pyfstat.py 107 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
""" Classes for various types of searches using ComputeFstatistic """
import os
import sys
import itertools
import logging
import argparse
import copy
import glob
import inspect
from functools import wraps
11
import subprocess
12
from collections import OrderedDict
13
14
15

import numpy as np
import matplotlib
16
matplotlib.use('Agg')
17
18
19
20
import matplotlib.pyplot as plt
import emcee
import corner
import dill as pickle
21
import lal
22
23
import lalpulsar

24
25
26
27
28
29
try:
    from tqdm import tqdm
except ImportError:
    def tqdm(x):
        return x

30
plt.rcParams['text.usetex'] = True
31
plt.rcParams['axes.formatter.useoffset'] = False
32

33
34
35
36
37
38
39
config_file = os.path.expanduser('~')+'/.pyfstat.conf'
if os.path.isfile(config_file):
    d = {}
    with open(config_file, 'r') as f:
        for line in f:
            k, v = line.split('=')
            k = k.replace(' ', '')
40
            v = v.replace(' ', '').replace("'", "").replace('"', '').replace('\n', '')
41
42
43
44
45
46
            d[k] = v
    earth_ephem = d['earth_ephem']
    sun_ephem = d['sun_ephem']
else:
    logging.warning('No ~/.pyfstat.conf file found please provide the paths '
                    'when initialising searches')
47
48
49
    earth_ephem = None
    sun_ephem = None

50
51
52
53
54
parser = argparse.ArgumentParser()
parser.add_argument("-q", "--quite", help="Decrease output verbosity",
                    action="store_true")
parser.add_argument("-c", "--clean", help="Don't use cached data",
                    action="store_true")
55
parser.add_argument("-u", "--use-old-data", action="store_true")
56
57
58
59
parser.add_argument('unittest_args', nargs='*')
args, unknown = parser.parse_known_args()
sys.argv[1:] = args.unittest_args

Gregory Ashton's avatar
Gregory Ashton committed
60
61
62
63

logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
stream_handler = logging.StreamHandler()
64
if args.quite:
Gregory Ashton's avatar
Gregory Ashton committed
65
    stream_handler.setLevel(logging.WARNING)
66
else:
Gregory Ashton's avatar
Gregory Ashton committed
67
68
69
70
    stream_handler.setLevel(logging.DEBUG)
stream_handler.setFormatter(logging.Formatter(
    '%(asctime)s %(levelname)-8s: %(message)s', datefmt='%H:%M'))
logger.addHandler(stream_handler)
71

72
73

def initializer(func):
74
    """ Decorator function to automatically assign the parameters to self """
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    names, varargs, keywords, defaults = inspect.getargspec(func)

    @wraps(func)
    def wrapper(self, *args, **kargs):
        for name, arg in list(zip(names[1:], args)) + list(kargs.items()):
            setattr(self, name, arg)

        for name, default in zip(reversed(names), reversed(defaults)):
            if not hasattr(self, name):
                setattr(self, name, default)

        func(self, *args, **kargs)

    return wrapper


def read_par(label, outdir):
92
    """ Read in a .par file, returns a dictionary of the values """
93
94
95
96
    filename = '{}/{}.par'.format(outdir, label)
    d = {}
    with open(filename, 'r') as f:
        for line in f:
97
98
99
            if len(line.split('=')) > 1:
                key, val = line.rstrip('\n').split(' = ')
                key = key.strip()
100
                d[key] = np.float64(eval(val.rstrip('; ')))
101
102
103
104
    return d


class BaseSearchClass(object):
105
    """ The base search class, provides general functions """
106
107
108
109

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

110
    def add_log_file(self):
111
        """ Log output to a file, requires class to have outdir and label """
112
113
        logfilename = '{}/{}.log'.format(self.outdir, self.label)
        fh = logging.FileHandler(logfilename)
Gregory Ashton's avatar
Gregory Ashton committed
114
        fh.setLevel(logging.INFO)
115
116
117
118
119
        fh.setFormatter(logging.Formatter(
            '%(asctime)s %(levelname)-8s: %(message)s',
            datefmt='%y-%m-%d %H:%M'))
        logging.getLogger().addHandler(fh)

120
    def shift_matrix(self, n, dT):
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        """ Generate the shift matrix

        Parameters
        ----------
        n: int
            The dimension of the shift-matrix to generate
        dT: float
            The time delta of the shift matrix

        Returns
        -------
        m: array (n, n)
            The shift matrix
        """

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        m = np.zeros((n, n))
        factorial = np.math.factorial
        for i in range(n):
            for j in range(n):
                if i == j:
                    m[i, j] = 1.0
                elif i > j:
                    m[i, j] = 0.0
                else:
                    if i == 0:
                        m[i, j] = 2*np.pi*float(dT)**(j-i) / factorial(j-i)
                    else:
                        m[i, j] = float(dT)**(j-i) / factorial(j-i)
        return m

    def shift_coefficients(self, theta, dT):
        """ Shift a set of coefficients by dT

        Parameters
        ----------
        theta: array-like, shape (n,)
            vector of the expansion coefficients to transform starting from the
158
            lowest degree e.g [phi, F0, F1,...].
159
        dT: float
160
            difference between the two reference times as tref_new - tref_old.
161
162
163
164

        Returns
        -------
        theta_new: array-like shape (n,)
165
            vector of the coefficients as evaluate as the new reference time.
166
        """
167

168
169
170
171
        n = len(theta)
        m = self.shift_matrix(n, dT)
        return np.dot(m, theta)

172
    def calculate_thetas(self, theta, delta_thetas, tbounds, theta0_idx=0):
173
174
175
        """ Calculates the set of coefficients for the post-glitch signal """
        thetas = [theta]
        for i, dt in enumerate(delta_thetas):
176
177
178
179
180
181
182
183
184
185
186
187
188
            if i < theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[0], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch - dt
                thetas.insert(0, self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))

            elif i >= theta0_idx:
                pre_theta_at_ith_glitch = self.shift_coefficients(
                    thetas[i], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch + dt
                thetas.append(self.shift_coefficients(
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))
189
190
        return thetas

Gregory Ashton's avatar
Gregory Ashton committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    def generate_loudest(self):
        params = read_par(self.label, self.outdir)
        for key in ['Alpha', 'Delta', 'F0', 'F1']:
            if key not in params:
                params[key] = self.theta_prior[key]
        cmd = ('lalapps_ComputeFstatistic_v2 -a {} -d {} -f {} -s {} -D "{}"'
               ' --refTime={} --outputLoudest="{}/{}.loudest" '
               '--minStartTime={} --maxStartTime={}').format(
                    params['Alpha'], params['Delta'], params['F0'],
                    params['F1'], self.sftfilepath, params['tref'],
                    self.outdir, self.label, self.minStartTime,
                    self.maxStartTime)
        subprocess.call([cmd], shell=True)

205

Gregory Ashton's avatar
Gregory Ashton committed
206
class ComputeFstat(object):
207
    """ Base class providing interface to `lalpulsar.ComputeFstat` """
Gregory Ashton's avatar
Gregory Ashton committed
208
209
210
211
212

    earth_ephem_default = earth_ephem
    sun_ephem_default = sun_ephem

    @initializer
213
214
    def __init__(self, tref, sftfilepath=None, minStartTime=None,
                 maxStartTime=None, binary=False, transient=True, BSGL=False,
215
                 detector=None, minCoverFreq=None, maxCoverFreq=None,
216
                 earth_ephem=None, sun_ephem=None, injectSources=None
217
                 ):
218
219
220
221
222
        """
        Parameters
        ----------
        tref: int
            GPS seconds of the reference time.
223
224
        sftfilepath: str
            File patern to match SFTs
225
226
227
228
229
230
231
232
233
234
235
236
        minStartTime, maxStartTime: float GPStime
            Only use SFTs with timestemps starting from (including, excluding)
            this epoch
        binary: bool
            If true, search of binary parameters.
        transient: bool
            If true, allow for the Fstat to be computed over a transient range.
        BSGL: bool
            If true, compute the BSGL rather than the twoF value.
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
237
238
239
240
241
242
243
244
245
246
        minCoverFreq, maxCoverFreq: float
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput.
            If None defaults defined in BaseSearchClass will be used.

        """
Gregory Ashton's avatar
Gregory Ashton committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        self.init_computefstatistic_single_point()

    def init_computefstatistic_single_point(self):
        """ Initilisation step of run_computefstatistic for a single point """

        logging.info('Initialising SFTCatalog')
        constraints = lalpulsar.SFTConstraints()
        if self.detector:
            constraints.detector = self.detector
262
263
264
265
266
        if self.minStartTime:
            constraints.minStartTime = lal.LIGOTimeGPS(self.minStartTime)
        if self.maxStartTime:
            constraints.maxStartTime = lal.LIGOTimeGPS(self.maxStartTime)

267
        logging.info('Loading data matching pattern {}'.format(
268
269
                     self.sftfilepath))
        SFTCatalog = lalpulsar.SFTdataFind(self.sftfilepath, constraints)
Gregory Ashton's avatar
Gregory Ashton committed
270
        names = list(set([d.header.name for d in SFTCatalog.data]))
271
        SFT_timestamps = [d.header.epoch for d in SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
        try:
            from bashplotlib.histogram import plot_hist
            print('Data timestamps histogram:')
            plot_hist(SFT_timestamps, height=5, bincount=50)
        except IOError:
            pass
        if len(names) == 0:
            raise ValueError('No data loaded.')
        logging.info('Loaded {} data files from detectors {}'.format(
            len(SFT_timestamps), names))
        logging.info('Data spans from {} ({}) to {} ({})'.format(
            int(SFT_timestamps[0]),
            subprocess.check_output('lalapps_tconvert {}'.format(
                int(SFT_timestamps[0])), shell=True).rstrip('\n'),
            int(SFT_timestamps[-1]),
            subprocess.check_output('lalapps_tconvert {}'.format(
                int(SFT_timestamps[-1])), shell=True)).rstrip('\n'))
Gregory Ashton's avatar
Gregory Ashton committed
289
290
291
292
293
294

        logging.info('Initialising ephems')
        ephems = lalpulsar.InitBarycenter(self.earth_ephem, self.sun_ephem)

        logging.info('Initialising FstatInput')
        dFreq = 0
295
296
297
298
299
        if self.transient:
            self.whatToCompute = lalpulsar.FSTATQ_ATOMS_PER_DET
        else:
            self.whatToCompute = lalpulsar.FSTATQ_2F

300
301
302
303
304
305
306
307
308
309
310
        FstatOAs = lalpulsar.FstatOptionalArgs()
        FstatOAs.randSeed = lalpulsar.FstatOptionalArgsDefaults.randSeed
        FstatOAs.SSBprec = lalpulsar.FstatOptionalArgsDefaults.SSBprec
        FstatOAs.Dterms = lalpulsar.FstatOptionalArgsDefaults.Dterms
        FstatOAs.runningMedianWindow = lalpulsar.FstatOptionalArgsDefaults.runningMedianWindow
        FstatOAs.FstatMethod = lalpulsar.FstatOptionalArgsDefaults.FstatMethod
        FstatOAs.InjectSqrtSX = lalpulsar.FstatOptionalArgsDefaults.injectSqrtSX
        FstatOAs.assumeSqrtSX = lalpulsar.FstatOptionalArgsDefaults.assumeSqrtSX
        FstatOAs.prevInput = lalpulsar.FstatOptionalArgsDefaults.prevInput
        FstatOAs.collectTiming = lalpulsar.FstatOptionalArgsDefaults.collectTiming

311
        if hasattr(self, 'injectSource') and type(self.injectSources) == dict:
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
            logging.info('Injecting source with params: {}'.format(
                self.injectSources))
            PPV = lalpulsar.CreatePulsarParamsVector(1)
            PP = PPV.data[0]
            PP.Amp.h0 = self.injectSources['h0']
            PP.Amp.cosi = self.injectSources['cosi']
            PP.Amp.phi0 = self.injectSources['phi0']
            PP.Amp.psi = self.injectSources['psi']
            PP.Doppler.Alpha = self.injectSources['Alpha']
            PP.Doppler.Delta = self.injectSources['Delta']
            PP.Doppler.fkdot = np.array(self.injectSources['fkdot'])
            PP.Doppler.refTime = self.tref
            if 't0' not in self.injectSources:
                #PP.Transient.t0 = int(self.minStartTime)
                #PP.Transient.tau = int(self.maxStartTime - self.minStartTime)
                PP.Transient.type = lalpulsar.TRANSIENT_NONE
            FstatOAs.injectSources = PPV
        else:
            FstatOAs.injectSources = lalpulsar.FstatOptionalArgsDefaults.injectSources
Gregory Ashton's avatar
Gregory Ashton committed
331
332

        if self.minCoverFreq is None or self.maxCoverFreq is None:
Gregory Ashton's avatar
Gregory Ashton committed
333
334
335
336
337
            fAs = [d.header.f0 for d in SFTCatalog.data]
            fBs = [d.header.f0 + (d.numBins-1)*d.header.deltaF
                   for d in SFTCatalog.data]
            self.minCoverFreq = np.min(fAs) + 0.5
            self.maxCoverFreq = np.max(fBs) - 0.5
338
339
340
            logging.info('Min/max cover freqs not provided, using '
                         '{} and {}, est. from SFTs'.format(
                             self.minCoverFreq, self.maxCoverFreq))
Gregory Ashton's avatar
Gregory Ashton committed
341
342
343
344
345
346

        self.FstatInput = lalpulsar.CreateFstatInput(SFTCatalog,
                                                     self.minCoverFreq,
                                                     self.maxCoverFreq,
                                                     dFreq,
                                                     ephems,
347
                                                     FstatOAs
Gregory Ashton's avatar
Gregory Ashton committed
348
349
350
351
352
353
354
355
356
357
358
359
360
                                                     )

        logging.info('Initialising PulsarDoplerParams')
        PulsarDopplerParams = lalpulsar.PulsarDopplerParams()
        PulsarDopplerParams.refTime = self.tref
        PulsarDopplerParams.Alpha = 1
        PulsarDopplerParams.Delta = 1
        PulsarDopplerParams.fkdot = np.array([0, 0, 0, 0, 0, 0, 0])
        self.PulsarDopplerParams = PulsarDopplerParams

        logging.info('Initialising FstatResults')
        self.FstatResults = lalpulsar.FstatResults()

361
        if self.BSGL:
Gregory Ashton's avatar
Gregory Ashton committed
362
363
            if len(names) < 2:
                raise ValueError("Can't use BSGL with single detector data")
364
            else:
365
                logging.info('Initialising BSGL')
366

367
368
            # Tuning parameters - to be reviewed
            numDetectors = 2
Gregory Ashton's avatar
Gregory Ashton committed
369
            Fstar0sc = 15.
370
            oLGX = np.zeros(10)
Gregory Ashton's avatar
Gregory Ashton committed
371
            oLGX[:numDetectors] = 1./numDetectors
372
373
374
            self.BSGLSetup = lalpulsar.CreateBSGLSetup(numDetectors,
                                                       Fstar0sc,
                                                       oLGX,
375
                                                       True,
376
377
                                                       1)
            self.twoFX = np.zeros(10)
Gregory Ashton's avatar
Gregory Ashton committed
378
            self.whatToCompute = (self.whatToCompute +
379
380
                                  lalpulsar.FSTATQ_2F_PER_DET)

381
        if self.transient:
382
            logging.info('Initialising transient parameters')
383
384
385
386
387
388
            self.windowRange = lalpulsar.transientWindowRange_t()
            self.windowRange.type = lalpulsar.TRANSIENT_RECTANGULAR
            self.windowRange.t0Band = 0
            self.windowRange.dt0 = 1
            self.windowRange.tauBand = 0
            self.windowRange.dtau = 1
389

390
391
392
393
394
395
396
397
398
    def compute_fullycoherent_det_stat_single_point(
            self, F0, F1, F2, Alpha, Delta, asini=None, period=None, ecc=None,
            tp=None, argp=None):
        """ Compute the fully-coherent det. statistic at a single point """

        return self.run_computefstatistic_single_point(
            self.minStartTime, self.maxStartTime, F0, F1, F2, Alpha, Delta,
            asini, period, ecc, tp, argp)

Gregory Ashton's avatar
Gregory Ashton committed
399
    def run_computefstatistic_single_point(self, tstart, tend, F0, F1,
400
401
402
                                           F2, Alpha, Delta, asini=None,
                                           period=None, ecc=None, tp=None,
                                           argp=None):
403
        """ Returns twoF or ln(BSGL) fully-coherently at a single point """
Gregory Ashton's avatar
Gregory Ashton committed
404
405
406
407

        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
408
409
410
411
412
413
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp
Gregory Ashton's avatar
Gregory Ashton committed
414
415
416
417

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
418
                               1,
Gregory Ashton's avatar
Gregory Ashton committed
419
420
421
                               self.whatToCompute
                               )

422
        if self.transient is False:
423
424
425
426
427
428
            if self.BSGL is False:
                return self.FstatResults.twoF[0]

            twoF = np.float(self.FstatResults.twoF[0])
            self.twoFX[0] = self.FstatResults.twoFPerDet(0)
            self.twoFX[1] = self.FstatResults.twoFPerDet(1)
429
430
431
            log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
                                               self.BSGLSetup)
            return log10_BSGL/np.log10(np.exp(1))
432

433
434
        self.windowRange.t0 = int(tstart)  # TYPE UINT4
        self.windowRange.tau = int(tend - tstart)  # TYPE UINT4
435

Gregory Ashton's avatar
Gregory Ashton committed
436
        FS = lalpulsar.ComputeTransientFstatMap(
437
            self.FstatResults.multiFatoms[0], self.windowRange, False)
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

        if self.BSGL is False:
            return 2*FS.F_mn.data[0][0]

        FstatResults_single = copy.copy(self.FstatResults)
        FstatResults_single.lenth = 1
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
        FS0 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
        FS1 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)

        self.twoFX[0] = 2*FS0.F_mn.data[0][0]
        self.twoFX[1] = 2*FS1.F_mn.data[0][0]
453
454
        log10_BSGL = lalpulsar.ComputeBSGL(
                2*FS.F_mn.data[0][0], self.twoFX, self.BSGLSetup)
455

456
        return log10_BSGL/np.log10(np.exp(1))
Gregory Ashton's avatar
Gregory Ashton committed
457

458
459
    def calculate_twoF_cumulative(self, F0, F1, F2, Alpha, Delta, asini=None,
                                  period=None, ecc=None, tp=None, argp=None,
460
461
                                  tstart=None, tend=None, npoints=1000,
                                  minfraction=0.01, maxfraction=1):
462
463
        """ Calculate the cumulative twoF along the obseration span """
        duration = tend - tstart
464
465
        tstart = tstart + minfraction*duration
        taus = np.linspace(minfraction*duration, maxfraction*duration, npoints)
466
        twoFs = []
Gregory Ashton's avatar
Gregory Ashton committed
467
468
469
        if self.transient is False:
            self.transient = True
            self.init_computefstatistic_single_point()
470
471
472
473
474
475
476
477
478
        for tau in taus:
            twoFs.append(self.run_computefstatistic_single_point(
                tstart=tstart, tend=tstart+tau, F0=F0, F1=F1, F2=F2,
                Alpha=Alpha, Delta=Delta, asini=asini, period=period, ecc=ecc,
                tp=tp, argp=argp))

        return taus, np.array(twoFs)

    def plot_twoF_cumulative(self, label, outdir, ax=None, c='k', savefig=True,
479
                             title=None, **kwargs):
480

481
482
483
484
485
486
        taus, twoFs = self.calculate_twoF_cumulative(**kwargs)
        if ax is None:
            fig, ax = plt.subplots()
        ax.plot(taus/86400., twoFs, label=label, color=c)
        ax.set_xlabel(r'Days from $t_{{\rm start}}={:.0f}$'.format(
            kwargs['tstart']))
Gregory Ashton's avatar
Gregory Ashton committed
487
488
489
490
        if self.BSGL:
            ax.set_ylabel(r'$\log_{10}(\mathrm{BSGL})_{\rm cumulative}$')
        else:
            ax.set_ylabel(r'$\widetilde{2\mathcal{F}}_{\rm cumulative}$')
491
        ax.set_xlim(0, taus[-1]/86400)
492
        ax.set_title(title)
493
494
        if savefig:
            plt.savefig('{}/{}_twoFcumulative.png'.format(outdir, label))
Gregory Ashton's avatar
Gregory Ashton committed
495
            return taus, twoFs
496
497
498
        else:
            return ax

Gregory Ashton's avatar
Gregory Ashton committed
499

500
501
502
503
504
505
506
class SemiCoherentSearch(BaseSearchClass, ComputeFstat):
    """ A semi-coherent search """

    @initializer
    def __init__(self, label, outdir, tref, nsegs=None, sftfilepath=None,
                 binary=False, BSGL=False, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
507
508
                 detector=None, earth_ephem=None, sun_ephem=None,
                 injectSources=None):
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to.
        tref, tstart, tend: int
            GPS seconds of the reference time, and start and end of the data.
        nsegs: int
            The (fixed) number of segments
        sftfilepath: str
            File patern to match SFTs

        For all other parameters, see pyfstat.ComputeFStat.
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
        if self.earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if self.sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default
        self.transient = True
        self.init_computefstatistic_single_point()
        self.init_semicoherent_parameters()

    def init_semicoherent_parameters(self):
534
535
536
        logging.info(('Initialising semicoherent parameters from {} to {} in'
                      ' {} segments').format(
            self.minStartTime, self.maxStartTime, self.nsegs))
537
538
        self.transient = True
        self.whatToCompute = lalpulsar.FSTATQ_2F+lalpulsar.FSTATQ_ATOMS_PER_DET
539
540
541
        self.tboundaries = np.linspace(self.minStartTime, self.maxStartTime,
                                       self.nsegs+1)

Gregory Ashton's avatar
Gregory Ashton committed
542
543
544
545
    def run_semi_coherent_computefstatistic_single_point(
            self, F0, F1, F2, Alpha, Delta, asini=None,
            period=None, ecc=None, tp=None, argp=None):
        """ Returns twoF or ln(BSGL) semi-coherently at a single point """
546

Gregory Ashton's avatar
Gregory Ashton committed
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
                               1,
                               self.whatToCompute
                               )

        if self.transient is False:
            if self.BSGL is False:
                return self.FstatResults.twoF[0]

            twoF = np.float(self.FstatResults.twoF[0])
            self.twoFX[0] = self.FstatResults.twoFPerDet(0)
            self.twoFX[1] = self.FstatResults.twoFPerDet(1)
            log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
                                               self.BSGLSetup)
            return log10_BSGL/np.log10(np.exp(1))

        detStat = 0
        for tstart, tend in zip(self.tboundaries[:-1], self.tboundaries[1:]):
            self.windowRange.t0 = int(tstart)  # TYPE UINT4
            self.windowRange.tau = int(tend - tstart)  # TYPE UINT4

            FS = lalpulsar.ComputeTransientFstatMap(
                self.FstatResults.multiFatoms[0], self.windowRange, False)

            if self.BSGL is False:
                detStat += 2*FS.F_mn.data[0][0]
                continue
586

Gregory Ashton's avatar
Gregory Ashton committed
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
            FstatResults_single = copy.copy(self.FstatResults)
            FstatResults_single.lenth = 1
            FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
            FS0 = lalpulsar.ComputeTransientFstatMap(
                FstatResults_single.multiFatoms[0], self.windowRange, False)
            FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
            FS1 = lalpulsar.ComputeTransientFstatMap(
                FstatResults_single.multiFatoms[0], self.windowRange, False)

            self.twoFX[0] = 2*FS0.F_mn.data[0][0]
            self.twoFX[1] = 2*FS1.F_mn.data[0][0]
            log10_BSGL = lalpulsar.ComputeBSGL(
                    2*FS.F_mn.data[0][0], self.twoFX, self.BSGLSetup)

            detStat += log10_BSGL/np.log10(np.exp(1))

        return detStat
604
605


Gregory Ashton's avatar
Gregory Ashton committed
606
class SemiCoherentGlitchSearch(BaseSearchClass, ComputeFstat):
607
608
609
    """ A semi-coherent glitch search

    This implements a basic `semi-coherent glitch F-stat in which the data
610
611
    is divided into segments either side of the proposed glitches and the
    fully-coherent F-stat in each segment is summed to give the semi-coherent
612
613
614
615
    F-stat
    """

    @initializer
Gregory Ashton's avatar
Gregory Ashton committed
616
    def __init__(self, label, outdir, tref, tstart, tend, nglitch=0,
617
618
619
                 sftfilepath=None, theta0_idx=0, BSGL=False, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
                 detector=None, earth_ephem=None, sun_ephem=None):
620
621
622
623
        """
        Parameters
        ----------
        label, outdir: str
624
625
626
627
628
629
            A label and directory to read/write data from/to.
        tref, tstart, tend: int
            GPS seconds of the reference time, and start and end of the data.
        nglitch: int
            The (fixed) number of glitches; this can zero, but occasionally
            this causes issue (in which case just use ComputeFstat).
630
631
        sftfilepath: str
            File patern to match SFTs
632
633
634
635
        theta0_idx, int
            Index (zero-based) of which segment the theta refers to - uyseful
            if providing a tight prior on theta to allow the signal to jump
            too theta (and not just from)
636
637

        For all other parameters, see pyfstat.ComputeFStat.
638
639
640
641
642
643
644
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
        if self.earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if self.sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default
645
646
        self.transient = True
        self.binary = False
647
648
649
        self.init_computefstatistic_single_point()

    def compute_nglitch_fstat(self, F0, F1, F2, Alpha, Delta, *args):
650
        """ Returns the semi-coherent glitch summed twoF """
651
652
653

        args = list(args)
        tboundaries = [self.tstart] + args[-self.nglitch:] + [self.tend]
654
655
656
657
658
659
660
661
        delta_F0s = args[-3*self.nglitch:-2*self.nglitch]
        delta_F1s = args[-2*self.nglitch:-self.nglitch]
        delta_F2 = np.zeros(len(delta_F0s))
        delta_phi = np.zeros(len(delta_F0s))
        theta = [0, F0, F1, F2]
        delta_thetas = np.atleast_2d(
                np.array([delta_phi, delta_F0s, delta_F1s, delta_F2]).T)

662
663
        thetas = self.calculate_thetas(theta, delta_thetas, tboundaries,
                                       theta0_idx=self.theta0_idx)
664
665

        twoFSum = 0
666
        for i, theta_i_at_tref in enumerate(thetas):
667
668
669
            ts, te = tboundaries[i], tboundaries[i+1]

            twoFVal = self.run_computefstatistic_single_point(
670
671
                ts, te, theta_i_at_tref[1], theta_i_at_tref[2],
                theta_i_at_tref[3], Alpha, Delta)
672
673
            twoFSum += twoFVal

674
675
676
        if np.isfinite(twoFSum):
            return twoFSum
        else:
677
            return -np.inf
678
679
680

    def compute_glitch_fstat_single(self, F0, F1, F2, Alpha, Delta, delta_F0,
                                    delta_F1, tglitch):
681
682
683
684
        """ Returns the semi-coherent glitch summed twoF for nglitch=1

        Note: used for testing
        """
685
686
687
688
689
690
691
692
693
694
695

        theta = [F0, F1, F2]
        delta_theta = [delta_F0, delta_F1, 0]
        tref = self.tref

        theta_at_glitch = self.shift_coefficients(theta, tglitch - tref)
        theta_post_glitch_at_glitch = theta_at_glitch + delta_theta
        theta_post_glitch = self.shift_coefficients(
            theta_post_glitch_at_glitch, tref - tglitch)

        twoFsegA = self.run_computefstatistic_single_point(
Gregory Ashton's avatar
Gregory Ashton committed
696
            self.tstart, tglitch, theta[0], theta[1], theta[2], Alpha,
697
698
699
700
701
702
            Delta)

        if tglitch == self.tend:
            return twoFsegA

        twoFsegB = self.run_computefstatistic_single_point(
Gregory Ashton's avatar
Gregory Ashton committed
703
            tglitch, self.tend, theta_post_glitch[0],
704
705
706
707
708
709
            theta_post_glitch[1], theta_post_glitch[2], Alpha,
            Delta)

        return twoFsegA + twoFsegB


Gregory Ashton's avatar
Gregory Ashton committed
710
711
class MCMCSearch(BaseSearchClass):
    """ MCMC search using ComputeFstat"""
712
    @initializer
713
    def __init__(self, label, outdir, sftfilepath, theta_prior, tref,
714
                 tstart, tend, nsteps=[100, 100, 100], nwalkers=100, ntemps=1,
715
                 log10temperature_min=-5, theta_initial=None, scatter_val=1e-10,
716
717
                 binary=False, BSGL=False, minCoverFreq=None,
                 maxCoverFreq=None, detector=None, earth_ephem=None,
718
                 sun_ephem=None, injectSources=None):
719
720
721
722
        """
        Parameters
        label, outdir: str
            A label and directory to read/write data from/to
723
724
        sftfilepath: str
            File patern to match SFTs
725
        theta_prior: dict
726
727
728
729
            Dictionary of priors and fixed values for the search parameters.
            For each parameters (key of the dict), if it is to be held fixed
            the value should be the constant float, if it is be searched, the
            value should be a dictionary of the prior.
730
731
732
733
        theta_initial: dict, array, (None)
            Either a dictionary of distribution about which to distribute the
            initial walkers about, an array (from which the walkers will be
            scattered by scatter_val, or  None in which case the prior is used.
734
735
736
737
738
739
740
        tref, tstart, tend: int
            GPS seconds of the reference time, start time and end time
        nsteps: list (m,)
            List specifying the number of steps to take, the last two entries
            give the nburn and nprod of the 'production' run, all entries
            before are for iterative initialisation steps (usually just one)
            e.g. [1000, 1000, 500].
741
742
743
744
745
746
747
748
749
750
751
        nwalkers, ntemps: int,
            The number of walkers and temperates to use in the parallel
            tempered PTSampler.
        log10temperature_min float < 0
            The  log_10(tmin) value, the set of betas passed to PTSampler are
            generated from np.logspace(0, log10temperature_min, ntemps).
        binary: Bool
            If true, search over binary parameters
        detector: str
            Two character reference to the data to use, specify None for no
            contraint.
752
753
754
755
756
757
758
759
760
761
        minCoverFreq, maxCoverFreq: float
            Minimum and maximum instantaneous frequency which will be covered
            over the SFT time span as passed to CreateFstatInput
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
            If None defaults defined in BaseSearchClass will be used

        """

762
763
764
        self.minStartTime = tstart
        self.maxStartTime = tend

Gregory Ashton's avatar
Gregory Ashton committed
765
766
        if os.path.isdir(outdir) is False:
            os.mkdir(outdir)
767
        self.add_log_file()
Gregory Ashton's avatar
Gregory Ashton committed
768
769
        logging.info(
            'Set-up MCMC search for model {} on data {}'.format(
770
                self.label, self.sftfilepath))
771
772
773
        self.pickle_path = '{}/{}_saved_data.p'.format(self.outdir, self.label)
        self.unpack_input_theta()
        self.ndim = len(self.theta_keys)
774
775
776
777
        if self.log10temperature_min:
            self.betas = np.logspace(0, self.log10temperature_min, self.ntemps)
        else:
            self.betas = None
778

779
780
781
782
783
784
785
786
        if earth_ephem is None:
            self.earth_ephem = self.earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = self.sun_ephem_default

        if args.clean and os.path.isfile(self.pickle_path):
            os.rename(self.pickle_path, self.pickle_path+".old")

787
788
789
        self.log_input()

    def log_input(self):
790
        logging.info('theta_prior = {}'.format(self.theta_prior))
791
        logging.info('nwalkers={}'.format(self.nwalkers))
792
793
794
795
        logging.info('scatter_val = {}'.format(self.scatter_val))
        logging.info('nsteps = {}'.format(self.nsteps))
        logging.info('ntemps = {}'.format(self.ntemps))
        logging.info('log10temperature_min = {}'.format(
796
            self.log10temperature_min))
797
798
799

    def inititate_search_object(self):
        logging.info('Setting up search object')
Gregory Ashton's avatar
Gregory Ashton committed
800
        self.search = ComputeFstat(
801
802
803
804
            tref=self.tref, sftfilepath=self.sftfilepath,
            minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
            earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem,
            detector=self.detector, BSGL=self.BSGL, transient=False,
805
            minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
806
            binary=self.binary, injectSources=self.injectSources)
807
808

    def logp(self, theta_vals, theta_prior, theta_keys, search):
Gregory Ashton's avatar
Gregory Ashton committed
809
        H = [self.generic_lnprior(**theta_prior[key])(p) for p, key in
810
811
812
813
814
815
             zip(theta_vals, theta_keys)]
        return np.sum(H)

    def logl(self, theta, search):
        for j, theta_i in enumerate(self.theta_idxs):
            self.fixed_theta[theta_i] = theta[j]
816
817
        FS = search.compute_fullycoherent_det_stat_single_point(
            *self.fixed_theta)
818
819
820
        return FS

    def unpack_input_theta(self):
821
        full_theta_keys = ['F0', 'F1', 'F2', 'Alpha', 'Delta']
822
823
824
        if self.binary:
            full_theta_keys += [
                'asini', 'period', 'ecc', 'tp', 'argp']
825
826
        full_theta_keys_copy = copy.copy(full_theta_keys)

827
828
        full_theta_symbols = ['$f$', '$\dot{f}$', '$\ddot{f}$', r'$\alpha$',
                              r'$\delta$']
829
830
831
832
        if self.binary:
            full_theta_symbols += [
                'asini', 'period', 'period', 'ecc', 'tp', 'argp']

833
834
        self.theta_keys = []
        fixed_theta_dict = {}
835
        for key, val in self.theta_prior.iteritems():
836
837
            if type(val) is dict:
                fixed_theta_dict[key] = 0
Gregory Ashton's avatar
Gregory Ashton committed
838
                self.theta_keys.append(key)
839
840
841
842
843
844
            elif type(val) in [float, int, np.float64]:
                fixed_theta_dict[key] = val
            else:
                raise ValueError(
                    'Type {} of {} in theta not recognised'.format(
                        type(val), key))
Gregory Ashton's avatar
Gregory Ashton committed
845
            full_theta_keys_copy.pop(full_theta_keys_copy.index(key))
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861

        if len(full_theta_keys_copy) > 0:
            raise ValueError(('Input dictionary `theta` is missing the'
                              'following keys: {}').format(
                                  full_theta_keys_copy))

        self.fixed_theta = [fixed_theta_dict[key] for key in full_theta_keys]
        self.theta_idxs = [full_theta_keys.index(k) for k in self.theta_keys]
        self.theta_symbols = [full_theta_symbols[i] for i in self.theta_idxs]

        idxs = np.argsort(self.theta_idxs)
        self.theta_idxs = [self.theta_idxs[i] for i in idxs]
        self.theta_symbols = [self.theta_symbols[i] for i in idxs]
        self.theta_keys = [self.theta_keys[i] for i in idxs]

    def check_initial_points(self, p0):
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
        for nt in range(self.ntemps):
            logging.info('Checking temperature {} chains'.format(nt))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys, self.search)
                for p in p0[nt]])
            number_of_initial_out_of_bounds = sum(initial_priors == -np.inf)

            if number_of_initial_out_of_bounds > 0:
                logging.warning(
                    'Of {} initial values, {} are -np.inf due to the prior'
                    .format(len(initial_priors),
                            number_of_initial_out_of_bounds))

                p0 = self.generate_new_p0_to_fix_initial_points(
                    p0, nt, initial_priors)

    def generate_new_p0_to_fix_initial_points(self, p0, nt, initial_priors):
        logging.info('Attempting to correct intial values')
        idxs = np.arange(self.nwalkers)[initial_priors == -np.inf]
        count = 0
        while sum(initial_priors == -np.inf) > 0 and count < 100:
            for j in idxs:
                p0[nt][j] = (p0[nt][np.random.randint(0, self.nwalkers)]*(
                             1+np.random.normal(0, 1e-10, self.ndim)))
            initial_priors = np.array([
                self.logp(p, self.theta_prior, self.theta_keys,
                          self.search)
                for p in p0[nt]])
            count += 1

        if sum(initial_priors == -np.inf) > 0:
            logging.info('Failed to fix initial priors')
        else:
            logging.info('Suceeded to fix initial priors')

        return p0
898

Gregory Ashton's avatar
Gregory Ashton committed
899
    def run_sampler_with_progress_bar(self, sampler, ns, p0):
900
901
        for result in tqdm(sampler.sample(p0, iterations=ns), total=ns):
            pass
Gregory Ashton's avatar
Gregory Ashton committed
902
903
904
        return sampler

    def run(self, proposal_scale_factor=2):
905

Gregory Ashton's avatar
Gregory Ashton committed
906
        self.old_data_is_okay_to_use = self.check_old_data_is_okay_to_use()
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
        if self.old_data_is_okay_to_use is True:
            logging.warning('Using saved data from {}'.format(
                self.pickle_path))
            d = self.get_saved_data()
            self.sampler = d['sampler']
            self.samples = d['samples']
            self.lnprobs = d['lnprobs']
            self.lnlikes = d['lnlikes']
            return

        self.inititate_search_object()

        sampler = emcee.PTSampler(
            self.ntemps, self.nwalkers, self.ndim, self.logl, self.logp,
            logpargs=(self.theta_prior, self.theta_keys, self.search),
922
            loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor)
923

Gregory Ashton's avatar
Gregory Ashton committed
924
925
        p0 = self.generate_initial_p0()
        p0 = self.apply_corrections_to_p0(p0)
926
927
928
929
930
        self.check_initial_points(p0)

        ninit_steps = len(self.nsteps) - 2
        for j, n in enumerate(self.nsteps[:-2]):
            logging.info('Running {}/{} initialisation with {} steps'.format(
Gregory Ashton's avatar
Gregory Ashton committed
931
                j, ninit_steps, n))
Gregory Ashton's avatar
Gregory Ashton committed
932
            sampler = self.run_sampler_with_progress_bar(sampler, n, p0)
933
934
            logging.info("Mean acceptance fraction: {}"
                         .format(np.mean(sampler.acceptance_fraction, axis=1)))
935
936
937
            if self.ntemps > 1:
                logging.info("Tswap acceptance fraction: {}"
                             .format(sampler.tswap_acceptance_fraction))
Gregory Ashton's avatar
Gregory Ashton committed
938
            fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols)
939
940
941
            fig.savefig('{}/{}_init_{}_walkers.png'.format(
                self.outdir, self.label, j))

942
            p0 = self.get_new_p0(sampler)
Gregory Ashton's avatar
Gregory Ashton committed
943
            p0 = self.apply_corrections_to_p0(p0)
944
945
946
            self.check_initial_points(p0)
            sampler.reset()

Gregory Ashton's avatar
Gregory Ashton committed
947
948
949
950
        if len(self.nsteps) > 1:
            nburn = self.nsteps[-2]
        else:
            nburn = 0
951
952
953
        nprod = self.nsteps[-1]
        logging.info('Running final burn and prod with {} steps'.format(
            nburn+nprod))
Gregory Ashton's avatar
Gregory Ashton committed
954
        sampler = self.run_sampler_with_progress_bar(sampler, nburn+nprod, p0)
955
956
        logging.info("Mean acceptance fraction: {}"
                     .format(np.mean(sampler.acceptance_fraction, axis=1)))
957
958
959
        if self.ntemps > 1:
            logging.info("Tswap acceptance fraction: {}"
                         .format(sampler.tswap_acceptance_fraction))
960

Gregory Ashton's avatar
Gregory Ashton committed
961
962
        fig, axes = self.plot_walkers(sampler, symbols=self.theta_symbols,
                                      burnin_idx=nburn)
963
964
965
966
967
968
969
970
971
972
973
        fig.savefig('{}/{}_walkers.png'.format(self.outdir, self.label))

        samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim))
        lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1))
        lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1))
        self.sampler = sampler
        self.samples = samples
        self.lnprobs = lnprobs
        self.lnlikes = lnlikes
        self.save_data(sampler, samples, lnprobs, lnlikes)

974
    def plot_corner(self, figsize=(7, 7),  tglitch_ratio=False,
975
976
977
                    add_prior=False, nstds=None, label_offset=0.4,
                    dpi=300, rc_context={}, **kwargs):

Gregory Ashton's avatar
Gregory Ashton committed
978
979
980
981
982
983
984
985
986
987
        if self.ndim < 2:
            with plt.rc_context(rc_context):
                fig, ax = plt.subplots(figsize=figsize)
                ax.hist(self.samples, bins=50, histtype='stepfilled')
                ax.set_xlabel(self.theta_symbols[0])

            fig.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
            return

988
989
990
991
992
993
        with plt.rc_context(rc_context):
            fig, axes = plt.subplots(self.ndim, self.ndim,
                                     figsize=figsize)

            samples_plt = copy.copy(self.samples)
            theta_symbols_plt = copy.copy(self.theta_symbols)
994
995
            theta_symbols_plt = [s.replace('_{glitch}', r'_\textrm{glitch}')
                                 for s in theta_symbols_plt]
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

            if tglitch_ratio:
                for j, k in enumerate(self.theta_keys):
                    if k == 'tglitch':
                        s = samples_plt[:, j]
                        samples_plt[:, j] = (s - self.tstart)/(
                                             self.tend - self.tstart)
                        theta_symbols_plt[j] = r'$R_{\textrm{glitch}}$'

            if type(nstds) is int and 'range' not in kwargs:
                _range = []
                for j, s in enumerate(samples_plt.T):
                    median = np.median(s)
                    std = np.std(s)
                    _range.append((median - nstds*std, median + nstds*std))
            else:
                _range = None

            fig_triangle = corner.corner(samples_plt,
                                         labels=theta_symbols_plt,
                                         fig=fig,
                                         bins=50,
                                         max_n_ticks=4,
                                         plot_contours=True,
                                         plot_datapoints=True,
                                         label_kwargs={'fontsize': 8},
                                         data_kwargs={'alpha': 0.1,
                                                      'ms': 0.5},
                                         range=_range,
                                         **kwargs)

            axes_list = fig_triangle.get_axes()
            axes = np.array(axes_list).reshape(self.ndim, self.ndim)
            plt.draw()
            for ax in axes[:, 0]:
                ax.yaxis.set_label_coords(-label_offset, 0.5)
            for ax in axes[-1, :]:
                ax.xaxis.set_label_coords(0.5, -label_offset)
            for ax in axes_list:
                ax.set_rasterized(True)
                ax.set_rasterization_zorder(-10)
            plt.tight_layout(h_pad=0.0, w_pad=0.0)
            fig.subplots_adjust(hspace=0.05, wspace=0.05)

            if add_prior:
                self.add_prior_to_corner(axes, samples_plt)

            fig_triangle.savefig('{}/{}_corner.png'.format(
                self.outdir, self.label), dpi=dpi)
1045
1046
1047
1048
1049
1050

    def add_prior_to_corner(self, axes, samples):
        for i, key in enumerate(self.theta_keys):
            ax = axes[i][i]
            xlim = ax.get_xlim()
            s = samples[:, i]
Gregory Ashton's avatar
Gregory Ashton committed
1051
            prior = self.generic_lnprior(**self.theta_prior[key])
1052
1053
1054
1055
1056
1057
            x = np.linspace(s.min(), s.max(), 100)
            ax2 = ax.twinx()
            ax2.get_yaxis().set_visible(False)
            ax2.plot(x, [prior(xi) for xi in x], '-r')
            ax.set_xlim(xlim)

1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
    def plot_prior_posterior(self, normal_stds=2):
        """ Plot the posterior in the context of the prior """
        fig, axes = plt.subplots(nrows=self.ndim, figsize=(8, 4*self.ndim))
        N = 1000
        from scipy.stats import gaussian_kde

        for i, (ax, key) in enumerate(zip(axes, self.theta_keys)):
            prior_dict = self.theta_prior[key]
            prior_func = self.generic_lnprior(**prior_dict)
            if prior_dict['type'] == 'unif':
                x = np.linspace(prior_dict['lower'], prior_dict['upper'], N)
                prior = prior_func(x)
                prior[0] = 0
                prior[-1] = 0
            elif prior_dict['type'] == 'norm':
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = prior_func(x)
1077
1078
1079
1080
1081
            elif prior_dict['type'] == 'halfnorm':
                lower = prior_dict['loc']
                upper = prior_dict['loc'] + normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
Gregory Ashton's avatar
Gregory Ashton committed
1082
1083
1084
1085
1086
            elif prior_dict['type'] == 'neghalfnorm':
                upper = prior_dict['loc']
                lower = prior_dict['loc'] - normal_stds * prior_dict['scale']
                x = np.linspace(lower, upper, N)
                prior = [prior_func(xi) for xi in x]
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
            else:
                raise ValueError('Not implemented for prior type {}'.format(
                    prior_dict['type']))
            priorln = ax.plot(x, prior, 'r', label='prior')
            ax.set_xlabel(self.theta_symbols[i])

            s = self.samples[:, i]
            while len(s) > 10**4:
                # random downsample to avoid slow calculation of kde
                s = np.random.choice(s, size=int(len(s)/2.))
            kde = gaussian_kde(s)
            ax2 = ax.twinx()
            postln = ax2.plot(x, kde.pdf(x), 'k', label='posterior')
            ax2.set_yticklabels([])
            ax.set_yticklabels([])

        lns = priorln + postln
        labs = [l.get_label() for l in lns]
        axes[0].legend(lns, labs, loc=1, framealpha=0.8)

        fig.savefig('{}/{}_prior_posterior.png'.format(
            self.outdir, self.label))

1110
    def plot_cumulative_max(self, **kwargs):
Gregory Ashton's avatar
Gregory Ashton committed
1111
1112
1113
1114
        d, maxtwoF = self.get_max_twoF()
        for key, val in self.theta_prior.iteritems():
            if key not in d:
                d[key] = val
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128

        if hasattr(self, 'search') is False:
            self.inititate_search_object()
        if self.binary is False:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
                Alpha=d['Alpha'], Delta=d['Delta'], tstart=self.tstart,
                tend=self.tend, **kwargs)
        else:
            self.search.plot_twoF_cumulative(
                self.label, self.outdir, F0=d['F0'], F1=d['F1'], F2=d['F2'],
                Alpha=d['Alpha'], Delta=d['Delta'], asini=d['asini'],
                period=d['period'], ecc=d['ecc'], argp=d['argp'], tp=d['argp'],
                tstart=self.tstart, tend=self.tend, **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
1129

Gregory Ashton's avatar
Gregory Ashton committed
1130
    def generic_lnprior(self, **kwargs):
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
        """ Return a lambda function of the pdf

        Parameters
        ----------
        kwargs: dict
            A dictionary containing 'type' of pdf and shape parameters

        """

        def logunif(x, a, b):
            above = x < b
            below = x > a
            if type(above) is not np.ndarray:
                if above and below:
                    return -np.log(b-a)
                else:
                    return -np.inf
            else:
                idxs = np.array([all(tup) for tup in zip(above, below)])
                p = np.zeros(len(x)) - np.inf
                p[idxs] = -np.log(b-a)
                return p

        def halfnorm(x, loc, scale):
            if x < 0:
                return -np.inf
            else:
                return -0.5*((x-loc)**2/scale**2+np.log(0.5*np.pi*scale**2))

        def cauchy(x, x0, gamma):
            return 1.0/(np.pi*gamma*(1+((x-x0)/gamma)**2))

        def exp(x, x0, gamma):
            if x > x0:
                return np.log(gamma) - gamma*(x - x0)
            else:
                return -np.inf

        if kwargs['type'] == 'unif':
            return lambda x: logunif(x, kwargs['lower'], kwargs['upper'])
        elif kwargs['type'] == 'halfnorm':
            return lambda x: halfnorm(x, kwargs['loc'], kwargs['scale'])
1173
1174
        elif kwargs['type'] == 'neghalfnorm':
            return lambda x: halfnorm(-x, kwargs['loc'], kwargs['scale'])
1175
1176
1177
1178
1179
1180
1181
        elif kwargs['type'] == 'norm':
            return lambda x: -0.5*((x - kwargs['loc'])**2/kwargs['scale']**2
                                   + np.log(2*np.pi*kwargs['scale']**2))
        else:
            logging.info("kwargs:", kwargs)
            raise ValueError("Print unrecognise distribution")

Gregory Ashton's avatar
Gregory Ashton committed
1182
    def generate_rv(self, **kwargs):
1183
1184
1185
1186
1187
1188
1189
1190
        dist_type = kwargs.pop('type')
        if dist_type == "unif":
            return np.random.uniform(low=kwargs['lower'], high=kwargs['upper'])
        if dist_type == "norm":
            return np.random.normal(loc=kwargs['loc'], scale=kwargs['scale'])
        if dist_type == "halfnorm":
            return np.abs(np.random.normal(loc=kwargs['loc'],
                                           scale=kwargs['scale']))
1191
1192
1193
        if dist_type == "neghalfnorm":
            return -1 * np.abs(np.random.normal(loc=kwargs['loc'],
                                                scale=kwargs['scale']))
1194
1195
1196
1197
1198
1199
        if dist_type == "lognorm":
            return np.random.lognormal(
                mean=kwargs['loc'], sigma=kwargs['scale'])
        else:
            raise ValueError("dist_type {} unknown".format(dist_type))

Gregory Ashton's avatar
Gregory Ashton committed
1200
    def plot_walkers(self, sampler, symbols=None, alpha=0.4, color="k", temp=0,
Gregory Ashton's avatar
Gregory Ashton committed
1201
1202
                     lw=0.1, burnin_idx=None, add_det_stat_burnin=False,
                     fig=None, axes=None, xoffset=0, plot_det_stat=True):
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
        """ Plot all the chains from a sampler """

        shape = sampler.chain.shape
        if len(shape) == 3:
            nwalkers, nsteps, ndim = shape
            chain = sampler.chain[:, :, :]
        if len(shape) == 4:
            ntemps, nwalkers, nsteps, ndim = shape
            if temp < ntemps:
                logging.info("Plotting temperature {} chains".format(temp))
            else:
                raise ValueError(("Requested temperature {} outside of"
                                  "available range").format(temp))
            chain = sampler.chain[temp, :, :, :]

        with plt.style.context(('classic')):
Gregory Ashton's avatar
Gregory Ashton committed
1219
1220
1221
1222
1223
            if fig is None and axes is None:
                fig = plt.figure(figsize=(8, 4*ndim))
                ax = fig.add_subplot(ndim+1, 1, 1)
                axes = [ax] + [fig.add_subplot(ndim+1, 1, i, sharex=ax)
                               for i in range(2, ndim+1)]
1224

Gregory Ashton's avatar
Gregory Ashton committed
1225
            idxs = np.arange(chain.shape[1])
1226
1227
            if ndim > 1:
                for i in range(ndim):
1228
                    axes[i].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
1229
1230
                    cs = chain[:, :, i].T
                    if burnin_idx:
Gregory Ashton's avatar
Gregory Ashton committed
1231
1232
1233
1234
1235
                        axes[i].plot(xoffset+idxs[:burnin_idx],
                                     cs[:burnin_idx], color="r", alpha=alpha,
                                     lw=lw)
                    axes[i].plot(xoffset+idxs[burnin_idx:], cs[burnin_idx:],
                                 color="k", alpha=alpha, lw=lw)
1236
1237
                    if symbols:
                        axes[i].set_ylabel(symbols[i])
1238
            else:
Gregory Ashton's avatar
Gregory Ashton committed
1239
                axes[0].ticklabel_format(useOffset=False, axis='y')
Gregory Ashton's avatar
Gregory Ashton committed
1240
                cs = chain[:, :, temp].T
Gregory Ashton's avatar
Gregory Ashton committed
1241
1242
1243
1244
1245
1246
1247
                if burnin_idx:
                    axes[0].plot(idxs[:burnin_idx], cs[:burnin_idx],
                                 color="r", alpha=alpha, lw=lw)
                axes[0].plot(idxs[burnin_idx:], cs[burnin_idx:], color="k",
                             alpha=alpha, lw=lw)
                if symbols:
                    axes[0].set_ylabel(symbols[0])
1248

Gregory Ashton's avatar
Gregory Ashton committed
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
        if len(axes) == ndim:
            axes.append(fig.add_subplot(ndim+1, 1, ndim+1))

        if plot_det_stat:
            lnl = sampler.lnlikelihood[temp, :, :]
            if burnin_idx and add_det_stat_burnin:
                burn_in_vals = lnl[:, :burnin_idx].flatten()
                axes[-1].hist(burn_in_vals[~np.isnan(burn_in_vals)], bins=50,
                              histtype='step', color='r')
            else:
                burn_in_vals = []
            prod_vals = lnl[:, burnin_idx:].flatten()
            axes[-1].hist(prod_vals[~np.isnan(prod_vals)], bins=50,
                          histtype='step', color='k')
            if self.BSGL:
                axes[-1].set_xlabel(r'$\mathcal{B}_\mathrm{S/GL}$')
            else:
                axes[-1].set_xlabel(r'$2\mathcal{F}$')
            combined_vals = np.append(burn_in_vals, prod_vals)
            if len(combined_vals) > 0:
                minv = np.min(combined_vals)
                maxv = np.max(combined_vals)
                Range = abs(maxv-minv)
                axes[-1].set_xlim(minv-0.1*Range, maxv+0.1*Range)
Gregory Ashton's avatar
Gregory Ashton committed
1273

1274
1275
        return fig, axes

Gregory Ashton's avatar
Gregory Ashton committed
1276
1277
1278
1279
1280
    def apply_corrections_to_p0(self, p0):
        """ Apply any correction to the initial p0 values """
        return p0

    def generate_scattered_p0(self, p):
1281
        """ Generate a set of p0s scattered about p """
Gregory Ashton's avatar
Gregory Ashton committed
1282
        p0 = [[p + self.scatter_val * p * np.random.randn(self.ndim)
1283
1284
1285
1286
               for i in xrange(self.nwalkers)]
              for j in xrange(self.ntemps)]
        return p0

Gregory Ashton's avatar
Gregory Ashton committed
1287
    def generate_initial_p0(self):
1288
1289
1290
        """ Generate a set of init vals for the walkers """

        if type(self.theta_initial) == dict:
1291
            logging.info('Generate initial values from initial dictionary')
1292
            if hasattr(self, 'nglitch') and self.nglitch > 1:
1293
                raise ValueError('Initial dict not implemented for nglitch>1')
Gregory Ashton's avatar
Gregory Ashton committed
1294
            p0 = [[[self.generate_rv(**self.theta_initial[key])
1295
1296
1297
                    for key in self.theta_keys]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
1298
1299
1300
1301
1302
1303
        elif type(self.theta_initial) == list:
            logging.info('Generate initial values from list of theta_initial')
            p0 = [[[self.generate_rv(**val)
                    for val in self.theta_initial]
                   for i in range(self.nwalkers)]
                  for j in range(self.ntemps)]
1304
        elif self.theta_initial is None:
1305
            logging.info('Generate initial values from prior dictionary')
Gregory Ashton's avatar
Gregory Ashton committed
1306
            p0 = [[[self.generate_rv(**self.theta_pr