diff --git a/Paper/AllSkyMC/generate_data.py b/Paper/AllSkyMC/generate_data.py index 218f96eb203c677fcc795caa106e44d7ce559a5b..abcb5ddf995d9218c1d28a1a069eb006fa363844 100644 --- a/Paper/AllSkyMC/generate_data.py +++ b/Paper/AllSkyMC/generate_data.py @@ -28,7 +28,8 @@ VF0 = VF1 = 100 DeltaF0 = VF0 * np.sqrt(3)/(np.pi*Tspan) DeltaF1 = VF1 * np.sqrt(45/4.)/(np.pi*Tspan**2) -depths = np.linspace(100, 400, 7) +#depths = np.linspace(100, 400, 7) +depths = [50, 75] nsteps = 50 run_setup = [((nsteps, 0), 20, False), diff --git a/Paper/AllSkyMC/plot_data.py b/Paper/AllSkyMC/plot_data.py index 9f12e155ba7a34766526fbb8457fee2141a1e633..37811a586c174cfdd4ab586678a2b7f0055b985c 100644 --- a/Paper/AllSkyMC/plot_data.py +++ b/Paper/AllSkyMC/plot_data.py @@ -79,8 +79,10 @@ fig.tight_layout() fig.savefig('allsky_recovery.png') +total_number_steps = 6 * 50. fig, ax = plt.subplots() -ax.hist(df.runTime, bins=20) -ax.set_xlabel('runTime per follow-up [s]') +ax.hist(df.runTime/total_number_steps, bins=50) +ax.set_xlabel('run-time per step [s]') +fig.tight_layout() fig.savefig('runTimeHist.png') diff --git a/Paper/AllSkyMC/runTimeHist.png b/Paper/AllSkyMC/runTimeHist.png new file mode 100644 index 0000000000000000000000000000000000000000..ee6df4216d4f111e51301ca2dc30b61a8fb99e33 Binary files /dev/null and b/Paper/AllSkyMC/runTimeHist.png differ diff --git a/Paper/AllSkyMC/submitfile b/Paper/AllSkyMC/submitfile index 1c7d5e59431ce5a4f5b13cc2b83ac35dfe57cf63..191a502764a6e221a87d0ccc89d49be609c8587c 100644 --- a/Paper/AllSkyMC/submitfile +++ b/Paper/AllSkyMC/submitfile @@ -9,4 +9,4 @@ Log=CollectedOutput/log.$(Process) request_cpus = 1 request_memory = 16 GB -Queue 90 +Queue 100 diff --git a/Paper/DirectedMC/plot_data.py b/Paper/DirectedMC/plot_data.py index 8dc41ce85d1a4621610c25868c0364bc1bbfc42b..fe9a2e39efe3dccfd963ba6a5a0841565ecd8a4d 100644 --- a/Paper/DirectedMC/plot_data.py +++ b/Paper/DirectedMC/plot_data.py @@ -4,6 +4,9 @@ import numpy as np import os from tqdm import tqdm from oct2py import octave +import glob + +filenames = glob.glob("CollectedOutput/*.txt") plt.style.use('paper') @@ -22,14 +25,17 @@ def Recovery(Tspan, Depth, twoFstar=60, detectors='H1,L1'): def binomialConfidenceInterval(N, K, confidence=0.95): cmd = '[fLow, fUpper] = binomialConfidenceInterval({}, {}, {})'.format( N, K, confidence) - [l, u] = octave.eval(cmd, verbose=False, return_both=True)[0].split('\n') + [l, u] = octave.eval(cmd, verbose=False, return_both=True)[0].split('\n') return float(l.split('=')[1]), float(u.split('=')[1]) -results_file_name = 'MCResults.txt' - -df = pd.read_csv( - results_file_name, sep=' ', names=['depth', 'h0', 'dF0', 'dF1', - 'twoF_predicted', 'twoF', 'runTime']) +df_list = [] +for fn in filenames: + df = pd.read_csv( + fn, sep=' ', names=['depth', 'h0', 'dF0', 'dF1', 'twoF_predicted', + 'twoF', 'runTime']) + df['CLUSTER_ID'] = fn.split('_')[1] + df_list.append(df) +df = pd.concat(df_list) twoFstar = 60 depths = np.unique(df.depth.values) @@ -73,8 +79,11 @@ fig.tight_layout() fig.savefig('directed_recovery.png') +total_number_steps = 5*20. +df_clean = df[df.CLUSTER_ID == '969049'] # Hack due to a change in the code fig, ax = plt.subplots() -ax.hist(df.runTime, bins=50) -ax.set_xlabel('runTime per follow-up [s]') +ax.hist(df_clean.runTime/total_number_steps, bins=50) +ax.set_xlabel('run-time per step [s]') +fig.tight_layout() fig.savefig('runTimeHist.png') diff --git a/Paper/DirectedMC/runTimeHist.png b/Paper/DirectedMC/runTimeHist.png new file mode 100644 index 0000000000000000000000000000000000000000..13cb78f5b50209ae275f7dda07dfe150d0f42403 Binary files /dev/null and b/Paper/DirectedMC/runTimeHist.png differ diff --git a/Paper/allsky_recovery.png b/Paper/allsky_recovery.png index c015222c5cb2e53607ac0a37e43b99e74e3cecdb..aef4bf549a6be72b4719f42ca2b2db77048eea65 100644 Binary files a/Paper/allsky_recovery.png and b/Paper/allsky_recovery.png differ