mcmc_based_searches.py 90.6 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" Searches using MCMC-based methods """
2
from __future__ import division, absolute_import, print_function
Gregory Ashton's avatar
Gregory Ashton committed
3

4
import sys
Gregory Ashton's avatar
Gregory Ashton committed
5
import os
6
import copy
Gregory Ashton's avatar
Gregory Ashton committed
7
import logging
8
from collections import OrderedDict
9
import subprocess
10
11
12
13
14
15
16
17

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import emcee
import corner
import dill as pickle

18
import pyfstat.core as core
19
20
from pyfstat.core import tqdm, args, read_par
import pyfstat.optimal_setup_functions as optimal_setup_functions
21
import pyfstat.helper_functions as helper_functions
22
23


24
class MCMCSearch(core.BaseSearchClass):
Gregory Ashton's avatar
Gregory Ashton committed
25
    """MCMC search using ComputeFstat
26
27
28
29
30
31
32
33
34
35
36
37

    Parameters
    ----------
    label, outdir: str
        A label and directory to read/write data from/to
    theta_prior: dict
        Dictionary of priors and fixed values for the search parameters.
        For each parameters (key of the dict), if it is to be held fixed
        the value should be the constant float, if it is be searched, the
        value should be a dictionary of the prior.
    tref, minStartTime, maxStartTime: int
        GPS seconds of the reference time, start time and end time
Gregory Ashton's avatar
Gregory Ashton committed
38
39
40
41
42
43
    sftfilepattern: str
        Pattern to match SFTs using wildcards (*?) and ranges [0-9];
        mutiple patterns can be given separated by colons.
    detectors: str
        Two character reference to the detectors to use, specify None for no
        contraint and comma separate for multiple references.
44
45
46
47
48
49
50
51
52
53
    nsteps: list (m,)
        List specifying the number of steps to take, the last two entries
        give the nburn and nprod of the 'production' run, all entries
        before are for iterative initialisation steps (usually just one)
        e.g. [1000, 1000, 500].
    nwalkers, ntemps: int,
        The number of walkers and temperates to use in the parallel
        tempered PTSampler.
    log10temperature_min float < 0
        The  log_10(tmin) value, the set of betas passed to PTSampler are
Gregory Ashton's avatar
Gregory Ashton committed
54
55
56
57
58
59
        generated from `np.logspace(0, log10temperature_min, ntemps)`.
    theta_initial: dict, array, (None)
        Either a dictionary of distribution about which to distribute the
        initial walkers about, an array (from which the walkers will be
        scattered by scatter_val, or  None in which case the prior is used.
    rhohatmax: float,
60
61
62
        Upper bound for the SNR scale parameter (required to normalise the
        Bayes factor) - this needs to be carefully set when using the
        evidence.
Gregory Ashton's avatar
Gregory Ashton committed
63
    binary: bool
64
        If true, search over binary parameters
Gregory Ashton's avatar
Gregory Ashton committed
65
66
67
68
    BSGL: bool
        If true, use the BSGL statistic
    SSBPrec: int
        SSBPrec (SSB precision) to use when calling ComputeFstat
69
70
71
    minCoverFreq, maxCoverFreq: float
        Minimum and maximum instantaneous frequency which will be covered
        over the SFT time span as passed to CreateFstatInput
Gregory Ashton's avatar
Gregory Ashton committed
72
73
74
75
76
    injectSources: dict
        If given, inject these properties into the SFT files before running
        the search
    assumeSqrtSX: float
        Don't estimate noise-floors, but assume (stationary) per-IFO sqrt{SX}
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

    Attributes
    ----------
    symbol_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), to Latex math
        symbols for plots
    unit_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), and the
        units (i.e. `Hz`)
    transform_dictionary: dict
        Key, val pairs of the parameters (i.e. `F0`, `F1`), where the key is
        itself a dictionary which can item `multiplier`, `subtractor`, or
        `unit` by which to transform by and update the units.

    """
92
93

    symbol_dictionary = dict(
94
        F0='$f$', F1='$\dot{f}$', F2='$\ddot{f}$', Alpha=r'$\alpha$',
95
96
        Delta='$\delta$', asini='asini', period='P', ecc='ecc', tp='tp',
        argp='argp')
97
    unit_dictionary = dict(
98
99
        F0='Hz', F1='Hz/s', F2='Hz/s$^2$', Alpha=r'rad', Delta='rad',
        asini='', period='s', ecc='', tp='', argp='')
100
    transform_dictionary = {}
101

Gregory Ashton's avatar
Gregory Ashton committed
102
    @helper_functions.initializer
Gregory Ashton's avatar
Gregory Ashton committed
103
    def __init__(self, label, outdir, theta_prior, tref, minStartTime,
Gregory Ashton's avatar
Gregory Ashton committed
104
105
106
107
108
                 maxStartTime, sftfilepattern=None, detectors=None,
                 nsteps=[100, 100], nwalkers=100, ntemps=1,
                 log10temperature_min=-5, theta_initial=None,
                 scatter_val=1e-10, rhohatmax=1000, binary=False, BSGL=False,
                 SSBprec=None, minCoverFreq=None, maxCoverFreq=None,
109
                 injectSources=None, assumeSqrtSX=None):
110

Gregory Ashton's avatar
Gregory Ashton committed
111
112
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
113
        self._add_log_file()
114
        logging.info('Set-up MCMC search for model {}'.format(self.label))
115
116
        if sftfilepattern:
            logging.info('Using data {}'.format(self.sftfilepattern))
117
        else:
118
            logging.info('No sftfilepattern given')
119
120
        if injectSources:
            logging.info('Inject sources: {}'.format(injectSources))
121
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
122
        self._unpack_input_theta()
123
        self.ndim = len(self.theta_keys)
124
125
126
127
        if self.log10temperature_min:
            self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
        else:
            self.betas = None
128

129
130
131
        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

132
        self._set_likelihoodcoef()
133
        self._log_input()
134
135
136

    def _set_likelihoodcoef(self):
        self.likelihoodcoef = np.log(70./self.rhohatmax**4)
137

138
    def _log_input(self):
139
        logging.info('theta_prior = {}'.format(self.theta_prior))
140
        logging.info('nwalkers={}'.format(self.nwalkers))
141
142
143
144
        logging.info('scatter_val = {}'.format(self.scatter_val))
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
        logging.info('log10temperature_min = {}'.format(
145
            self.log10temperature_min))
146

147
    def _initiate_search_object(self):
148
        logging.info('Setting up search object')
149
        self.search = core.ComputeFstat(
150
            tref=self.tref, sftfilepattern=self.sftfilepattern,
151
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
152
            detectors=self.detectors, BSGL=self.BSGL, transient=False,
153
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
154
            binary=self.binary, injectSources=self.injectSources,
155
            assumeSqrtSX=self.assumeSqrtSX, SSBprec=self.SSBprec)
156
157

    def logp(self, theta_vals, theta_prior, theta_keys, search):
158
        H = [self._generic_lnprior(**theta_prior[key])(p) for p, key in
159
160
161
162
163
164
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
165
166
        FS = search.compute_fullycoherent_det_stat_single_point(
            *self.fixed_theta)
167
        return FS + self.likelihoodcoef
168

169
    def _unpack_input_theta(self):
170
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']
171
172
173
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
174
175
        full_theta_keys_copy = copy.copy(full_theta_keys)

176
177
        full_theta_symbols = ['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                              r'$\delta$']
178
179
        if self.binary:
            full_theta_symbols += [
180
                'asini', 'period', 'ecc', 'tp', 'argp']
181

182
183
        self.theta_keys = []
        fixed_theta_dict = {}
184
        for key, val in self.theta_prior.iteritems():
185
186
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
187
                self.theta_keys.append(key)
188
189
190
191
192
193
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
194
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

210
    def _check_initial_points(self, p0):
211
212
213
214
215
216
217
218
219
220
221
222
223
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

224
                p0 = self._generate_new_p0_to_fix_initial_points(
225
226
                    p0, nt, initial_priors)

227
    def _generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
247

248
249
    def setup_burnin_convergence_testing(
            self, n=10, test_type='autocorr', windowed=False, **kwargs):
250
        """ Set up convergence testing during the MCMC simulation
251
252
253

        Parameters
        ----------
254
255
256
257
258
259
260
261
262
        n: int
            Number of steps after which to test convergence
        test_type: str ['autocorr', 'GR']
            If 'autocorr' use the exponential autocorrelation time (kwargs
            passed to `get_autocorr_convergence`). If 'GR' use the Gelman-Rubin
            statistic (kwargs passed to `get_GR_convergence`)
        windowed: bool
            If True, only calculate the convergence test in a window of length
            `n`
263
264
265
266
        **kwargs:
            Passed to either `_test_autocorr_convergence()` or
            `_test_GR_convergence()` depending on `test_type`.

267
        """
268
        logging.info('Setting up convergence testing')
269
270
271
272
        self.convergence_n = n
        self.convergence_windowed = windowed
        self.convergence_test_type = test_type
        self.convergence_kwargs = kwargs
273
274
        self.convergence_diagnostic = []
        self.convergence_diagnosticx = []
275
        if test_type in ['autocorr']:
276
            self._get_convergence_test = self._test_autocorr_convergence
277
        elif test_type in ['GR']:
278
            self._get_convergence_test = self._test_GR_convergence
279
280
281
        else:
            raise ValueError('test_type {} not understood'.format(test_type))

282
    def _test_autocorr_convergence(self, i, sampler, test=True, n_cut=5):
283
284
285
286
287
288
289
290
291
292
293
        try:
            acors = np.zeros((self.ntemps, self.ndim))
            for temp in range(self.ntemps):
                if self.convergence_windowed:
                    j = i-self.convergence_n
                else:
                    j = 0
                x = np.mean(sampler.chain[temp, :, j:i, :], axis=0)
                acors[temp, :] = emcee.autocorr.exponential_time(x)
            c = np.max(acors, axis=0)
        except emcee.autocorr.AutocorrError:
Gregory Ashton's avatar
Gregory Ashton committed
294
295
296
297
            logging.info('Failed to calculate exponential autocorrelation')
            c = np.zeros(self.ndim) + np.nan
        except AttributeError:
            logging.info('Unable to calculate exponential autocorrelation')
298
299
300
301
302
303
304
305
            c = np.zeros(self.ndim) + np.nan

        self.convergence_diagnosticx.append(i - self.convergence_n/2.)
        self.convergence_diagnostic.append(list(c))

        if test:
            return i > n_cut * np.max(c)

306
    def _test_GR_convergence(self, i, sampler, test=True, R=1.1):
307
308
309
310
311
        if self.convergence_windowed:
            s = sampler.chain[0, :, i-self.convergence_n+1:i+1, :]
        else:
            s = sampler.chain[0, :, :i+1, :]
        N = float(self.convergence_n)
312
313
        M = float(self.nwalkers)
        W = np.mean(np.var(s, axis=1), axis=0)
314
315
        per_walker_mean = np.mean(s, axis=1)
        mean = np.mean(per_walker_mean, axis=0)
316
317
        B = N / (M-1.) * np.sum((per_walker_mean-mean)**2, axis=0)
        Vhat = (N-1)/N * W + (M+1)/(M*N) * B
318
        c = np.sqrt(Vhat/W)
319
        self.convergence_diagnostic.append(c)
320
        self.convergence_diagnosticx.append(i - self.convergence_n/2.)
321

322
323
324
        if test and np.max(c) < R:
            return True
        else:
325
            return False
326
327
328
329

    def _test_convergence(self, i, sampler, **kwargs):
        if np.mod(i+1, self.convergence_n) == 0:
            return self._get_convergence_test(i, sampler, **kwargs)
330
        else:
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
            return False

    def _run_sampler_with_conv_test(self, sampler, p0, nprod=0, nburn=0):
        logging.info('Running {} burn-in steps with convergence testing'
                     .format(nburn))
        iterator = tqdm(sampler.sample(p0, iterations=nburn), total=nburn)
        for i, output in enumerate(iterator):
            if self._test_convergence(i, sampler, test=True,
                                      **self.convergence_kwargs):
                logging.info(
                    'Converged at {} before max number {} of steps reached'
                    .format(i, nburn))
                self.convergence_idx = i
                break
        iterator.close()
        logging.info('Running {} production steps'.format(nprod))
        j = nburn
        iterator = tqdm(sampler.sample(output[0], iterations=nprod),
                        total=nprod)
        for result in iterator:
            self._test_convergence(j, sampler, test=False,
                                   **self.convergence_kwargs)
            j += 1
        return sampler
355

356
    def _run_sampler(self, sampler, p0, nprod=0, nburn=0):
357
358
        if hasattr(self, 'convergence_n'):
            self._run_sampler_with_conv_test(sampler, p0, nprod, nburn)
359
360
361
362
        else:
            for result in tqdm(sampler.sample(p0, iterations=nburn+nprod),
                               total=nburn+nprod):
                pass
363

364
365
        self.mean_acceptance_fraction = np.mean(
            sampler.acceptance_fraction, axis=1)
366
        logging.info("Mean acceptance fraction: {}"
367
                     .format(self.mean_acceptance_fraction))
368
        if self.ntemps > 1:
369
            self.tswap_acceptance_fraction = sampler.tswap_acceptance_fraction
370
371
372
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
        try:
373
            self.autocorr_time = sampler.get_autocorr_time(c=4)
374
            logging.info("Autocorrelation length: {}".format(
375
                self.autocorr_time))
376
        except emcee.autocorr.AutocorrError as e:
377
            self.autocorr_time = np.nan
378
379
380
381
382
            logging.warning(
                'Autocorrelation calculation failed with message {}'.format(e))

        return sampler

383
    def _estimate_run_time(self):
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        """ Print the estimated run time

        Uses timing coefficients based on a Lenovo T460p Intel(R)
        Core(TM) i5-6300HQ CPU @ 2.30GHz.

        """
        # Todo: add option to time on a machine, and move coefficients to
        # ~/.pyfstat.conf
        if (type(self.theta_prior['Alpha']) == dict or
                type(self.theta_prior['Delta']) == dict):
            tau0S = 7.3e-5
            tau0LD = 4.2e-7
        else:
            tau0S = 5.0e-5
            tau0LD = 6.2e-8
399
        Nsfts = (self.maxStartTime - self.minStartTime) / 1800.
400
401
402
        numb_evals = np.sum(self.nsteps)*self.nwalkers*self.ntemps
        a = tau0S * numb_evals
        b = tau0LD * Nsfts * numb_evals
403
404
405
        logging.info('Estimated run-time = {} s = {:1.0f}:{:1.0f} m'.format(
            a+b, *divmod(a+b, 60)))

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
    def run(self, proposal_scale_factor=2, create_plots=True, c=5, **kwargs):
        """ Run the MCMC simulatation

        Parameters
        ----------
        proposal_scale_factor: float
            The proposal scale factor used by the sampler, see Goodman & Weare
            (2010). If the acceptance fraction is too low, you can raise it by
            decreasing the a parameter; and if it is too high, you can reduce
            it by increasing the a parameter [Foreman-Mackay (2013)].
        create_plots: bool
            If true, save trace plots of the walkers
        c: int
            The minimum number of autocorrelation times needed to trust the
            result when estimating the autocorrelation time (see
            emcee.autocorr.integrated_time for further details. Default is 5
        **kwargs:
            Passed to _plot_walkers to control the figures

425
426
427
428
429
        Returns
        -------
        sampler: emcee.ptsampler.PTSampler
            The emcee ptsampler object

430
        """
431

432
        self.old_data_is_okay_to_use = self._check_old_data_is_okay_to_use()
433
434
435
        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
436
            d = self.get_saved_data_dictionary()
437
438
439
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
440
            self.all_lnlikelihood = d['all_lnlikelihood']
441
442
            return

443
        self._initiate_search_object()
444
        self._estimate_run_time()
445
446
447
448

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
449
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
450

451
452
453
        p0 = self._generate_initial_p0()
        p0 = self._apply_corrections_to_p0(p0)
        self._check_initial_points(p0)
454
455
456
457

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
Gregory Ashton's avatar
Gregory Ashton committed
458
                j, ninit_steps, n))
459
            sampler = self._run_sampler(sampler, p0, nburn=n)
460
            if create_plots:
461
                fig, axes = self._plot_walkers(sampler,
462
463
                                               symbols=self.theta_symbols,
                                               **kwargs)
464
465
                fig.tight_layout()
                fig.savefig('{}/{}_init_{}_walkers.png'.format(
Gregory Ashton's avatar
Gregory Ashton committed
466
                    self.outdir, self.label, j))
467

468
469
470
            p0 = self._get_new_p0(sampler)
            p0 = self._apply_corrections_to_p0(p0)
            self._check_initial_points(p0)
471
472
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
473
474
475
476
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
477
478
479
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
480
        sampler = self._run_sampler(sampler, p0, nburn=nburn, nprod=nprod)
481
        if create_plots:
482
            fig, axes = self._plot_walkers(sampler, symbols=self.theta_symbols,
483
                                           nprod=nprod, **kwargs)
484
485
            fig.tight_layout()
            fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label),
Gregory Ashton's avatar
Gregory Ashton committed
486
                        )
487
488
489
490

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
491
        all_lnlikelihood = sampler.lnlikelihood[:, :, nburn:]
492
493
494
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
495
496
        self.all_lnlikelihood = all_lnlikelihood
        self._save_data(sampler, samples, lnprobs, lnlikes, all_lnlikelihood)
Gregory Ashton's avatar
Gregory Ashton committed
497
        return sampler
498

499
    def _get_rescale_multiplier_for_key(self, key):
500
        """ Get the rescale multiplier from the transform_dictionary
501
502
503
504
505

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
506
        if key not in self.transform_dictionary:
507
508
            return 1

509
510
        if 'multiplier' in self.transform_dictionary[key]:
            val = self.transform_dictionary[key]['multiplier']
511
512
513
            if type(val) == str:
                if hasattr(self, val):
                    multiplier = getattr(
514
                        self, self.transform_dictionary[key]['multiplier'])
515
516
517
518
519
520
521
522
523
                else:
                    raise ValueError(
                        "multiplier {} not a class attribute".format(val))
            else:
                multiplier = val
        else:
            multiplier = 1
        return multiplier

524
    def _get_rescale_subtractor_for_key(self, key):
525
        """ Get the rescale subtractor from the transform_dictionary
526
527
528
529
530

        Can either be a float, a string (in which case it is interpretted as
        a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent
        in which case 0 is returned
        """
531
        if key not in self.transform_dictionary:
532
533
            return 0

534
535
        if 'subtractor' in self.transform_dictionary[key]:
            val = self.transform_dictionary[key]['subtractor']
536
537
538
            if type(val) == str:
                if hasattr(self, val):
                    subtractor = getattr(
539
                        self, self.transform_dictionary[key]['subtractor'])
540
541
542
543
544
545
546
547
548
                else:
                    raise ValueError(
                        "subtractor {} not a class attribute".format(val))
            else:
                subtractor = val
        else:
            subtractor = 0
        return subtractor

549
    def _scale_samples(self, samples, theta_keys):
550
        """ Scale the samples using the transform_dictionary """
551
        for key in theta_keys:
552
            if key in self.transform_dictionary:
553
554
                idx = theta_keys.index(key)
                s = samples[:, idx]
555
                subtractor = self._get_rescale_subtractor_for_key(key)
556
                s = s - subtractor
557
                multiplier = self._get_rescale_multiplier_for_key(key)
558
                s *= multiplier
559
560
                samples[:, idx] = s

561
562
        return samples

563
    def _get_labels(self):
564
        """ Combine the units, symbols and rescaling to give labels """
565

566
567
568
569
570
571
        labels = []
        for key in self.theta_keys:
            label = None
            s = self.symbol_dictionary[key]
            s.replace('_{glitch}', r'_\textrm{glitch}')
            u = self.unit_dictionary[key]
572
573
574
575
576
577
578
            if key in self.transform_dictionary:
                if 'symbol' in self.transform_dictionary[key]:
                    s = self.transform_dictionary[key]['symbol']
                if 'label' in self.transform_dictionary[key]:
                    label = self.transform_dictionary[key]['label']
                if 'unit' in self.transform_dictionary[key]:
                    u = self.transform_dictionary[key]['unit']
579
580
581
582
            if label is None:
                label = '{} \n [{}]'.format(s, u)
            labels.append(label)
        return labels
583

584
585
    def plot_corner(self, figsize=(7, 7), add_prior=False, nstds=None,
                    label_offset=0.4, dpi=300, rc_context={},
586
                    tglitch_ratio=False, fig_and_axes=None, save_fig=True,
587
                    **kwargs):
588
589
590
591
592
593
594
595
596
        """ Generate a corner plot of the posterior

        Using the `corner` package (https://pypi.python.org/pypi/corner/),
        generate estimates of the posterior from the production samples.

        Parameters
        ----------
        figsize: tuple (7, 7)
            Figure size in inches (passed to plt.subplots)
597
598
599
        add_prior: bool, str
            If true, plot the prior as a red line. If 'full' then for uniform
            priors plot the full extent of the prior.
600
601
602
603
604
605
606
607
608
609
610
611
612
613
        nstds: float
            The number of standard deviations to plot centered on the mean
        label_offset: float
            Offset the labels from the plot: useful to precent overlapping the
            tick labels with the axis labels
        dpi: int
            Passed to plt.savefig
        rc_context: dict
            Dictionary of rc values to set while generating the figure (see
            matplotlib rc for more details)
        tglitch_ratio: bool
            If true, and tglitch is a parameter, plot posteriors as the
            fractional time at which the glitch occurs instead of the actual
            time
614
615
616
617
618
        fig_and_axes: tuple
            fig and axes to plot on, the axes must be of the right shape,
            namely (ndim, ndim)
        save_fig: bool
            If true, save the figure, else return the fig, axes
619
620
        **kwargs:
            Passed to corner.corner
621

622
623
624
625
        Returns
        -------
        fig, axes:
            The matplotlib figure and axes, only returned if save_fig = False
626
627

        """
628

629
630
631
632
        if 'truths' in kwargs and len(kwargs['truths']) != self.ndim:
            logging.warning('len(Truths) != ndim, Truths will be ignored')
            kwargs['truths'] = None

Gregory Ashton's avatar
Gregory Ashton committed
633
634
        if self.ndim < 2:
            with plt.rc_context(rc_context):
635
636
637
638
                if fig_and_axes is None:
                    fig, ax = plt.subplots(figsize=figsize)
                else:
                    fig, ax = fig_and_axes
Gregory Ashton's avatar
Gregory Ashton committed
639
640
641
642
643
644
645
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

646
        with plt.rc_context(rc_context):
647
648
649
650
651
            if fig_and_axes is None:
                fig, axes = plt.subplots(self.ndim, self.ndim,
                                         figsize=figsize)
            else:
                fig, axes = fig_and_axes
652
653

            samples_plt = copy.copy(self.samples)
654
            labels = self._get_labels()
655

656
            samples_plt = self._scale_samples(samples_plt, self.theta_keys)
657
658
659
660
661

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
662
663
664
                        samples_plt[:, j] = (
                            s - self.minStartTime)/(
                                self.maxStartTime - self.minStartTime)
665
                        labels[j] = r'$R_{\textrm{glitch}}$'
666
667
668
669
670
671
672

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
673
674
            elif 'range' in kwargs:
                _range = kwargs.pop('range')
675
676
677
            else:
                _range = None

678
679
680
681
            hist_kwargs = kwargs.pop('hist_kwargs', dict())
            if 'normed' not in hist_kwargs:
                hist_kwargs['normed'] = True

682
            fig_triangle = corner.corner(samples_plt,
683
                                         labels=labels,
684
685
686
687
688
689
690
691
692
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
693
                                         hist_kwargs=hist_kwargs,
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
710
                self._add_prior_to_corner(axes, self.samples, add_prior)
711

712
713
714
715
716
            if save_fig:
                fig_triangle.savefig('{}/{}_corner.png'.format(
                    self.outdir, self.label), dpi=dpi)
            else:
                return fig, axes
717

718
    def _add_prior_to_corner(self, axes, samples, add_prior):
719
720
721
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            s = samples[:, i]
722
723
724
725
726
727
728
729
730
731
            lnprior = self._generic_lnprior(**self.theta_prior[key])
            if add_prior == 'full' and self.theta_prior[key]['type'] == 'unif':
                lower = self.theta_prior[key]['lower']
                upper = self.theta_prior[key]['upper']
                r = upper-lower
                xlim = [lower-0.05*r, upper+0.05*r]
                x = np.linspace(xlim[0], xlim[1], 1000)
            else:
                xlim = ax.get_xlim()
                x = np.linspace(s.min(), s.max(), 1000)
732
733
            multiplier = self._get_rescale_multiplier_for_key(key)
            subtractor = self._get_rescale_subtractor_for_key(key)
734
735
736
737
738
739
740
741
            ax.plot((x-subtractor)*multiplier,
                    [np.exp(lnprior(xi)) for xi in x], '-C3',
                    label='prior')

            for j in range(i, self.ndim):
                axes[j][i].set_xlim(xlim[0], xlim[1])
            for k in range(0, i):
                axes[i][k].set_ylim(xlim[0], xlim[1])
742

743
744
745
746
747
748
749
750
    def plot_prior_posterior(self, normal_stds=2):
        """ Plot the posterior in the context of the prior """
        fig, axes = plt.subplots(nrows=self.ndim, figsize=(8, 4*self.ndim))
        N = 1000
        from scipy.stats import gaussian_kde

        for i, (ax, key) in enumerate(zip(axes, self.theta_keys)):
            prior_dict = self.theta_prior[key]
751
            prior_func = self._generic_lnprior(**prior_dict)
752
753
754
755
756
            if prior_dict['type'] == 'unif':
                x = np.linspace(prior_dict['lower'], prior_dict['upper'], N)
                prior = prior_func(x)
                prior[0] = 0
                prior[-1] = 0
Gregory Ashton's avatar
Gregory Ashton committed
757
758
759
760
761
            elif prior_dict['type'] == 'log10unif':
                upper = prior_dict['log10upper']
                lower = prior_dict['log10lower']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
762
763
764
765
766
            elif prior_dict['type'] == 'norm':
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = prior_func(x)
767
768
769
770
771
            elif prior_dict['type'] == 'halfnorm':
                lower = prior_dict['loc']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
Gregory Ashton's avatar
Gregory Ashton committed
772
773
774
775
776
            elif prior_dict['type'] == 'neghalfnorm':
                upper = prior_dict['loc']
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
777
778
779
            else:
                raise ValueError('Not implemented for prior type {}'.format(
                    prior_dict['type']))
780
            priorln = ax.plot(x, prior, 'C3', label='prior')
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
            ax.set_xlabel(self.theta_symbols[i])

            s = self.samples[:, i]
            while len(s) > 10**4:
                # random downsample to avoid slow calculation of kde
                s = np.random.choice(s, size=int(len(s)/2.))
            kde = gaussian_kde(s)
            ax2 = ax.twinx()
            postln = ax2.plot(x, kde.pdf(x), 'k', label='posterior')
            ax2.set_yticklabels([])
            ax.set_yticklabels([])

        lns = priorln + postln
        labs = [l.get_label() for l in lns]
        axes[0].legend(lns, labs, loc=1, framealpha=0.8)

        fig.savefig('{}/{}_prior_posterior.png'.format(
            self.outdir, self.label))

800
    def plot_cumulative_max(self, **kwargs):
801
802
803
804
        """ Plot the cumulative twoF for the maximum posterior estimate

        See the pyfstat.core.plot_twoF_cumulative function for further details
        """
Gregory Ashton's avatar
Gregory Ashton committed
805
806
807
808
        d, maxtwoF = self.get_max_twoF()
        for key, val in self.theta_prior.iteritems():
            if key not in d:
                d[key] = val
809
810

        if hasattr(self, 'search') is False:
811
            self._initiate_search_object()
812
813
814
        if self.binary is False:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
815
                Alpha=d['Alpha'], Delta=d['Delta'],
816
                tstart=self.minStartTime, tend=self.maxStartTime,
817
                **kwargs)
818
819
820
821
822
        else:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
                Alpha=d['Alpha'], Delta=d['Delta'], asini=d['asini'],
                period=d['period'], ecc=d['ecc'], argp=d['argp'], tp=d['argp'],
823
                tstart=self.minStartTime, tend=self.maxStartTime, **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
824

825
    def _generic_lnprior(self, **kwargs):
826
827
828
829
        """ Return a lambda function of the pdf

        Parameters
        ----------
830
        **kwargs:
831
832
833
834
            A dictionary containing 'type' of pdf and shape parameters

        """

Gregory Ashton's avatar
Gregory Ashton committed
835
        def log_of_unif(x, a, b):
836
837
838
839
840
841
842
843
844
845
846
847
848
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

Gregory Ashton's avatar
Gregory Ashton committed
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
        def log_of_log10unif(x, log10lower, log10upper):
            log10x = np.log10(x)
            above = log10x < log10upper
            below = log10x > log10lower
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(x*np.log(10)*(log10upper-log10lower))
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(x*np.log(10)*(log10upper-log10lower))
                return p

        def log_of_halfnorm(x, loc, scale):
865
            if x < loc:
866
867
868
869
870
871
872
873
874
875
876
877
878
879
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
Gregory Ashton's avatar
Gregory Ashton committed
880
881
882
883
            return lambda x: log_of_unif(x, kwargs['lower'], kwargs['upper'])
        if kwargs['type'] == 'log10unif':
            return lambda x: log_of_log10unif(
                x, kwargs['log10lower'], kwargs['log10upper'])
884
        elif kwargs['type'] == 'halfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
885
            return lambda x: log_of_halfnorm(x, kwargs['loc'], kwargs['scale'])
886
        elif kwargs['type'] == 'neghalfnorm':
Gregory Ashton's avatar
Gregory Ashton committed
887
888
            return lambda x: log_of_halfnorm(
                -x, kwargs['loc'], kwargs['scale'])
889
890
891
892
893
894
895
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

896
    def _generate_rv(self, **kwargs):
897
898
899
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
Gregory Ashton's avatar
Gregory Ashton committed
900
901
902
        if dist_type == "log10unif":
            return 10**(np.random.uniform(low=kwargs['log10lower'],
                                          high=kwargs['log10upper']))
903
904
905
906
907
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
908
909
910
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
911
912
913
914
915
916
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

917
    def _plot_walkers(self, sampler, symbols=None, alpha=0.8, color="k",
918
919
                      temp=0, lw=0.1, nprod=0, add_det_stat_burnin=False,
                      fig=None, axes=None, xoffset=0, plot_det_stat=False,
920
                      context='ggplot', subtractions=None, labelpad=0.05):
921
922
        """ Plot all the chains from a sampler """

923
924
925
926
927
        if context not in plt.style.available:
            raise ValueError((
                'The requested context {} is not available; please select a'
                ' context from `plt.style.available`').format(context))

928
929
930
        if np.ndim(axes) > 1:
            axes = axes.flatten()

931
932
933
934
935
936
937
938
939
940
941
942
943
        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
            chain = sampler.chain[:, :, :]
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
            chain = sampler.chain[temp, :, :, :]

944
945
        if subtractions is None:
            subtractions = [0 for i in range(ndim)]
946
947
948
        else:
            if len(subtractions) != self.ndim:
                raise ValueError('subtractions must be of length ndim')
949

950
951
952
953
        if plot_det_stat:
            extra_subplots = 1
        else:
            extra_subplots = 0
954
        with plt.style.context((context)):
Gregory Ashton's avatar
Gregory Ashton committed
955
            plt.rcParams['text.usetex'] = True
Gregory Ashton's avatar
Gregory Ashton committed
956
            if fig is None and axes is None:
957
                fig = plt.figure(figsize=(4, 3.0*ndim))
958
959
                ax = fig.add_subplot(ndim+extra_subplots, 1, 1)
                axes = [ax] + [fig.add_subplot(ndim+extra_subplots, 1, i)
Gregory Ashton's avatar
Gregory Ashton committed
960
                               for i in range(2, ndim+1)]
961

Gregory Ashton's avatar
Gregory Ashton committed
962
            idxs = np.arange(chain.shape[1])
963
964
965
966
967
            burnin_idx = chain.shape[1] - nprod
            if hasattr(self, 'convergence_idx'):
                convergence_idx = self.convergence_idx
            else:
                convergence_idx = burnin_idx
968
969
            if ndim > 1:
                for i in range(ndim):
970
                    axes[i].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
971
                    cs = chain[:, :, i].T
972
                    if burnin_idx > 0:
973
974
                        axes[i].plot(xoffset+idxs[:convergence_idx+1],
                                     cs[:convergence_idx+1]-subtractions[i],
975
                                     color="C3", alpha=alpha,
Gregory Ashton's avatar
Gregory Ashton committed
976
                                     lw=lw)
977
                        axes[i].axvline(xoffset+convergence_idx,
978
                                        color='k', ls='--', lw=0.25)
979
980
                    axes[i].plot(xoffset+idxs[burnin_idx:],
                                 cs[burnin_idx:]-subtractions[i],
Gregory Ashton's avatar
Gregory Ashton committed
981
                                 color="k", alpha=alpha, lw=lw)
Gregory Ashton's avatar
Gregory Ashton committed
982
983

                    axes[i].set_xlim(0, xoffset+idxs[-1])
984
                    if symbols:
985
                        if subtractions[i] == 0:
986
                            axes[i].set_ylabel(symbols[i], labelpad=labelpad)
987
988
                        else:
                            axes[i].set_ylabel(
989
990
                                symbols[i]+'$-$'+symbols[i]+'$_0$',
                                labelpad=labelpad)
991

992
993
                    if hasattr(self, 'convergence_diagnostic'):
                        ax = axes[i].twinx()
994
995
                        axes[i].set_zorder(ax.get_zorder()+1)
                        axes[i].patch.set_visible(False)
996
997
                        c_x = np.array(self.convergence_diagnosticx)
                        c_y = np.array(self.convergence_diagnostic)
998
                        break_idx = np.argmin(np.abs(c_x - burnin_idx))
999
1000
                        ax.plot(c_x[:break_idx], c_y[:break_idx, i], '-C0',
                                zorder=-10)
For faster browsing, not all history is shown. View entire blame