
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
52
        theta_prior: dict
53
54
55
56
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
57
58
59
60
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
61
        tref, minStartTime, maxStartTime: int
62
63
64
65
66
67
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
68
69
70
71
72
73
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
74
75
76
77
        rhohatmax: float
            Upper bound for the SNR scale parameter (required to normalise the
            Bayes factor) - this needs to be carefully set when using the
            evidence.
78
79
        binary: Bool
            If true, search over binary parameters
80
        detectors: str
81
82
            Two character reference to the data to use, specify None for no
            contraint.
83
84
85
86
87
88
89
90
91
92
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

Gregory Ashton's avatar
Gregory Ashton committed
93
94
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
95
        self._add_log_file()
Gregory Ashton's avatar
Gregory Ashton committed
96
97
        logging.info(
            'Set-up MCMC search for model {} on data {}'.format(
98
                self.label, self.sftfilepath))
99
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
100
        self._unpack_input_theta()
101
        self.ndim = len(self.theta_keys)
102
103
104
105
        if self.log10temperature_min:
            self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
        else:
            self.betas = None
106

107
108
109
110
111
112
113
114
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

115
116
        self.lnlikelihoodcoef = np.log(70./self.rhohatmax**4)

117
        self._log_input()
118

119
    def _log_input(self):
120
        logging.info('theta_prior = {}'.format(self.theta_prior))
121
        logging.info('nwalkers={}'.format(self.nwalkers))
122
123
124
125
        logging.info('scatter_val = {}'.format(self.scatter_val))
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
        logging.info('log10temperature_min = {}'.format(
126
            self.log10temperature_min))
127

128
    def _initiate_search_object(self):
129
        logging.info('Setting up search object')
130
        self.search = core.ComputeFstat(
131
132
133
            tref=self.tref, sftfilepath=self.sftfilepath,
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
134
            detectors=self.detectors, BSGL=self.BSGL, transient=False,
135
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
136
            binary=self.binary, injectSources=self.injectSources,
137
            assumeSqrtSX=self.assumeSqrtSX, SSBprec=self.SSBprec)
138
139

    def logp(self, theta_vals, theta_prior, theta_keys, search):
140
        H = [self._generic_lnprior(**theta_prior[key])(p) for p, key in
141
142
143
144
145
146
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
147
148
        FS = search.compute_fullycoherent_det_stat_single_point(
            *self.fixed_theta)
149
        return FS + self.lnlikelihoodcoef
150

151
    def _unpack_input_theta(self):
152
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']
153
154
155
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
156
157
        full_theta_keys_copy = copy.copy(full_theta_keys)

158
159
        full_theta_symbols = ['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                              r'$\delta$']
160
161
        if self.binary:
            full_theta_symbols += [
162
                'asini', 'period', 'ecc', 'tp', 'argp']
163

164
165
        self.theta_keys = []
        fixed_theta_dict = {}
166
        for key, val in self.theta_prior.iteritems():
167
168
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
169
                self.theta_keys.append(key)
170
171
172
173
174
175
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
176
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

192
    def _check_initial_points(self, p0):
193
194
195
196
197
198
199
200
201
202
203
204
205
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

206
                p0 = self._generate_new_p0_to_fix_initial_points(
207
208
                    p0, nt, initial_priors)

209
    def _generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
229

230
    def _OLD_run_sampler_with_progress_bar(self, sampler, ns, p0):
231
232
        for result in tqdm(sampler.sample(p0, iterations=ns), total=ns):
            pass
Gregory Ashton's avatar
Gregory Ashton committed
233
234
        return sampler

235
236
    def setup_convergence_testing(
            self, convergence_period=10, convergence_length=10,
237
            convergence_burnin_fraction=0.25, convergence_threshold_number=10,
238
            convergence_threshold=1.2, convergence_prod_threshold=2,
239
            convergence_plot_upper_lim=2, convergence_early_stopping=True):
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        """
        If called, convergence testing is used during the MCMC simulation

        This uses the Gelmanr-Rubin statistic based on the ratio of between and
        within walkers variance. The original statistic was developed for
        multiple (independent) MCMC simulations, in this context we simply use
        the walkers

        Parameters
        ----------
        convergence_period: int
            period (in number of steps) at which to test convergence
        convergence_length: int
            number of steps to use in testing convergence - this should be
            large enough to measure the variance, but if it is too long
            this will result in incorect early convergence tests
        convergence_burnin_fraction: float [0, 1]
            the fraction of the burn-in period after which to start testing
        convergence_threshold_number: int
            the number of consecutive times where the test passes after which
            to break the burn-in and go to production
        convergence_threshold: float
            the threshold to use in diagnosing convergence. Gelman & Rubin
            recomend a value of 1.2, 1.1 for strict convergence
        convergence_prod_threshold: float
            the threshold to test the production values with
266
267
        convergence_plot_upper_lim: float
            the upper limit to use in the diagnostic plot
268
269
        convergence_early_stopping: bool
            if true, stop the burnin early if convergence is reached
270
        """
271
272
273
274
275
276
277

        if convergence_length > convergence_period:
            raise ValueError('convergence_length must be < convergence_period')
        logging.info('Setting up convergence testing')
        self.convergence_length = convergence_length
        self.convergence_period = convergence_period
        self.convergence_burnin_fraction = convergence_burnin_fraction
278
        self.convergence_prod_threshold = convergence_prod_threshold
279
280
281
282
283
        self.convergence_diagnostic = []
        self.convergence_diagnosticx = []
        self.convergence_threshold_number = convergence_threshold_number
        self.convergence_threshold = convergence_threshold
        self.convergence_number = 0
284
        self.convergence_plot_upper_lim = convergence_plot_upper_lim
285
        self.convergence_early_stopping = convergence_early_stopping
286

287
    def _get_convergence_statistic(self, i, sampler):
288
        s = sampler.chain[0, :, i-self.convergence_length+1:i+1, :]
289
290
291
        N = float(self.convergence_length)
        M = float(self.nwalkers)
        W = np.mean(np.var(s, axis=1), axis=0)
292
293
        per_walker_mean = np.mean(s, axis=1)
        mean = np.mean(per_walker_mean, axis=0)
294
295
        B = N / (M-1.) * np.sum((per_walker_mean-mean)**2, axis=0)
        Vhat = (N-1)/N * W + (M+1)/(M*N) * B
296
        c = np.sqrt(Vhat/W)
297
        self.convergence_diagnostic.append(c)
298
        self.convergence_diagnosticx.append(i - self.convergence_length/2)
299
300
        return c

301
    def _burnin_convergence_test(self, i, sampler, nburn):
302
303
        if i < self.convergence_burnin_fraction*nburn:
            return False
304
        if np.mod(i+1, self.convergence_period) != 0:
305
            return False
306
        c = self._get_convergence_statistic(i, sampler)
307
308
        if np.all(c < self.convergence_threshold):
            self.convergence_number += 1
309
310
        else:
            self.convergence_number = 0
311
312
        if self.convergence_early_stopping:
            return self.convergence_number > self.convergence_threshold_number
313

314
    def _prod_convergence_test(self, i, sampler, nburn):
315
316
317
        testA = i > nburn + self.convergence_length
        testB = np.mod(i+1, self.convergence_period) == 0
        if testA and testB:
318
            self._get_convergence_statistic(i, sampler)
319

320
    def _check_production_convergence(self, k):
321
322
323
324
325
326
327
328
        bools = np.any(
            np.array(self.convergence_diagnostic)[k:, :]
            > self.convergence_prod_threshold, axis=1)
        if np.any(bools):
            logging.warning(
                '{} convergence tests in the production run of {} failed'
                .format(np.sum(bools), len(bools)))

329
    def _run_sampler(self, sampler, p0, nprod=0, nburn=0):
330
        if hasattr(self, 'convergence_period'):
331
332
333
334
            logging.info('Running {} burn-in steps with convergence testing'
                         .format(nburn))
            iterator = tqdm(sampler.sample(p0, iterations=nburn), total=nburn)
            for i, output in enumerate(iterator):
335
                if self._burnin_convergence_test(i, sampler, nburn):
336
337
338
339
340
341
342
343
344
345
346
                    logging.info(
                        'Converged at {} before max number {} of steps reached'
                        .format(i, nburn))
                    self.convergence_idx = i
                    break
            iterator.close()
            logging.info('Running {} production steps'.format(nprod))
            j = nburn
            k = len(self.convergence_diagnostic)
            for result in tqdm(sampler.sample(output[0], iterations=nprod),
                               total=nprod):
347
                self._prod_convergence_test(j, sampler, nburn)
348
                j += 1
349
            self._check_production_convergence(k)
350
351
352
353
354
355
            return sampler
        else:
            for result in tqdm(sampler.sample(p0, iterations=nburn+nprod),
                               total=nburn+nprod):
                pass
            return sampler
356

357
    def run(self, proposal_scale_factor=2, create_plots=True, **kwargs):
358
        """ Run the MCMC simulatation """
359

360
        self.old_data_is_okay_to_use = self._check_old_data_is_okay_to_use()
361
362
363
        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
364
            d = self.get_saved_data_dictionary()
365
366
367
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
368
            self.all_lnlikelihood = d['all_lnlikelihood']
369
370
            return

371
        self._initiate_search_object()
372
373
374
375

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
376
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
377

378
379
380
        p0 = self._generate_initial_p0()
        p0 = self._apply_corrections_to_p0(p0)
        self._check_initial_points(p0)
381
382
383
384

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
Gregory Ashton's avatar
Gregory Ashton committed
385
                j, ninit_steps, n))
386
            sampler = self._run_sampler(sampler, p0, nburn=n)
387
388
            logging.info("Mean acceptance fraction: {}"
                         .format(np.mean(sampler.acceptance_fraction, axis=1)))
389
390
391
            if self.ntemps > 1:
                logging.info("Tswap acceptance fraction: {}"
                             .format(sampler.tswap_acceptance_fraction))
392
            if create_plots:
393
                fig, axes = self._plot_walkers(sampler,
394
395
396
397
                                              symbols=self.theta_symbols,
                                              **kwargs)
                fig.tight_layout()
                fig.savefig('{}/{}_init_{}_walkers.png'.format(
398
                    self.outdir, self.label, j), dpi=400)
399

400
401
402
            p0 = self._get_new_p0(sampler)
            p0 = self._apply_corrections_to_p0(p0)
            self._check_initial_points(p0)
403
404
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
405
406
407
408
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
409
410
411
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
412
        sampler = self._run_sampler(sampler, p0, nburn=nburn, nprod=nprod)
413
414
        logging.info("Mean acceptance fraction: {}"
                     .format(np.mean(sampler.acceptance_fraction, axis=1)))
415
416
417
        if self.ntemps > 1:
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
418

419
        if create_plots:
420
            fig, axes = self._plot_walkers(sampler, symbols=self.theta_symbols,
421
                                          nprod=nprod, **kwargs)
422
423
424
            fig.tight_layout()
            fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label),
                        dpi=200)
425
426
427
428

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
429
        all_lnlikelihood = sampler.lnlikelihood[:, :, nburn:]
430
431
432
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
433
434
        self.all_lnlikelihood = all_lnlikelihood
        self._save_data(sampler, samples, lnprobs, lnlikes, all_lnlikelihood)
435

436
    def _get_rescale_multiplier_for_key(self, key):
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
        """ Get the rescale multiplier from the rescale_dictionary

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
        if key not in self.rescale_dictionary:
            return 1

        if 'multiplier' in self.rescale_dictionary[key]:
            val = self.rescale_dictionary[key]['multiplier']
            if type(val) == str:
                if hasattr(self, val):
                    multiplier = getattr(
                        self, self.rescale_dictionary[key]['multiplier'])
                else:
                    raise ValueError(
                        "multiplier {} not a class attribute".format(val))
            else:
                multiplier = val
        else:
            multiplier = 1
        return multiplier

461
    def _get_rescale_subtractor_for_key(self, key):
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
        """ Get the rescale subtractor from the rescale_dictionary

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
        if key not in self.rescale_dictionary:
            return 0

        if 'subtractor' in self.rescale_dictionary[key]:
            val = self.rescale_dictionary[key]['subtractor']
            if type(val) == str:
                if hasattr(self, val):
                    subtractor = getattr(
                        self, self.rescale_dictionary[key]['subtractor'])
                else:
                    raise ValueError(
                        "subtractor {} not a class attribute".format(val))
            else:
                subtractor = val
        else:
            subtractor = 0
        return subtractor

486
    def _scale_samples(self, samples, theta_keys):
487
        """ Scale the samples using the rescale_dictionary """
488
489
490
491
        for key in theta_keys:
            if key in self.rescale_dictionary:
                idx = theta_keys.index(key)
                s = samples[:, idx]
492
                subtractor = self._get_rescale_subtractor_for_key(key)
493
                s = s - subtractor
494
                multiplier = self._get_rescale_multiplier_for_key(key)
495
                s *= multiplier
496
497
                samples[:, idx] = s

498
499
        return samples

500
    def _get_labels(self):
501
        """ Combine the units, symbols and rescaling to give labels """
502

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
        labels = []
        for key in self.theta_keys:
            label = None
            s = self.symbol_dictionary[key]
            s.replace('_{glitch}', r'_\textrm{glitch}')
            u = self.unit_dictionary[key]
            if key in self.rescale_dictionary:
                if 'symbol' in self.rescale_dictionary[key]:
                    s = self.rescale_dictionary[key]['symbol']
                if 'label' in self.rescale_dictionary[key]:
                    label = self.rescale_dictionary[key]['label']
                if 'unit' in self.rescale_dictionary[key]:
                    u = self.rescale_dictionary[key]['unit']
            if label is None:
                label = '{} \n [{}]'.format(s, u)
            labels.append(label)
        return labels
520

521
522
    def plot_corner(self, figsize=(7, 7), add_prior=False, nstds=None,
                    label_offset=0.4, dpi=300, rc_context={},
523
                    tglitch_ratio=False, fig_and_axes=None, save_fig=True,
524
                    **kwargs):
525
526
527
528
529
530
531
532
533
        """ Generate a corner plot of the posterior

        Using the `corner` package (https://pypi.python.org/pypi/corner/),
        generate estimates of the posterior from the production samples.

        Parameters
        ----------
        figsize: tuple (7, 7)
            Figure size in inches (passed to plt.subplots)
534
535
536
        add_prior: bool, str
            If true, plot the prior as a red line. If 'full' then for uniform
            priors plot the full extent of the prior.
537
538
539
540
541
542
543
544
545
546
547
548
549
550
        nstds: float
            The number of standard deviations to plot centered on the mean
        label_offset: float
            Offset the labels from the plot: useful to precent overlapping the
            tick labels with the axis labels
        dpi: int
            Passed to plt.savefig
        rc_context: dict
            Dictionary of rc values to set while generating the figure (see
            matplotlib rc for more details)
        tglitch_ratio: bool
            If true, and tglitch is a parameter, plot posteriors as the
            fractional time at which the glitch occurs instead of the actual
            time
551
552
553
554
555
        fig_and_axes: tuple
            fig and axes to plot on, the axes must be of the right shape,
            namely (ndim, ndim)
        save_fig: bool
            If true, save the figure, else return the fig, axes
556

557
        Note: kwargs are passed on to corner.corner
558
559

        """
560

561
562
563
564
        if 'truths' in kwargs and len(kwargs['truths']) != self.ndim:
            logging.warning('len(Truths) != ndim, Truths will be ignored')
            kwargs['truths'] = None

Gregory Ashton's avatar
Gregory Ashton committed
565
566
        if self.ndim < 2:
            with plt.rc_context(rc_context):
567
568
569
570
                if fig_and_axes is None:
                    fig, ax = plt.subplots(figsize=figsize)
                else:
                    fig, ax = fig_and_axes
Gregory Ashton's avatar
Gregory Ashton committed
571
572
573
574
575
576
577
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

578
        with plt.rc_context(rc_context):
579
580
581
582
583
            if fig_and_axes is None:
                fig, axes = plt.subplots(self.ndim, self.ndim,
                                         figsize=figsize)
            else:
                fig, axes = fig_and_axes
584
585

            samples_plt = copy.copy(self.samples)
586
            labels = self._get_labels()
587

588
            samples_plt = self._scale_samples(samples_plt, self.theta_keys)
589
590
591
592
593

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
594
595
596
                        samples_plt[:, j] = (
                            s - self.minStartTime)/(
                                self.maxStartTime - self.minStartTime)
597
                        labels[j] = r'$R_{\textrm{glitch}}$'
598
599
600
601
602
603
604

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
605
606
            elif 'range' in kwargs:
                _range = kwargs.pop('range')
607
608
609
            else:
                _range = None

610
611
612
613
            hist_kwargs = kwargs.pop('hist_kwargs', dict())
            if 'normed' not in hist_kwargs:
                hist_kwargs['normed'] = True

614
            fig_triangle = corner.corner(samples_plt,
615
                                         labels=labels,
616
617
618
619
620
621
622
623
624
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
625
                                         hist_kwargs=hist_kwargs,
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
642
                self._add_prior_to_corner(axes, self.samples, add_prior)
643

644
645
646
647
648
            if save_fig:
                fig_triangle.savefig('{}/{}_corner.png'.format(
                    self.outdir, self.label), dpi=dpi)
            else:
                return fig, axes
649

650
    def _add_prior_to_corner(self, axes, samples, add_prior):
651
652
653
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            s = samples[:, i]
654
655
656
657
658
659
660
661
662
663
            lnprior = self._generic_lnprior(**self.theta_prior[key])
            if add_prior == 'full' and self.theta_prior[key]['type'] == 'unif':
                lower = self.theta_prior[key]['lower']
                upper = self.theta_prior[key]['upper']
                r = upper-lower
                xlim = [lower-0.05*r, upper+0.05*r]
                x = np.linspace(xlim[0], xlim[1], 1000)
            else:
                xlim = ax.get_xlim()
                x = np.linspace(s.min(), s.max(), 1000)
664
665
            multiplier = self._get_rescale_multiplier_for_key(key)
            subtractor = self._get_rescale_subtractor_for_key(key)
666
667
668
669
670
671
672
673
            ax.plot((x-subtractor)*multiplier,
                    [np.exp(lnprior(xi)) for xi in x], '-C3',
                    label='prior')

            for j in range(i, self.ndim):
                axes[j][i].set_xlim(xlim[0], xlim[1])
            for k in range(0, i):
                axes[i][k].set_ylim(xlim[0], xlim[1])
674

675
676
677
678
679
680
681
682
    def plot_prior_posterior(self, normal_stds=2):
        """ Plot the posterior in the context of the prior """
        fig, axes = plt.subplots(nrows=self.ndim, figsize=(8, 4*self.ndim))
        N = 1000
        from scipy.stats import gaussian_kde

        for i, (ax, key) in enumerate(zip(axes, self.theta_keys)):
            prior_dict = self.theta_prior[key]
683
            prior_func = self._generic_lnprior(**prior_dict)
684
685
686
687
688
            if prior_dict['type'] == 'unif':
                x = np.linspace(prior_dict['lower'], prior_dict['upper'], N)
                prior = prior_func(x)
                prior[0] = 0
                prior[-1] = 0
Gregory Ashton's avatar
Gregory Ashton committed
689
690
691
692
693
            elif prior_dict['type'] == 'log10unif':
                upper = prior_dict['log10upper']
                lower = prior_dict['log10lower']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
694
695
696
697
698
            elif prior_dict['type'] == 'norm':
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = prior_func(x)
699
700
701
702
703
            elif prior_dict['type'] == 'halfnorm':
                lower = prior_dict['loc']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
Gregory Ashton's avatar
Gregory Ashton committed
704
705
706
707
708
            elif prior_dict['type'] == 'neghalfnorm':
                upper = prior_dict['loc']
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
709
710
711
            else:
                raise ValueError('Not implemented for prior type {}'.format(
                    prior_dict['type']))
712
            priorln = ax.plot(x, prior, 'C3', label='prior')
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
            ax.set_xlabel(self.theta_symbols[i])

            s = self.samples[:, i]
            while len(s) > 10**4:
                # random downsample to avoid slow calculation of kde
                s = np.random.choice(s, size=int(len(s)/2.))
            kde = gaussian_kde(s)
            ax2 = ax.twinx()
            postln = ax2.plot(x, kde.pdf(x), 'k', label='posterior')
            ax2.set_yticklabels([])
            ax.set_yticklabels([])

        lns = priorln + postln
        labs = [l.get_label() for l in lns]
        axes[0].legend(lns, labs, loc=1, framealpha=0.8)

        fig.savefig('{}/{}_prior_posterior.png'.format(
            self.outdir, self.label))

732
    def plot_cumulative_max(self, **kwargs):
733
734
735
736
        """ Plot the cumulative twoF for the maximum posterior estimate

        See the pyfstat.core.plot_twoF_cumulative function for further details
        """
Gregory Ashton's avatar
Gregory Ashton committed
737
738
739
740
        d, maxtwoF = self.get_max_twoF()
        for key, val in self.theta_prior.iteritems():
            if key not in d:
                d[key] = val
741
742

        if hasattr(self, 'search') is False:
743
            self._initiate_search_object()
744
745
746
        if self.binary is False:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
747
                Alpha=d['Alpha'], Delta=d['Delta'],
748
                tstart=self.minStartTime, tend=self.maxStartTime,
749
                **kwargs)
750
751
752
753
754
        else:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
                Alpha=d['Alpha'], Delta=d['Delta'], asini=d['asini'],
                period=d['period'], ecc=d['ecc'], argp=d['argp'], tp=d['argp'],
755
                tstart=self.minStartTime, tend=self.maxStartTime, **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
756

757
    def _generic_lnprior(self, **kwargs):
758
759
760
761
762
763
764
765
766
        """ Return a lambda function of the pdf

        Parameters
        ----------
        kwargs: dict
            A dictionary containing 'type' of pdf and shape parameters

        """

Gregory Ashton's avatar
Gregory Ashton committed
767
        def log_of_unif(x, a, b):
768
769
770
771
772
773
774
775
776
777
778
779
780
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

Gregory Ashton's avatar
Gregory Ashton committed
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
        def log_of_log10unif(x, log10lower, log10upper):
            log10x = np.log10(x)
            above = log10x < log10upper
            below = log10x > log10lower
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(x*np.log(10)*(log10upper-log10lower))
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(x*np.log(10)*(log10upper-log10lower))
                return p

        def log_of_halfnorm(x, loc, scale):
797
            if x < loc:
798
799
800
801
802
803
804
805
806
807
808
809
810
811
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
Gregory Ashton's avatar
Gregory Ashton committed
812
813
814
815
            return lambda x: log_of_unif(x, kwargs['lower'], kwargs['upper'])
        if kwargs['type'] == 'log10unif':
            return lambda x: log_of_log10unif(
                x, kwargs['log10lower'], kwargs['log10upper'])
816
        elif kwargs['type'] == 'halfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
817
            return lambda x: log_of_halfnorm(x, kwargs['loc'], kwargs['scale'])
818
        elif kwargs['type'] == 'neghalfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
819
820
            return lambda x: log_of_halfnorm(
                -x, kwargs['loc'], kwargs['scale'])
821
822
823
824
825
826
827
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

828
    def _generate_rv(self, **kwargs):
829
830
831
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
Gregory Ashton's avatar
Gregory Ashton committed
832
833
834
        if dist_type == "log10unif":
            return 10**(np.random.uniform(low=kwargs['log10lower'],
                                          high=kwargs['log10upper']))
835
836
837
838
839
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
840
841
842
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
843
844
845
846
847
848
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

849
    def _plot_walkers(self, sampler, symbols=None, alpha=0.8, color="k",
850
851
                      temp=0, lw=0.1, nprod=0, add_det_stat_burnin=False,
                      fig=None, axes=None, xoffset=0, plot_det_stat=False,
852
                      context='ggplot', subtractions=None, labelpad=0.05):
853
854
        """ Plot all the chains from a sampler """

855
856
857
858
859
        if context not in plt.style.available:
            raise ValueError((
                'The requested context {} is not available; please select a'
                ' context from `plt.style.available`').format(context))

860
861
862
        if np.ndim(axes) > 1:
            axes = axes.flatten()

863
864
865
866
867
868
869
870
871
872
873
874
875
        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
            chain = sampler.chain[:, :, :]
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
            chain = sampler.chain[temp, :, :, :]

876
877
        if subtractions is None:
            subtractions = [0 for i in range(ndim)]
878
879
880
        else:
            if len(subtractions) != self.ndim:
                raise ValueError('subtractions must be of length ndim')
881

882
883
884
885
        if plot_det_stat:
            extra_subplots = 1
        else:
            extra_subplots = 0
886
        with plt.style.context((context)):
Gregory Ashton's avatar
Gregory Ashton committed
887
            plt.rcParams['text.usetex'] = True
Gregory Ashton's avatar
Gregory Ashton committed
888
            if fig is None and axes is None:
889
                fig = plt.figure(figsize=(4, 3.0*ndim))
890
891
                ax = fig.add_subplot(ndim+extra_subplots, 1, 1)
                axes = [ax] + [fig.add_subplot(ndim+extra_subplots, 1, i)
Gregory Ashton's avatar
Gregory Ashton committed
892
                               for i in range(2, ndim+1)]
893

Gregory Ashton's avatar
Gregory Ashton committed
894
            idxs = np.arange(chain.shape[1])
895
896
897
898
899
            burnin_idx = chain.shape[1] - nprod
            if hasattr(self, 'convergence_idx'):
                convergence_idx = self.convergence_idx
            else:
                convergence_idx = burnin_idx
900
901
            if ndim > 1:
                for i in range(ndim):
902
                    axes[i].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
903
                    cs = chain[:, :, i].T
904
                    if burnin_idx > 0:
905
906
                        axes[i].plot(xoffset+idxs[:convergence_idx+1],
                                     cs[:convergence_idx+1]-subtractions[i],
907
                                     color="C3", alpha=alpha,
Gregory Ashton's avatar
Gregory Ashton committed
908
                                     lw=lw)
909
                        axes[i].axvline(xoffset+convergence_idx,
910
                                        color='k', ls='--', lw=0.25)
911
912
                    axes[i].plot(xoffset+idxs[burnin_idx:],
                                 cs[burnin_idx:]-subtractions[i],
Gregory Ashton's avatar
Gregory Ashton committed
913
                                 color="k", alpha=alpha, lw=lw)
914
                    if symbols:
915
                        if subtractions[i] == 0:
916
                            axes[i].set_ylabel(symbols[i], labelpad=labelpad)
917
918
                        else:
                            axes[i].set_ylabel(
919
920
                                symbols[i]+'$-$'+symbols[i]+'$_0$',
                                labelpad=labelpad)
921

922
923
                    if hasattr(self, 'convergence_diagnostic'):
                        ax = axes[i].twinx()
924
925
                        axes[i].set_zorder(ax.get_zorder()+1)
                        axes[i].patch.set_visible(False)
926
927
                        c_x = np.array(self.convergence_diagnosticx)
                        c_y = np.array(self.convergence_diagnostic)
928
                        break_idx = np.argmin(np.abs(c_x - burnin_idx))
929
930
931
932
                        ax.plot(c_x[:break_idx], c_y[:break_idx, i], '-C0',
                                zorder=-10)
                        ax.plot(c_x[break_idx:], c_y[break_idx:, i], '-C0',
                                zorder=-10)
933
                        ax.set_ylabel('PSRF')
934
                        ax.ticklabel_format(useOffset=False)
935
                        ax.set_ylim(0.5, self.convergence_plot_upper_lim)
936
            else:
Gregory Ashton's avatar
Gregory Ashton committed
937
                axes[0].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
938
                cs = chain[:, :, temp].T
Gregory Ashton's avatar
Gregory Ashton committed
939
940
                if burnin_idx:
                    axes[0].plot(idxs[:burnin_idx], cs[:burnin_idx],
941
                                 color="C3", alpha=alpha, lw=lw)
Gregory Ashton's avatar
Gregory Ashton committed
942
943
944
                axes[0].plot(idxs[burnin_idx:], cs[burnin_idx:], color="k",
                             alpha=alpha, lw=lw)
                if symbols:
945
                    axes[0].set_ylabel(symbols[0], labelpad=labelpad)
946

Gregory Ashton's avatar
Gregory Ashton committed
947
948
            axes[-1].set_xlabel(r'$\textrm{Number of steps}$', labelpad=0.2)

949
            if plot_det_stat:
950
951
952
                if len(axes) == ndim:
                    axes.append(fig.add_subplot(ndim+1, 1, ndim+1))

953
954
955
                lnl = sampler.lnlikelihood[temp, :, :]
                if burnin_idx and add_det_stat_burnin:
                    burn_in_vals = lnl[:, :burnin_idx].flatten()
956
957
                    try:
                        axes[-1].hist(burn_in_vals[~np.isnan(burn_in_vals)],
958
                                      bins=50, histtype='step', color='C3')
959
960
961
962
                    except ValueError:
                        logging.info('Det. Stat. hist failed, most likely all '
                                     'values where the same')
                        pass
963
964
965
                else:
                    burn_in_vals = []
                prod_vals = lnl[:, burnin_idx:].flatten()
966
967
968
969
970
971
972
                try:
                    axes[-1].hist(prod_vals[~np.isnan(prod_vals)], bins=50,
                                  histtype='step', color='k')
                except ValueError:
                    logging.info('Det. Stat. hist failed, most likely all '
                                 'values where the same')
                    pass
973
974
975
976
977
978
979
980
981
982
983
984
                if self.BSGL:
                    axes[-1].set_xlabel(r'$\mathcal{B}_\mathrm{S/GL}$')
                else:
                    axes[-1].set_xlabel(r'$\widetilde{2\mathcal{F}}$')
                axes[-1].set_ylabel(r'$\textrm{Counts}$')
                combined_vals = np.append(burn_in_vals, prod_vals)
                if len(combined_vals) > 0:
                    minv = np.min(combined_vals)
                    maxv = np.max(combined_vals)
                    Range = abs(maxv-minv)
                    axes[-1].set_xlim(minv-0.1*Range, maxv+0.1*Range)

985
                xfmt = matplotlib.ticker.ScalarFormatter()
986
                xfmt.set_powerlimits((-4, 4))
987
988
                axes[-1].xaxis.set_major_formatter(xfmt)

989
990
        return fig, axes

991
    def _apply_corrections_to_p0(self, p0):
Gregory Ashton's avatar
Gregory Ashton committed
992
993
994
        """ Apply any correction to the initial p0 values """
        return p0

995
    def _generate_scattered_p0(self, p):
996
        """ Generate a set of p0s scattered about p """
Gregory Ashton's avatar
Gregory Ashton committed
997
        p0 = [[p + self.scatter_val * p * np.random.randn(self.ndim)
998
999
1000
               for i in xrange(self.nwalkers)]
              for j in xrange(self.ntemps)]
        return p0