pyfstat.py 69.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
""" Classes for various types of searches using ComputeFstatistic """
import os
import sys
import itertools
import logging
import argparse
import copy
import glob
import inspect
from functools import wraps
11
import subprocess
12
from collections import OrderedDict
13
14
15
16
17
18
19
20

import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import emcee
import corner
import dill as pickle
21
import lal
22
23
import lalpulsar

24
plt.rcParams['text.usetex'] = True
25
plt.rcParams['axes.formatter.useoffset'] = False
26

27
28
29
30
31
32
33
config_file = os.path.expanduser('~')+'/.pyfstat.conf'
if os.path.isfile(config_file):
    d = {}
    with open(config_file, 'r') as f:
        for line in f:
            k, v = line.split('=')
            k = k.replace(' ', '')
34
            v = v.replace(' ', '').replace("'", "").replace('"', '').replace('\n', '')
35
36
37
38
39
40
            d[k] = v
    earth_ephem = d['earth_ephem']
    sun_ephem = d['sun_ephem']
else:
    logging.warning('No ~/.pyfstat.conf file found please provide the paths '
                    'when initialising searches')
41
42
43
    earth_ephem = None
    sun_ephem = None

44
45
46
47
48
parser = argparse.ArgumentParser()
parser.add_argument("-q", "--quite", help="Decrease output verbosity",
                    action="store_true")
parser.add_argument("-c", "--clean", help="Don't use cached data",
                    action="store_true")
49
parser.add_argument("-u", "--use-old-data", action="store_true")
50
51
52
53
54
55
56
57
58
59
60
61
62
parser.add_argument('unittest_args', nargs='*')
args, unknown = parser.parse_known_args()
sys.argv[1:] = args.unittest_args

if args.quite:
    log_level = logging.WARNING
else:
    log_level = logging.DEBUG

logging.basicConfig(level=log_level,
                    format='%(asctime)s %(levelname)-8s: %(message)s',
                    datefmt='%H:%M')

63
64

def initializer(func):
65
    """ Automatically assigns the parameters to self """
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    names, varargs, keywords, defaults = inspect.getargspec(func)

    @wraps(func)
    def wrapper(self, *args, **kargs):
        for name, arg in list(zip(names[1:], args)) + list(kargs.items()):
            setattr(self, name, arg)

        for name, default in zip(reversed(names), reversed(defaults)):
            if not hasattr(self, name):
                setattr(self, name, default)

        func(self, *args, **kargs)

    return wrapper


def read_par(label, outdir):
83
    """ Read in a .par file, returns a dictionary of the values """
84
85
86
87
    filename = '{}/{}.par'.format(outdir, label)
    d = {}
    with open(filename, 'r') as f:
        for line in f:
88
89
90
            if len(line.split('=')) > 1:
                key, val = line.rstrip('\n').split(' = ')
                key = key.strip()
91
                d[key] = np.float64(eval(val.rstrip('; ')))
92
93
94
95
    return d


class BaseSearchClass(object):
96
    """ The base search class, provides ephemeris and general utilities """
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

    def shift_matrix(self, n, dT):
        """ Generate the shift matrix """
        m = np.zeros((n, n))
        factorial = np.math.factorial
        for i in range(n):
            for j in range(n):
                if i == j:
                    m[i, j] = 1.0
                elif i > j:
                    m[i, j] = 0.0
                else:
                    if i == 0:
                        m[i, j] = 2*np.pi*float(dT)**(j-i) / factorial(j-i)
                    else:
                        m[i, j] = float(dT)**(j-i) / factorial(j-i)

        return m

    def shift_coefficients(self, theta, dT):
        """ Shift a set of coefficients by dT

        Parameters
        ----------
        theta: array-like, shape (n,)
            vector of the expansion coefficients to transform starting from the
126
            lowest degree e.g [phi, F0, F1,...].
127
        dT: float
128
            difference between the two reference times as tref_new - tref_old.
129
130
131
132

        Returns
        -------
        theta_new: array-like shape (n,)
133
            vector of the coefficients as evaluate as the new reference time.
134
135
136
137
138
        """
        n = len(theta)
        m = self.shift_matrix(n, dT)
        return np.dot(m, theta)

139
    def calculate_thetas(self, theta, delta_thetas, tbounds, theta0_idx=0):
140
141
142
        """ Calculates the set of coefficients for the post-glitch signal """
        thetas = [theta]
        for i, dt in enumerate(delta_thetas):
143
144
145
146
147
148
149
150
151
152
153
154
155
            if i < theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[0], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch - dt
                thetas.insert(0, self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))

            elif i >= theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[i], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch + dt
                thetas.append(self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))
156
157
158
        return thetas


Gregory Ashton's avatar
Gregory Ashton committed
159
160
161
162
163
164
165
class ComputeFstat(object):
    """ Base class providing interface to lalpulsar.ComputeFstat """

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

    @initializer
166
    def __init__(self, tref, sftfilepath=None,
167
                 minStartTime=None, maxStartTime=None,
Gregory Ashton's avatar
Gregory Ashton committed
168
                 minCoverFreq=None, maxCoverFreq=None,
169
                 detector=None, earth_ephem=None, sun_ephem=None,
170
                 binary=False, transient=True, BSGL=False):
171
172
173
174
175
        """
        Parameters
        ----------
        tref: int
            GPS seconds of the reference time.
176
177
        sftfilepath: str
            File patern to match SFTs
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        minCoverFreq, maxCoverFreq: float
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput.
            If None defaults defined in BaseSearchClass will be used.
        binary: bool
            If true, search of binary parameters.
        transient: bool
            If true, allow for the Fstat to be computed over a transient range.
193
194
        BSGL: bool
            If true, compute the BSGL rather than the twoF value.
195
196

        """
Gregory Ashton's avatar
Gregory Ashton committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        self.init_computefstatistic_single_point()

    def init_computefstatistic_single_point(self):
        """ Initilisation step of run_computefstatistic for a single point """

        logging.info('Initialising SFTCatalog')
        constraints = lalpulsar.SFTConstraints()
        if self.detector:
            constraints.detector = self.detector
212
213
214
215
216
        if self.minStartTime:
            constraints.minStartTime = lal.LIGOTimeGPS(self.minStartTime)
        if self.maxStartTime:
            constraints.maxStartTime = lal.LIGOTimeGPS(self.maxStartTime)

217
        logging.info('Loading data matching pattern {}'.format(
218
219
                     self.sftfilepath))
        SFTCatalog = lalpulsar.SFTdataFind(self.sftfilepath, constraints)
Gregory Ashton's avatar
Gregory Ashton committed
220
        names = list(set([d.header.name for d in SFTCatalog.data]))
221
        epochs = [d.header.epoch for d in SFTCatalog.data]
222
        logging.info(
223
224
            'Loaded {} data files from detectors {} spanning {} to {}'.format(
                len(epochs), names, int(epochs[0]), int(epochs[-1])))
Gregory Ashton's avatar
Gregory Ashton committed
225
226
227
228
229
230

        logging.info('Initialising ephems')
        ephems = lalpulsar.InitBarycenter(self.earth_ephem, self.sun_ephem)

        logging.info('Initialising FstatInput')
        dFreq = 0
231
232
233
234
235
        if self.transient:
            self.whatToCompute = lalpulsar.FSTATQ_ATOMS_PER_DET
        else:
            self.whatToCompute = lalpulsar.FSTATQ_2F

Gregory Ashton's avatar
Gregory Ashton committed
236
237
238
239
240
241
242
243
        FstatOptionalArgs = lalpulsar.FstatOptionalArgsDefaults

        if self.minCoverFreq is None or self.maxCoverFreq is None:
            fA = SFTCatalog.data[0].header.f0
            numBins = SFTCatalog.data[0].numBins
            fB = fA + (numBins-1)*SFTCatalog.data[0].header.deltaF
            self.minCoverFreq = fA + 0.5
            self.maxCoverFreq = fB - 0.5
244
245
246
            logging.info('Min/max cover freqs not provided, using '
                         '{} and {}, est. from SFTs'.format(
                             self.minCoverFreq, self.maxCoverFreq))
Gregory Ashton's avatar
Gregory Ashton committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

        self.FstatInput = lalpulsar.CreateFstatInput(SFTCatalog,
                                                     self.minCoverFreq,
                                                     self.maxCoverFreq,
                                                     dFreq,
                                                     ephems,
                                                     FstatOptionalArgs
                                                     )

        logging.info('Initialising PulsarDoplerParams')
        PulsarDopplerParams = lalpulsar.PulsarDopplerParams()
        PulsarDopplerParams.refTime = self.tref
        PulsarDopplerParams.Alpha = 1
        PulsarDopplerParams.Delta = 1
        PulsarDopplerParams.fkdot = np.array([0, 0, 0, 0, 0, 0, 0])
        self.PulsarDopplerParams = PulsarDopplerParams

        logging.info('Initialising FstatResults')
        self.FstatResults = lalpulsar.FstatResults()

267
268
269
270
        if self.BSGL:
            logging.info('Initialising BSGL: this will fail if numDet < 2')
            # Tuning parameters - to be reviewed
            numDetectors = 2
Gregory Ashton's avatar
Gregory Ashton committed
271
            Fstar0sc = 15.
272
            oLGX = np.zeros(10)
Gregory Ashton's avatar
Gregory Ashton committed
273
            oLGX[:numDetectors] = 1./numDetectors
274
275
276
277
278
279
280
281
282
            self.BSGLSetup = lalpulsar.CreateBSGLSetup(numDetectors,
                                                       Fstar0sc,
                                                       oLGX,
                                                       False,
                                                       1)
            self.twoFX = np.zeros(10)
            self.whatToCompute = (lalpulsar.FSTATQ_2F +
                                  lalpulsar.FSTATQ_2F_PER_DET)

283
        if self.transient:
284
            logging.info('Initialising transient parameters')
285
286
287
288
289
290
            self.windowRange = lalpulsar.transientWindowRange_t()
            self.windowRange.type = lalpulsar.TRANSIENT_RECTANGULAR
            self.windowRange.t0Band = 0
            self.windowRange.dt0 = 1
            self.windowRange.tauBand = 0
            self.windowRange.dtau = 1
291

Gregory Ashton's avatar
Gregory Ashton committed
292
    def run_computefstatistic_single_point(self, tstart, tend, F0, F1,
293
294
295
                                           F2, Alpha, Delta, asini=None,
                                           period=None, ecc=None, tp=None,
                                           argp=None):
296
        """ Returns the twoF fully-coherently at a single point """
Gregory Ashton's avatar
Gregory Ashton committed
297
298
299
300

        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
301
302
303
304
305
306
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp
Gregory Ashton's avatar
Gregory Ashton committed
307
308
309
310

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
311
                               1,
Gregory Ashton's avatar
Gregory Ashton committed
312
313
314
                               self.whatToCompute
                               )

315
        if self.transient is False:
316
317
318
319
320
321
322
323
324
            if self.BSGL is False:
                return self.FstatResults.twoF[0]

            twoF = np.float(self.FstatResults.twoF[0])
            self.twoFX[0] = self.FstatResults.twoFPerDet(0)
            self.twoFX[1] = self.FstatResults.twoFPerDet(1)
            BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
                                         self.BSGLSetup)
            return BSGL
325

326
327
        self.windowRange.t0 = int(tstart)  # TYPE UINT4
        self.windowRange.tau = int(tend - tstart)  # TYPE UINT4
328

Gregory Ashton's avatar
Gregory Ashton committed
329
        FS = lalpulsar.ComputeTransientFstatMap(
330
            self.FstatResults.multiFatoms[0], self.windowRange, False)
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

        if self.BSGL is False:
            return 2*FS.F_mn.data[0][0]

        FstatResults_single = copy.copy(self.FstatResults)
        FstatResults_single.lenth = 1
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
        FS0 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
        FS1 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)

        self.twoFX[0] = 2*FS0.F_mn.data[0][0]
        self.twoFX[1] = 2*FS1.F_mn.data[0][0]
        BSGL = lalpulsar.ComputeBSGL(2*FS.F_mn.data[0][0], self.twoFX,
                                     self.BSGLSetup)

        return BSGL
Gregory Ashton's avatar
Gregory Ashton committed
350
351
352


class SemiCoherentGlitchSearch(BaseSearchClass, ComputeFstat):
353
354
355
356
357
358
359
360
361
    """ A semi-coherent glitch search

    This implements a basic `semi-coherent glitch F-stat in which the data
    is divided into two segments either side of the proposed glitch and the
    fully-coherent F-stat in each segment is averaged to give the semi-coherent
    F-stat
    """

    @initializer
Gregory Ashton's avatar
Gregory Ashton committed
362
    def __init__(self, label, outdir, tref, tstart, tend, nglitch=0,
363
                 sftfilepath=None, theta0_idx=0, BSGL=False,
364
365
366
                 minCoverFreq=None, maxCoverFreq=None, minStartTime=None,
                 maxStartTime=None, detector=None, earth_ephem=None,
                 sun_ephem=None):
367
368
369
370
        """
        Parameters
        ----------
        label, outdir: str
371
372
373
374
375
376
            A label and directory to read/write data from/to.
        tref, tstart, tend: int
            GPS seconds of the reference time, and start and end of the data.
        nglitch: int
            The (fixed) number of glitches; this can zero, but occasionally
            this causes issue (in which case just use ComputeFstat).
377
378
        sftfilepath: str
            File patern to match SFTs
379
380
381
382
        theta0_idx, int
            Index (zero-based) of which segment the theta refers to - uyseful
            if providing a tight prior on theta to allow the signal to jump
            too theta (and not just from)
383
        minCoverFreq, maxCoverFreq: float
384
385
386
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
387
388
        detector: str
            Two character reference to the data to use, specify None for no
389
            contraint.
390
391
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
392
393
            respectively at evenly spaced times, as passed to CreateFstatInput.
            If None defaults defined in BaseSearchClass will be used.
394
395
396
397
398
399
400
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
        if self.earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if self.sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default
401
402
        self.transient = True
        self.binary = False
403
404
405
        self.init_computefstatistic_single_point()

    def compute_nglitch_fstat(self, F0, F1, F2, Alpha, Delta, *args):
406
        """ Returns the semi-coherent glitch summed twoF """
407
408
409

        args = list(args)
        tboundaries = [self.tstart] + args[-self.nglitch:] + [self.tend]
410
411
412
413
414
415
416
417
        delta_F0s = args[-3*self.nglitch:-2*self.nglitch]
        delta_F1s = args[-2*self.nglitch:-self.nglitch]
        delta_F2 = np.zeros(len(delta_F0s))
        delta_phi = np.zeros(len(delta_F0s))
        theta = [0, F0, F1, F2]
        delta_thetas = np.atleast_2d(
                np.array([delta_phi, delta_F0s, delta_F1s, delta_F2]).T)

418
419
        thetas = self.calculate_thetas(theta, delta_thetas, tboundaries,
                                       theta0_idx=self.theta0_idx)
420
421

        twoFSum = 0
422
        for i, theta_i_at_tref in enumerate(thetas):
423
424
425
            ts, te = tboundaries[i], tboundaries[i+1]

            twoFVal = self.run_computefstatistic_single_point(
426
427
                ts, te, theta_i_at_tref[1], theta_i_at_tref[2],
                theta_i_at_tref[3], Alpha, Delta)
428
429
            twoFSum += twoFVal

430
431
432
        if np.isfinite(twoFSum):
            return twoFSum
        else:
433
            return -np.inf
434
435
436

    def compute_glitch_fstat_single(self, F0, F1, F2, Alpha, Delta, delta_F0,
                                    delta_F1, tglitch):
437
438
439
440
        """ Returns the semi-coherent glitch summed twoF for nglitch=1

        Note: used for testing
        """
441
442
443
444
445
446
447
448
449
450
451

        theta = [F0, F1, F2]
        delta_theta = [delta_F0, delta_F1, 0]
        tref = self.tref

        theta_at_glitch = self.shift_coefficients(theta, tglitch - tref)
        theta_post_glitch_at_glitch = theta_at_glitch + delta_theta
        theta_post_glitch = self.shift_coefficients(
            theta_post_glitch_at_glitch, tref - tglitch)

        twoFsegA = self.run_computefstatistic_single_point(
Gregory Ashton's avatar
Gregory Ashton committed
452
            self.tstart, tglitch, theta[0], theta[1], theta[2], Alpha,
453
454
455
456
457
458
            Delta)

        if tglitch == self.tend:
            return twoFsegA

        twoFsegB = self.run_computefstatistic_single_point(
Gregory Ashton's avatar
Gregory Ashton committed
459
            tglitch, self.tend, theta_post_glitch[0],
460
461
462
463
464
465
            theta_post_glitch[1], theta_post_glitch[2], Alpha,
            Delta)

        return twoFsegA + twoFsegB


Gregory Ashton's avatar
Gregory Ashton committed
466
467
class MCMCSearch(BaseSearchClass):
    """ MCMC search using ComputeFstat"""
468
    @initializer
469
    def __init__(self, label, outdir, sftfilepath, theta_prior, tref,
470
                 tstart, tend, nsteps=[100, 100, 100], nwalkers=100, ntemps=1,
471
                 log10temperature_min=-5, theta_initial=None, scatter_val=1e-4,
472
473
                 binary=False, BSGL=False, minCoverFreq=None, maxCoverFreq=None,
                 detector=None, earth_ephem=None, sun_ephem=None, theta0_idx=0):
474
475
476
477
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
478
479
        sftfilepath: str
            File patern to match SFTs
480
        theta_prior: dict
481
482
483
484
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
485
486
487
488
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
489
490
491
492
493
494
495
        tref, tstart, tend: int
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
496
497
498
499
500
501
502
503
504
505
506
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
        binary: Bool
            If true, search over binary parameters
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
507
508
509
510
511
512
513
514
515
516
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

517
518
519
        self.minStartTime = tstart
        self.maxStartTime = tend

Gregory Ashton's avatar
Gregory Ashton committed
520
521
        logging.info(
            'Set-up MCMC search for model {} on data {}'.format(
522
                self.label, self.sftfilepath))
523
524
525
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
526
527
        self.theta_prior['tstart'] = self.tstart
        self.theta_prior['tend'] = self.tend
528
529
        self.unpack_input_theta()
        self.ndim = len(self.theta_keys)
530
531
        self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)

532
533
534
535
536
537
538
539
540
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

        self.old_data_is_okay_to_use = self.check_old_data_is_okay_to_use()
541
542
543
        self.log_input()

    def log_input(self):
544
        logging.info('theta_prior = {}'.format(self.theta_prior))
545
        logging.info('nwalkers={}'.format(self.nwalkers))
546
547
548
549
        logging.info('scatter_val = {}'.format(self.scatter_val))
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
        logging.info('log10temperature_min = {}'.format(
550
            self.log10temperature_min))
551
552
553

    def inititate_search_object(self):
        logging.info('Setting up search object')
Gregory Ashton's avatar
Gregory Ashton committed
554
        self.search = ComputeFstat(
555
556
557
558
            tref=self.tref, sftfilepath=self.sftfilepath,
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
            detector=self.detector, BSGL=self.BSGL, transient=False,
559
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime)
560
561

    def logp(self, theta_vals, theta_prior, theta_keys, search):
Gregory Ashton's avatar
Gregory Ashton committed
562
        H = [self.generic_lnprior(**theta_prior[key])(p) for p, key in
563
564
565
566
567
568
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
Gregory Ashton's avatar
Gregory Ashton committed
569
        FS = search.run_computefstatistic_single_point(*self.fixed_theta)
570
571
572
        return FS

    def unpack_input_theta(self):
Gregory Ashton's avatar
Gregory Ashton committed
573
574
        full_theta_keys = ['tstart', 'tend', 'F0', 'F1', 'F2', 'Alpha',
                           'Delta']
575
576
577
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
578
579
        full_theta_keys_copy = copy.copy(full_theta_keys)

Gregory Ashton's avatar
Gregory Ashton committed
580
581
        full_theta_symbols = ['_', '_', '$f$', '$\dot{f}$', '$\ddot{f}$',
                              r'$\alpha$', r'$\delta$']
582
583
584
585
        if self.binary:
            full_theta_symbols += [
                'asini', 'period', 'period', 'ecc', 'tp', 'argp']

586
587
        self.theta_keys = []
        fixed_theta_dict = {}
588
        for key, val in self.theta_prior.iteritems():
589
590
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
591
                self.theta_keys.append(key)
592
593
594
595
596
597
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
598
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

    def check_initial_points(self, p0):
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

                p0 = self.generate_new_p0_to_fix_initial_points(
                    p0, nt, initial_priors)

    def generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670

    def run(self):

        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
            d = self.get_saved_data()
            self.sampler = d['sampler']
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
            return

        self.inititate_search_object()

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
            loglargs=(self.search,), betas=self.betas)

Gregory Ashton's avatar
Gregory Ashton committed
671
672
        p0 = self.generate_initial_p0()
        p0 = self.apply_corrections_to_p0(p0)
673
674
675
676
677
        self.check_initial_points(p0)

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
678
                j+1, ninit_steps, n))
679
            sampler.run_mcmc(p0, n)
680
681
            logging.info("Mean acceptance fraction: {0:.3f}"
                         .format(np.mean(sampler.acceptance_fraction)))
Gregory Ashton's avatar
Gregory Ashton committed
682
            fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols)
683
684
685
            fig.savefig('{}/{}_init_{}_walkers.png'.format(
                self.outdir, self.label, j))

686
            p0 = self.get_new_p0(sampler)
Gregory Ashton's avatar
Gregory Ashton committed
687
            p0 = self.apply_corrections_to_p0(p0)
688
689
690
691
692
693
694
695
            self.check_initial_points(p0)
            sampler.reset()

        nburn = self.nsteps[-2]
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
        sampler.run_mcmc(p0, nburn+nprod)
696
697
        logging.info("Mean acceptance fraction: {0:.3f}"
                     .format(np.mean(sampler.acceptance_fraction)))
698

Gregory Ashton's avatar
Gregory Ashton committed
699
        fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols)
700
701
702
703
704
705
706
707
708
709
710
        fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label))

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
        self.sampler = sampler
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
        self.save_data(sampler, samples, lnprobs, lnlikes)

711
    def plot_corner(self, figsize=(7, 7),  tglitch_ratio=False,
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
                    add_prior=False, nstds=None, label_offset=0.4,
                    dpi=300, rc_context={}, **kwargs):

        with plt.rc_context(rc_context):
            fig, axes = plt.subplots(self.ndim, self.ndim,
                                     figsize=figsize)

            samples_plt = copy.copy(self.samples)
            theta_symbols_plt = copy.copy(self.theta_symbols)
            theta_symbols_plt = [s.replace('_{glitch}', r'_\textrm{glitch}') for s
                                 in theta_symbols_plt]

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
                        samples_plt[:, j] = (s - self.tstart)/(
                                             self.tend - self.tstart)
                        theta_symbols_plt[j] = r'$R_{\textrm{glitch}}$'

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
            else:
                _range = None

            fig_triangle = corner.corner(samples_plt,
                                         labels=theta_symbols_plt,
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
                self.add_prior_to_corner(axes, samples_plt)

            fig_triangle.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
772
773
774
775
776
777

    def add_prior_to_corner(self, axes, samples):
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            xlim = ax.get_xlim()
            s = samples[:, i]
Gregory Ashton's avatar
Gregory Ashton committed
778
            prior = self.generic_lnprior(**self.theta_prior[key])
779
780
781
782
783
784
            x = np.linspace(s.min(), s.max(), 100)
            ax2 = ax.twinx()
            ax2.get_yaxis().set_visible(False)
            ax2.plot(x, [prior(xi) for xi in x], '-r')
            ax.set_xlim(xlim)

Gregory Ashton's avatar
Gregory Ashton committed
785
    def generic_lnprior(self, **kwargs):
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
        """ Return a lambda function of the pdf

        Parameters
        ----------
        kwargs: dict
            A dictionary containing 'type' of pdf and shape parameters

        """

        def logunif(x, a, b):
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

        def halfnorm(x, loc, scale):
            if x < 0:
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
            return lambda x: logunif(x, kwargs['lower'], kwargs['upper'])
        elif kwargs['type'] == 'halfnorm':
            return lambda x: halfnorm(x, kwargs['loc'], kwargs['scale'])
828
829
        elif kwargs['type'] == 'neghalfnorm':
            return lambda x: halfnorm(-x, kwargs['loc'], kwargs['scale'])
830
831
832
833
834
835
836
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

Gregory Ashton's avatar
Gregory Ashton committed
837
    def generate_rv(self, **kwargs):
838
839
840
841
842
843
844
845
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
846
847
848
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
849
850
851
852
853
854
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

Gregory Ashton's avatar
Gregory Ashton committed
855
856
    def plot_walkers(self, sampler, symbols=None, alpha=0.4, color="k", temp=0,
                     start=None, stop=None, draw_vline=None):
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
        """ Plot all the chains from a sampler """

        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
            chain = sampler.chain[:, :, :]
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
            chain = sampler.chain[temp, :, :, :]

        with plt.style.context(('classic')):
            fig, axes = plt.subplots(ndim, 1, sharex=True, figsize=(8, 4*ndim))

            if ndim > 1:
                for i in range(ndim):
877
                    axes[i].ticklabel_format(useOffset=False, axis='y')
878
879
                    cs = chain[:, start:stop, i].T
                    axes[i].plot(cs, color="k", alpha=alpha)
880
881
882
883
                    if symbols:
                        axes[i].set_ylabel(symbols[i])
                    if draw_vline is not None:
                        axes[i].axvline(draw_vline, lw=2, ls="--")
884
885
886
887
888

            else:
                cs = chain[:, start:stop, 0].T
                axes.plot(cs, color='k', alpha=alpha)
                axes.ticklabel_format(useOffset=False, axis='y')
889
890
891

        return fig, axes

Gregory Ashton's avatar
Gregory Ashton committed
892
893
894
895
896
    def apply_corrections_to_p0(self, p0):
        """ Apply any correction to the initial p0 values """
        return p0

    def generate_scattered_p0(self, p):
897
        """ Generate a set of p0s scattered about p """
Gregory Ashton's avatar
Gregory Ashton committed
898
        p0 = [[p + self.scatter_val * p * np.random.randn(self.ndim)
899
900
901
902
               for i in xrange(self.nwalkers)]
              for j in xrange(self.ntemps)]
        return p0

Gregory Ashton's avatar
Gregory Ashton committed
903
    def generate_initial_p0(self):
904
905
906
        """ Generate a set of init vals for the walkers """

        if type(self.theta_initial) == dict:
907
908
909
            logging.info('Generate initial values from initial dictionary')
            if self.nglitch > 1:
                raise ValueError('Initial dict not implemented for nglitch>1')
Gregory Ashton's avatar
Gregory Ashton committed
910
            p0 = [[[self.generate_rv(**self.theta_initial[key])
911
912
913
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
914
915
916
917
918
919
        elif type(self.theta_initial) == list:
            logging.info('Generate initial values from list of theta_initial')
            p0 = [[[self.generate_rv(**val)
                    for val in self.theta_initial]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
920
        elif self.theta_initial is None:
921
            logging.info('Generate initial values from prior dictionary')
Gregory Ashton's avatar
Gregory Ashton committed
922
            p0 = [[[self.generate_rv(**self.theta_prior[key])
923
924
925
926
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
        elif len(self.theta_initial) == self.ndim:
Gregory Ashton's avatar
Gregory Ashton committed
927
            p0 = self.generate_scattered_p0(self.theta_initial)
928
929
930
931
932
        else:
            raise ValueError('theta_initial not understood')

        return p0

933
    def get_new_p0(self, sampler):
934
935
936
937
938
939
940
941
942
943
944
945
        """ Returns new initial positions for walkers are burn0 stage

        This returns new positions for all walkers by scattering points about
        the maximum posterior with scale `scatter_val`.

        """
        if sampler.chain[:, :, -1, :].shape[0] == 1:
            ntemps_temp = 1
        else:
            ntemps_temp = self.ntemps
        pF = sampler.chain[:, :, -1, :].reshape(
            ntemps_temp, self.nwalkers, self.ndim)[0, :, :]
946
947
        lnl = sampler.lnlikelihood[:, :, -1].reshape(
            self.ntemps, self.nwalkers)[0, :]
948
949
        lnp = sampler.lnprobability[:, :, -1].reshape(
            self.ntemps, self.nwalkers)[0, :]
950
951

        # General warnings about the state of lnp
952
        if any(np.isnan(lnp)):
953
954
955
956
957
958
959
960
961
962
963
            logging.warning(
                "Of {} lnprobs {} are nan".format(
                    len(lnp), np.sum(np.isnan(lnp))))
        if any(np.isposinf(lnp)):
            logging.warning(
                "Of {} lnprobs {} are +np.inf".format(
                    len(lnp), np.sum(np.isposinf(lnp))))
        if any(np.isneginf(lnp)):
            logging.warning(
                "Of {} lnprobs {} are -np.inf".format(
                    len(lnp), np.sum(np.isneginf(lnp))))
964

965
966
967
        lnp_finite = copy.copy(lnp)
        lnp_finite[np.isinf(lnp)] = np.nan
        p = pF[np.nanargmax(lnp_finite)]
968
969
        logging.info('Generating new p0 from max lnp which had twoF={}'
                     .format(lnl[np.nanargmax(lnp_finite)]))
970
        p0 = self.generate_scattered_p0(p)
971
972
973
974
975
976

        return p0

    def get_save_data_dictionary(self):
        d = dict(nsteps=self.nsteps, nwalkers=self.nwalkers,
                 ntemps=self.ntemps, theta_keys=self.theta_keys,
Gregory Ashton's avatar
Gregory Ashton committed
977
                 theta_prior=self.theta_prior, scatter_val=self.scatter_val,
978
979
                 log10temperature_min=self.log10temperature_min,
                 theta0_idx=self.theta0_idx)
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
        return d

    def save_data(self, sampler, samples, lnprobs, lnlikes):
        d = self.get_save_data_dictionary()
        d['sampler'] = sampler
        d['samples'] = samples
        d['lnprobs'] = lnprobs
        d['lnlikes'] = lnlikes

        if os.path.isfile(self.pickle_path):
            logging.info('Saving backup of {} as {}.old'.format(
                self.pickle_path, self.pickle_path))
            os.rename(self.pickle_path, self.pickle_path+".old")
        with open(self.pickle_path, "wb") as File:
            pickle.dump(d, File)

    def get_list_of_matching_sfts(self):
        matches = glob.glob(self.sft_filepath)
        if len(matches) > 0:
            return matches
        else:
            raise IOError('No sfts found matching {}'.format(
                self.sft_filepath))

    def get_saved_data(self):
        with open(self.pickle_path, "r") as File:
            d = pickle.load(File)
        return d

    def check_old_data_is_okay_to_use(self):
1010
1011
1012
1013
        if args.use_old_data:
            logging.info("Forcing use of old data")
            return True

1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
        if os.path.isfile(self.pickle_path) is False:
            logging.info('No pickled data found')
            return False

        oldest_sft = min([os.path.getmtime(f) for f in
                          self.get_list_of_matching_sfts()])
        if os.path.getmtime(self.pickle_path) < oldest_sft:
            logging.info('Pickled data outdates sft files')
            return False

        old_d = self.get_saved_data().copy()
        new_d = self.get_save_data_dictionary().copy()

        old_d.pop('samples')
        old_d.pop('sampler')
        old_d.pop('lnprobs')
        old_d.pop('lnlikes')

        mod_keys = []
        for key in new_d.keys():
            if key in old_d:
                if new_d[key] != old_d[key]:
                    mod_keys.append((key, old_d[key], new_d[key]))
            else:
1038
                raise ValueError('Keys {} not in old dictionary'.format(key))
1039
1040
1041
1042
1043
1044
1045
1046
1047

        if len(mod_keys) == 0:
            return True
        else:
            logging.warning("Saved data differs from requested")
            logging.info("Differences found in following keys:")
            for key in mod_keys:
                if len(key) == 3:
                    if np.isscalar(key[1]) or key[0] == 'nsteps':
1048
                        logging.info("    {} : {} -> {}".format(*key))
1049
                    else:
1050
                        logging.info("    " + key[0])
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
                else:
                    logging.info(key)
            return False

    def get_max_twoF(self, threshold=0.05):
        """ Returns the max 2F sample and the corresponding 2F value

        Note: the sample is returned as a dictionary along with an estimate of
        the standard deviation calculated from the std of all samples with a
        twoF within `threshold` (relative) to the max twoF

        """
        if any(np.isposinf(self.lnlikes)):
            logging.info('twoF values contain positive infinite values')
        if any(np.isneginf(self.lnlikes)):
            logging.info('twoF values contain negative infinite values')
        if any(np.isnan(self.lnlikes)):
            logging.info('twoF values contain nan')
        idxs = np.isfinite(self.lnlikes)
        jmax = np.nanargmax(self.lnlikes[idxs])
        maxtwoF = self.lnlikes[jmax]
1072
        d = OrderedDict()
1073

Gregory Ashton's avatar
Gregory Ashton committed
1074
        repeats = []
1075
        for i, k in enumerate(self.theta_keys):
Gregory Ashton's avatar
Gregory Ashton committed
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
            if k in d and k not in repeats:
                d[k+'_0'] = d[k]  # relabel the old key
                d.pop(k)
                repeats.append(k)
            if k in repeats:
                k = k + '_0'
                count = 1
                while k in d:
                    k = k.replace('_{}'.format(count-1), '_{}'.format(count))
                    count += 1
1086
1087
1088
1089
1090
            d[k] = self.samples[jmax][i]
        return d, maxtwoF

    def get_median_stds(self):
        """ Returns a dict of the median and std of all production samples """
1091
        d = OrderedDict()
Gregory Ashton's avatar
Gregory Ashton committed
1092
        repeats = []
1093
        for s, k in zip(self.samples.T, self.theta_keys):
Gregory Ashton's avatar
Gregory Ashton committed
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
            if k in d and k not in repeats:
                d[k+'_0'] = d[k]  # relabel the old key
                d[k+'_0_std'] = d[k+'_std']
                d.pop(k)
                d.pop(k+'_std')
                repeats.append(k)
            if k in repeats:
                k = k + '_0'
                count = 1
                while k in d:
                    k = k.replace('_{}'.format(count-1), '_{}'.format(count))
                    count += 1

1107
1108
1109
1110
1111
1112
1113
1114
            d[k] = np.median(s)
            d[k+'_std'] = np.std(s)
        return d

    def write_par(self, method='med'):
        """ Writes a .par of the best-fit params with an estimated std """
        logging.info('Writing {}/{}.par using the {} method'.format(
            self.outdir, self.label, method))
1115
1116
1117
1118
1119
1120
1121

        median_std_d = self.get_median_stds()
        max_twoF_d, max_twoF = self.get_max_twoF()

        filename = '{}/{}.par'.format(self.outdir, self.label)
        with open(filename, 'w+') as f:
            f.write('MaxtwoF = {}\n'.format(max_twoF))
1122
            f.write('theta0_index = {}\n'.format(self.theta0_idx))
1123
            if method == 'med':
1124
1125
                for key, val in median_std_d.iteritems():
                    f.write('{} = {:1.16e}\n'.format(key, val))
1126
            if method == 'twoFmax':
1127
1128
1129
1130
                for key, val in max_twoF_d.iteritems():
                    f.write('{} = {:1.16e}\n'.format(key, val))

    def print_summary(self):
Gregory Ashton's avatar
Gregory Ashton committed
1131
        max_twoFd, max_twoF = self.get_max_twoF()
1132
        median_std_d = self.get_median_stds()
Gregory Ashton's avatar
Gregory Ashton committed
1133
        print('\nSummary:')
1134
        print('theta0 index: {}'.format(self.theta0_idx))
Gregory Ashton's avatar
Gregory Ashton committed
1135
1136
1137
1138
        print('Max twoF: {} with parameters:'.format(max_twoF))
        for k in np.sort(max_twoFd.keys()):
            print('  {:10s} = {:1.9e}'.format(k, max_twoFd[k]))
        print('\nMedian +/- std for production values')
1139
        for k in np.sort(median_std_d.keys()):
1140
            if 'std' not in k:
Gregory Ashton's avatar
Gregory Ashton committed
1141
                print('  {:10s} = {:1.9e} +/- {:1.9e}'.format(
1142
                    k, median_std_d[k], median_std_d[k+'_std']))
1143
1144


Gregory Ashton's avatar
Gregory Ashton committed
1145
1146
1147
class MCMCGlitchSearch(MCMCSearch):
    """ MCMC search using the SemiCoherentGlitchSearch """
    @initializer
1148
    def __init__(self, label, outdir, sftfilepath, theta_prior, tref,
1149
1150
                 tstart, tend, nglitch=1, nsteps=[100, 100, 100], nwalkers=100,
                 ntemps=1, log10temperature_min=-5, theta_initial=None,
1151
                 scatter_val=1e-4, dtglitchmin=1*86400, theta0_idx=0,
1152
                 detector=None, BSGL=False,
1153
                 minCoverFreq=None, maxCoverFreq=None, earth_ephem=None,
Gregory Ashton's avatar
Gregory Ashton committed
1154
1155
1156
1157
1158
                 sun_ephem=None):
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
1159
1160
_        sftfilepath: str
            File patern to match SFTs
Gregory Ashton's avatar
Gregory Ashton committed
1161
1162
1163
1164
1165
1166
1167
1168
1169
        theta_prior: dict
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
1170
1171
1172
1173
        scatter_val, float or ndim array
            Size of scatter to use about the initialisation step, if given as
            an array it must be of length ndim and the order is given by
            theta_keys
Gregory Ashton's avatar
Gregory Ashton committed
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
        nglitch: int
            The number of glitches to allow
        tref, tstart, tend: int
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
        dtglitchmin: int
            The minimum duration (in seconds) of a segment between two glitches
            or a glitch and the start/end of the data
1186
1187
1188
1189
1190
1191
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
1192
1193
1194
1195
        theta0_idx, int
            Index (zero-based) of which segment the theta refers to - uyseful
            if providing a tight prior on theta to allow the signal to jump
            too theta (and not just from)
1196
1197
1198
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
Gregory Ashton's avatar
Gregory Ashton committed
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

        logging.info(('Set-up MCMC glitch search with {} glitches for model {}'
                      ' on data {}').format(self.nglitch, self.label,
1211
                                            self.sftfilepath))
Gregory Ashton's avatar
Gregory Ashton committed
1212
1213
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
1214
1215
        self.minStartTime = tstart
        self.maxStartTime = tend
Gregory Ashton's avatar
Gregory Ashton committed
1216
1217
1218
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
        self.unpack_input_theta()
        self.ndim = len(self.theta_keys)
1219
        self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
Gregory Ashton's avatar
Gregory Ashton committed
1220
1221
1222
1223
1224
1225
1226
1227
1228
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

        self.old_data_is_okay_to_use = self.check_old_data_is_okay_to_use()
1229
        self.log_input()
Gregory Ashton's avatar
Gregory Ashton committed
1230
1231
1232
1233

    def inititate_search_object(self):
        logging.info('Setting up search object')
        self.search = SemiCoherentGlitchSearch(
1234
1235
            label=self.label, outdir=self.outdir, sftfilepath=self.sftfilepath,
            tref=self.tref, tstart=self.tstart,
Gregory Ashton's avatar
Gregory Ashton committed
1236
1237
            tend=self.tend, minCoverFreq=self.minCoverFreq,
            maxCoverFreq=self.maxCoverFreq, earth_ephem=self.earth_ephem,
1238
            sun_ephem=self.sun_ephem, detector=self.detector, BSGL=self.BSGL,
1239
1240
            nglitch=self.nglitch, theta0_idx=self.theta0_idx,
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime)
Gregory Ashton's avatar
Gregory Ashton committed
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322

    def logp(self, theta_vals, theta_prior, theta_keys, search):
        if self.nglitch > 1:
            ts = [self.tstart] + theta_vals[-self.nglitch:] + [self.tend]
            if np.array_equal(ts, np.sort(ts)) is False:
                return -np.inf
            if any(np.diff(ts) < self.dtglitchmin):
                return -np.inf

        H = [self.generic_lnprior(**theta_prior[key])(p) for p, key in
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
        FS = search.compute_nglitch_fstat(*self.fixed_theta)
        return FS

    def unpack_input_theta(self):
        glitch_keys = ['delta_F0', 'delta_F1', 'tglitch']
        full_glitch_keys = list(np.array(
            [[gk]*self.nglitch for gk in glitch_keys]).flatten())
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']+full_glitch_keys
        full_theta_keys_copy = copy.copy(full_theta_keys)

        glitch_symbols = ['$\delta f$', '$\delta \dot{f}$', r'$t_{glitch}$']
        full_glitch_symbols = list(np.array(
            [[gs]*self.nglitch for gs in glitch_symbols]).flatten())
        full_theta_symbols = (['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                               r'$\delta$'] + full_glitch_symbols)
        self.theta_keys = []
        fixed_theta_dict = {}
        for key, val in self.theta_prior.iteritems():
            if type(val) is dict:
                fixed_theta_dict[key] = 0
                if key in glitch_keys:
                    for i in range(self.nglitch):
                        self.theta_keys.append(key)
                else:
                    self.theta_keys.append(key)
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
            if key in glitch_keys:
                for i in range(self.nglitch):
                    full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
            else:
                full_theta_keys_copy.pop(full_theta_keys_copy.index(key))

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

        # Correct for number of glitches in the idxs
        self.theta_idxs = np.array(self.theta_idxs)
        while np.sum(self.theta_idxs[:-1] == self.theta_idxs[1:]) > 0:
            for i, idx in enumerate(self.theta_idxs):
                if idx in self.theta_idxs[:i]:
                    self.theta_idxs[i] += 1

    def apply_corrections_to_p0(self, p0):
        p0 = np.array(p0)
        if self.nglitch > 1:
            p0[:, :, -self.nglitch:] = np.sort(p0[:, :, -self.nglitch:],
                                               axis=2)
        return p0


Gregory Ashton's avatar
Gregory Ashton committed
1323
1324
class GridSearch(BaseSearchClass):
    """ Gridded search using ComputeFstat """
1325
    @initializer
1326
    def __init__(self, label, outdir, sftfilepath, F0s=[0],
Gregory Ashton's avatar
Gregory Ashton committed
1327
1328
                 F1s=[0], F2s=[0], Alphas=[0], Deltas=[0], tref=None,
                 tstart=None, tend=None, minCoverFreq=None, maxCoverFreq=None,
1329
                 earth_ephem=None, sun_ephem=None, detector=None, BSGL=False):
1330
1331
1332
1333
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
1334
1335
        sftfilepath: str
            File patern to match SFTs
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
        F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
            Length 3 tuple describing the grid for each parameter, e.g
            [F0min, F0max, dF0], for a fixed value simply give [F0].
        tref, tstart, tend: int
            GPS seconds of the reference time, start time and end time
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """
1350

1351
1352
        self.minStartTime = tstart
        self.maxStartTime = tend
1353

1354
1355
1356
1357
1358
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

1359
1360
1361
1362
1363
1364
1365
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
        self.out_file = '{}/{}_gridFS.txt'.format(self.outdir, self.label)
        self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']

    def inititate_search_object(self):
        logging.info('Setting up search object')
Gregory Ashton's avatar
Gregory Ashton committed
1366
        self.search = ComputeFstat(
1367
1368
1369
1370
            tref=self.tref, sftfilepath=self.sftfilepath,
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
            detector=self.detector, transient=False,
1371
1372
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
            BSGL=self.BSGL)
1373
1374
1375
1376
1377
1378
1379
1380
1381

    def get_array_from_tuple(self, x):
        if len(x) == 1:
            return np.array(x)
        else:
            return np.arange(x[0], x[1]*(1+1e-15), x[2])

    def get_input_data_array(self):
        arrays = []
Gregory Ashton's avatar
Gregory Ashton committed
1382
1383