grid_based_searches.py 20.2 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
2
3
4
5
6
7
8
9
10
11
12
""" Searches using grid-based methods """

import os
import logging
import itertools
from collections import OrderedDict

import numpy as np
import matplotlib
import matplotlib.pyplot as plt

import helper_functions
13
from core import BaseSearchClass, ComputeFstat, SemiCoherentGlitchSearch, SemiCoherentSearch
14
from core import tqdm, args, earth_ephem, sun_ephem, read_par
Gregory Ashton's avatar
Gregory Ashton committed
15
16
17
18
19
20


class GridSearch(BaseSearchClass):
    """ Gridded search using ComputeFstat """
    @helper_functions.initializer
    def __init__(self, label, outdir, sftfilepath, F0s=[0], F1s=[0], F2s=[0],
Gregory Ashton's avatar
Gregory Ashton committed
21
22
                 Alphas=[0], Deltas=[0], tref=None, minStartTime=None,
                 maxStartTime=None, nsegs=1, BSGL=False, minCoverFreq=None,
Gregory Ashton's avatar
Gregory Ashton committed
23
                 maxCoverFreq=None, earth_ephem=None, sun_ephem=None,
24
                 detectors=None, SSBprec=None, injectSources=None,
25
                 input_arrays=False, assumeSqrtSX=None):
Gregory Ashton's avatar
Gregory Ashton committed
26
27
28
29
30
31
32
33
34
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepath: str
            File patern to match SFTs
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
35
36
            [F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
            input_arrays == True, then these are the values to search at.
Gregory Ashton's avatar
Gregory Ashton committed
37
38
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time
39
40
        input_arrays: bool
            if true, use the F0s, F1s, etc as is
Gregory Ashton's avatar
Gregory Ashton committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.out_file = '{}/{}_gridFS.txt'.format(self.outdir, self.label)
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']

    def inititate_search_object(self):
        logging.info('Setting up search object')
57
58
59
60
61
62
63
        if self.nsegs == 1:
            self.search = ComputeFstat(
                tref=self.tref, sftfilepath=self.sftfilepath,
                minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
                earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
                detectors=self.detectors, transient=False,
                minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
64
                BSGL=self.BSGL, SSBprec=self.SSBprec,
65
66
                injectSources=self.injectSources,
                assumeSqrtSX=self.assumeSqrtSX)
67
68
69
70
71
72
73
74
75
76
77
78
79
            self.search.get_det_stat = self.search.run_computefstatistic_single_point
        else:
            self.search = SemiCoherentSearch(
                label=self.label, outdir=self.outdir, tref=self.tref,
                nsegs=self.nsegs, sftfilepath=self.sftfilepath,
                BSGL=self.BSGL, minStartTime=self.minStartTime,
                maxStartTime=self.maxStartTime, minCoverFreq=self.minCoverFreq,
                maxCoverFreq=self.maxCoverFreq, detectors=self.detectors,
                earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem)

            def cut_out_tstart_tend(*vals):
                return self.search.run_semi_coherent_computefstatistic_single_point(*vals[2:])
            self.search.get_det_stat = cut_out_tstart_tend
Gregory Ashton's avatar
Gregory Ashton committed
80
81
82
83

    def get_array_from_tuple(self, x):
        if len(x) == 1:
            return np.array(x)
84
        elif len(x) == 3 and self.input_arrays is False:
Gregory Ashton's avatar
Gregory Ashton committed
85
            return np.arange(x[0], x[1], x[2])
Gregory Ashton's avatar
Gregory Ashton committed
86
        else:
Gregory Ashton's avatar
Gregory Ashton committed
87
88
            logging.info('Using tuple as is')
            return np.array(x)
Gregory Ashton's avatar
Gregory Ashton committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

    def get_input_data_array(self):
        arrays = []
        for tup in ([self.minStartTime], [self.maxStartTime], self.F0s, self.F1s, self.F2s,
                    self.Alphas, self.Deltas):
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        self.arrays = arrays
        self.input_data = np.array(input_data)

    def check_old_data_is_okay_to_use(self):
        if args.clean:
            return False
        if os.path.isfile(self.out_file) is False:
            logging.info('No old data found, continuing with grid search')
            return False
        data = np.atleast_2d(np.genfromtxt(self.out_file, delimiter=' '))
        if np.all(data[:, 0:-1] == self.input_data):
            logging.info(
                'Old data found with matching input, no search performed')
            return data
        else:
            logging.info(
                'Old data found, input differs, continuing with grid search')
            return False

    def run(self, return_data=False):
        self.get_input_data_array()
        old_data = self.check_old_data_is_okay_to_use()
        if old_data is not False:
            self.data = old_data
            return

        self.inititate_search_object()

        logging.info('Total number of grid points is {}'.format(
            len(self.input_data)))

        data = []
        for vals in tqdm(self.input_data):
133
            FS = self.search.get_det_stat(*vals)
Gregory Ashton's avatar
Gregory Ashton committed
134
135
            data.append(list(vals) + [FS])

136
        data = np.array(data, dtype=np.float)
Gregory Ashton's avatar
Gregory Ashton committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        if return_data:
            return data
        else:
            logging.info('Saving data to {}'.format(self.out_file))
            np.savetxt(self.out_file, data, delimiter=' ')
            self.data = data

    def convert_F0_to_mismatch(self, F0, F0hat, Tseg):
        DeltaF0 = F0[1] - F0[0]
        m_spacing = (np.pi*Tseg*DeltaF0)**2 / 12.
        N = len(F0)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def convert_F1_to_mismatch(self, F1, F1hat, Tseg):
        DeltaF1 = F1[1] - F1[0]
        m_spacing = (np.pi*Tseg**2*DeltaF1)**2 / 720.
        N = len(F1)
        return np.arange(-N*m_spacing/2., N*m_spacing/2., m_spacing)

    def add_mismatch_to_ax(self, ax, x, y, xkey, ykey, xhat, yhat, Tseg):
        axX = ax.twiny()
        axX.zorder = -10
        axY = ax.twinx()
        axY.zorder = -10

        if xkey == 'F0':
            m = self.convert_F0_to_mismatch(x, xhat, Tseg)
            axX.set_xlim(m[0], m[-1])

        if ykey == 'F1':
            m = self.convert_F1_to_mismatch(y, yhat, Tseg)
            axY.set_ylim(m[0], m[-1])

    def plot_1D(self, xkey):
        fig, ax = plt.subplots()
        xidx = self.keys.index(xkey)
        x = np.unique(self.data[:, xidx])
        z = self.data[:, -1]
        plt.plot(x, z)
        fig.savefig('{}/{}_1D.png'.format(self.outdir, self.label))

    def plot_2D(self, xkey, ykey, ax=None, save=True, vmin=None, vmax=None,
                add_mismatch=None, xN=None, yN=None, flat_keys=[],
Gregory Ashton's avatar
Gregory Ashton committed
180
                rel_flat_idxs=[], flatten_method=np.max, title=None,
Gregory Ashton's avatar
Gregory Ashton committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
                predicted_twoF=None, cm=None, cbarkwargs={}):
        """ Plots a 2D grid of 2F values

        Parameters
        ----------
        add_mismatch: tuple (xhat, yhat, Tseg)
            If not None, add a secondary axis with the metric mismatch from the
            point xhat, yhat with duration Tseg
        flatten_method: np.max
            Function to use in flattening the flat_keys
        """
        if ax is None:
            fig, ax = plt.subplots()
        xidx = self.keys.index(xkey)
        yidx = self.keys.index(ykey)
        flat_idxs = [self.keys.index(k) for k in flat_keys]

        x = np.unique(self.data[:, xidx])
        y = np.unique(self.data[:, yidx])
        flat_vals = [np.unique(self.data[:, j]) for j in flat_idxs]
        z = self.data[:, -1]

        Y, X = np.meshgrid(y, x)
        shape = [len(x), len(y)] + [len(v) for v in flat_vals]
        Z = z.reshape(shape)

        if len(rel_flat_idxs) > 0:
            Z = flatten_method(Z, axis=tuple(rel_flat_idxs))

        if predicted_twoF:
            Z = (predicted_twoF - Z) / (predicted_twoF + 4)
            if cm is None:
                cm = plt.cm.viridis_r
        else:
            if cm is None:
                cm = plt.cm.viridis

        pax = ax.pcolormesh(X, Y, Z, cmap=cm, vmin=vmin, vmax=vmax)
        cb = plt.colorbar(pax, ax=ax, **cbarkwargs)
        cb.set_label('$2\mathcal{F}$')

        if add_mismatch:
            self.add_mismatch_to_ax(ax, x, y, xkey, ykey, *add_mismatch)

        ax.set_xlim(x[0], x[-1])
        ax.set_ylim(y[0], y[-1])
        labels = {'F0': '$f$', 'F1': '$\dot{f}$'}
        ax.set_xlabel(labels[xkey])
        ax.set_ylabel(labels[ykey])

Gregory Ashton's avatar
Gregory Ashton committed
231
232
233
        if title:
            ax.set_title(title)

Gregory Ashton's avatar
Gregory Ashton committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
        if xN:
            ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(xN))
        if yN:
            ax.yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(yN))

        if save:
            fig.tight_layout()
            fig.savefig('{}/{}_2D.png'.format(self.outdir, self.label))
        else:
            return ax

    def get_max_twoF(self):
        twoF = self.data[:, -1]
        idx = np.argmax(twoF)
        v = self.data[idx, :]
        d = OrderedDict(minStartTime=v[0], maxStartTime=v[1], F0=v[2], F1=v[3],
                        F2=v[4], Alpha=v[5], Delta=v[6], twoF=v[7])
        return d

    def print_max_twoF(self):
        d = self.get_max_twoF()
        print('Max twoF values for {}:'.format(self.label))
        for k, v in d.iteritems():
            print('  {}={}'.format(k, v))


Gregory Ashton's avatar
Gregory Ashton committed
260
261
class GridUniformPriorSearch():
    def __init__(self, theta_prior, NF0, NF1, label, outdir, sftfilepath,
262
263
                 tref, minStartTime, maxStartTime, minCoverFreq=None,
                 maxCoverFreq=None, BSGL=False, detectors=None, nsegs=1):
Gregory Ashton's avatar
Gregory Ashton committed
264
265
266
267
        dF0 = (theta_prior['F0']['upper'] - theta_prior['F0']['lower'])/NF0
        dF1 = (theta_prior['F1']['upper'] - theta_prior['F1']['lower'])/NF1
        F0s = [theta_prior['F0']['lower'], theta_prior['F0']['upper'], dF0]
        F1s = [theta_prior['F1']['lower'], theta_prior['F1']['upper'], dF1]
268
        self.search = GridSearch(
Gregory Ashton's avatar
Gregory Ashton committed
269
270
271
            label, outdir, sftfilepath, F0s=F0s, F1s=F1s, tref=tref,
            Alphas=[theta_prior['Alpha']], Deltas=[theta_prior['Delta']],
            minStartTime=minStartTime, maxStartTime=maxStartTime, BSGL=BSGL,
272
273
            detectors=detectors, minCoverFreq=minCoverFreq,
            maxCoverFreq=maxCoverFreq, nsegs=nsegs)
274
275
276
277

    def run(self, **kwargs):
        self.search.run()
        return self.search.plot_2D('F0', 'F1', **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
278
279


Gregory Ashton's avatar
Gregory Ashton committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
class GridGlitchSearch(GridSearch):
    """ Grid search using the SemiCoherentGlitchSearch """
    @helper_functions.initializer
    def __init__(self, label, outdir, sftfilepath=None, F0s=[0],
                 F1s=[0], F2s=[0], delta_F0s=[0], delta_F1s=[0], tglitchs=None,
                 Alphas=[0], Deltas=[0], tref=None, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
                 write_after=1000, earth_ephem=None, sun_ephem=None):

        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepath: str
            File patern to match SFTs
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0].
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see pyfstat.ComputeFStat.
        """
        if tglitchs is None:
            self.tglitchs = [self.maxStartTime]
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        self.search = SemiCoherentGlitchSearch(
            label=label, outdir=outdir, sftfilepath=self.sftfilepath,
            tref=tref, minStartTime=minStartTime, maxStartTime=maxStartTime,
            minCoverFreq=minCoverFreq, maxCoverFreq=maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
            BSGL=self.BSGL)

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.out_file = '{}/{}_gridFS.txt'.format(self.outdir, self.label)
        self.keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta', 'delta_F0',
                     'delta_F1', 'tglitch']

    def get_input_data_array(self):
        arrays = []
        for tup in (self.F0s, self.F1s, self.F2s, self.Alphas, self.Deltas,
                    self.delta_F0s, self.delta_F1s, self.tglitchs):
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        self.arrays = arrays
        self.input_data = np.array(input_data)


Gregory Ashton's avatar
Gregory Ashton committed
338
339
340
341
342
343
344
class FrequencySlidingWindow(GridSearch):
    """ A sliding-window search over the Frequency """
    @helper_functions.initializer
    def __init__(self, label, outdir, sftfilepath, F0s, F1, F2,
                 Alpha, Delta, tref, minStartTime=None,
                 maxStartTime=None, window_size=10*86400, window_delta=86400,
                 BSGL=False, minCoverFreq=None, maxCoverFreq=None,
345
                 earth_ephem=None, sun_ephem=None, detectors=None,
Gregory Ashton's avatar
Gregory Ashton committed
346
                 SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepath: str
            File patern to match SFTs
        F0s: array
            Frequency range
        F1, F2, Alpha, Delta: float
            Fixed values to compute twoF(F) over
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.out_file = '{}/{}_gridFS.txt'.format(self.outdir, self.label)
        self.nsegs = 1
        self.F1s = [F1]
        self.F2s = [F2]
        self.Alphas = [Alpha]
        self.Deltas = [Delta]
Gregory Ashton's avatar
Gregory Ashton committed
377

Gregory Ashton's avatar
Gregory Ashton committed
378
379
380
381
382
383
384
385
    def inititate_search_object(self):
        logging.info('Setting up search object')
        self.search = ComputeFstat(
            tref=self.tref, sftfilepath=self.sftfilepath,
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
            detectors=self.detectors, transient=True,
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
Gregory Ashton's avatar
Gregory Ashton committed
386
387
            BSGL=self.BSGL, SSBprec=self.SSBprec,
            injectSources=self.injectSources)
Gregory Ashton's avatar
Gregory Ashton committed
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
        self.search.get_det_stat = (
            self.search.run_computefstatistic_single_point)

    def get_input_data_array(self):
        arrays = []
        tstarts = [self.minStartTime]
        while tstarts[-1] + self.window_size < self.maxStartTime:
            tstarts.append(tstarts[-1]+self.window_delta)
        arrays = [tstarts]
        for tup in (self.F0s, self.F1s, self.F2s,
                    self.Alphas, self.Deltas):
            arrays.append(self.get_array_from_tuple(tup))

        input_data = []
        for vals in itertools.product(*arrays):
            input_data.append(vals)

        input_data = np.array(input_data)
        input_data = np.insert(
            input_data, 1, input_data[:, 0] + self.window_size, axis=1)

        self.arrays = arrays
        self.input_data = np.array(input_data)

    def plot_sliding_window(self, F0=None, ax=None, savefig=True,
413
                            colorbar=True, timestamps=False):
Gregory Ashton's avatar
Gregory Ashton committed
414
415
416
417
418
419
420
421
422
423
424
        data = self.data
        if ax is None:
            ax = plt.subplot()
        tstarts = np.unique(data[:, 0])
        tends = np.unique(data[:, 1])
        frequencies = np.unique(data[:, 2])
        twoF = data[:, -1]
        tmids = (tstarts + tends) / 2.0
        dts = (tmids - self.minStartTime) / 86400.
        if F0:
            frequencies = frequencies - F0
425
            ax.set_ylabel('Frequency - $f_0$ [Hz] \n $f_0={:0.2f}$'.format(F0))
Gregory Ashton's avatar
Gregory Ashton committed
426
427
428
429
430
431
432
433
434
        else:
            ax.set_ylabel('Frequency [Hz]')
        twoF = twoF.reshape((len(tmids), len(frequencies)))
        Y, X = np.meshgrid(frequencies, dts)
        pax = ax.pcolormesh(X, Y, twoF)
        if colorbar:
            cb = plt.colorbar(pax, ax=ax)
            cb.set_label('$2\mathcal{F}$')
        ax.set_xlabel(
435
436
            r'Mid-point (days after $t_\mathrm{{start}}$={})'.format(
                self.minStartTime))
Gregory Ashton's avatar
Gregory Ashton committed
437
438
        ax.set_title(
            'Sliding window length = {} days in increments of {} days'
439
440
441
442
443
444
445
            .format(self.window_size/86400, self.window_delta/86400),
            )
        if timestamps:
            axT = ax.twiny()
            axT.set_xlim(tmids[0]*1e-9, tmids[-1]*1e-9)
            axT.set_xlabel('Mid-point timestamp [GPS $10^{9}$ s]')
            ax.set_title(ax.get_title(), y=1.18)
Gregory Ashton's avatar
Gregory Ashton committed
446
447
448
449
450
451
        if savefig:
            plt.tight_layout()
            plt.savefig(
                '{}/{}_sliding_window.png'.format(self.outdir, self.label))
        else:
            return ax
452
453
454
455
456


class DMoff_NO_SPIN(GridSearch):
    """ DMoff test using SSBPREC_NO_SPIN """
    @helper_functions.initializer
457
    def __init__(self, par, label, outdir, sftfilepath, minStartTime=None,
458
459
460
461
462
463
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
                 earth_ephem=None, sun_ephem=None, detectors=None,
                 injectSources=None, assumeSqrtSX=None):
        """
        Parameters
        ----------
464
465
466
        par: dict, str
            Either a par dictionary (containing 'F0', 'F1', 'Alpha', 'Delta'
            and 'tref') or a path to a .par file to read in the F0, F1 etc
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
        label, outdir: str
            A label and directory to read/write data from/to
        sftfilepath: str
            File patern to match SFTs
        minStartTime, maxStartTime: int
            GPS seconds of the start time and end time

        For all other parameters, see `pyfstat.ComputeFStat` for details
        """

        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)

485
486
487
488
        if type(par) == dict:
            self.par = par
        elif type(par) == str and os.path.isfile(par):
            self.par = read_par(filename=par)
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
        else:
            raise ValueError('The .par file does not exist')

        self.nsegs = 1
        self.BSGL = False

        self.tref = self.par['tref']
        self.F1s = [self.par.get('F1', 0)]
        self.F2s = [self.par.get('F2', 0)]
        self.Alphas = [self.par['Alpha']]
        self.Deltas = [self.par['Delta']]
        self.Re = 6.371e6
        self.c = 2.998e8
        self.SIDEREAL_DAY = 23*60*60 + 56*60 + 4.0916
        self.TERRESTRIAL_DAY = 86400.
        a0 = self.Re/self.c*np.cos(self.par['Delta'])
        self.m0 = np.max([4, int(np.ceil(2*np.pi*self.par['F0']*a0))])
        logging.info('m0 = {}'.format(self.m0))

    def get_results(self):
        """ Compute the three summed detection statistics

        Returns
        -------
            m0, twoF_SUM, twoFstar_SUM_SIDEREAL, twoFstar_SUM_TERRESTRIAL

        """
        self.SSBprec = 2
        self.out_file = '{}/{}_gridFS_SSBPREC2.txt'.format(
            self.outdir, self.label)
        self.F0s = [self.par['F0']+j/self.SIDEREAL_DAY for j in range(-4, 5)]
        self.run()
        twoF_SUM = np.sum(self.data[:, -1])

        self.SSBprec = 4
        self.out_file = '{}/{}_gridFS_SSBPREC4_SIDEREAL.txt'.format(
            self.outdir, self.label)
        self.F0s = [self.par['F0']+j/self.SIDEREAL_DAY
                    for j in range(-self.m0, self.m0+1)]
        self.run()
        twoFstar_SUM = np.sum(self.data[:, -1])

        self.out_file = '{}/{}_gridFS_SSBPREC4_TERRESTIAL.txt'.format(
            self.outdir, self.label)
        self.F0s = [self.par['F0']+j/self.TERRESTRIAL_DAY
                    for j in range(-self.m0, self.m0+1)]
        self.run()
        twoFstar_SUM_terrestrial = np.sum(self.data[:, -1])

        return self.m0, twoF_SUM, twoFstar_SUM, twoFstar_SUM_terrestrial