diff --git a/Paper/AllSkyMC/repeat.sh b/Paper/AllSkyMC/AllSkyMC_repeat.sh
similarity index 53%
rename from Paper/AllSkyMC/repeat.sh
rename to Paper/AllSkyMC/AllSkyMC_repeat.sh
index 6ec0f9b3a8d02a1922d130fc178fa365e8a6721a..0f98c59e2193363a0f61d499da7226571ab60008 100755
--- a/Paper/AllSkyMC/repeat.sh
+++ b/Paper/AllSkyMC/AllSkyMC_repeat.sh
@@ -4,9 +4,8 @@
 export PATH="/home/gregory.ashton/anaconda2/bin:$PATH"
 export MPLCONFIGDIR=/home/gregory.ashton/.config/matplotlib
 
-rm /local/user/gregory.ashton/MCResults*txt 
-for ((n=0;n<10;n++))
+for ((n=0;n<1;n++))
 do
-/home/gregory.ashton/anaconda2/bin/python generate_data.py "$1" /local/user/gregory.ashton --quite --no-template-counting
+/home/gregory.ashton/anaconda2/bin/python generate_data.py "$1" /local/user/gregory.ashton --no-template-counting --no-interactive
 done
-cp /local/user/gregory.ashton/MCResults*txt /home/gregory.ashton/PyFstat/Paper/AllSkyMC/CollectedOutput
+cp /local/user/gregory.ashton/MCResults_"$1".txt $(pwd)/CollectedOutput
diff --git a/Paper/AllSkyMC/MCResults.txt b/Paper/AllSkyMC/MCResults.txt
deleted file mode 100644
index 561dd86e2aa932b7be43b56de39460c3e184c58d..0000000000000000000000000000000000000000
--- a/Paper/AllSkyMC/MCResults.txt
+++ /dev/null
@@ -1,693 +0,0 @@
-100.0 2.00000000e-25 2.55212175e-07 -2.64479429e-14 1.57100000e+02 1.53232697e+02
-150.0 1.33333333e-25 1.83382411e-08 1.45118793e-13 1.56700000e+02 1.55075867e+02
-200.0 1.00000000e-25 -4.46838232e-07 5.15552744e-13 2.81000000e+01 2.82982674e+01
-250.0 8.00000000e-26 -3.24153664e-07 -2.27148947e-13 5.61000000e+01 6.23434258e+01
-300.0 6.66666667e-26 8.49900164e-07 1.58048759e-13 1.82000000e+01 2.79501820e+01
-350.0 5.71428571e-26 -6.12452922e-07 -2.22944595e-13 1.25000000e+01 2.41541119e+01
-400.0 5.00000000e-26 -6.10321536e-07 3.35439731e-14 9.70000000e+00 2.87102795e+01
-100.0 2.00000000e-25 2.00245008e-07 -3.17138514e-13 1.76800000e+02 1.45316666e+02
-150.0 1.33333333e-25 3.41318035e-07 -3.58211984e-14 6.31000000e+01 5.30364037e+01
-200.0 1.00000000e-25 9.29674506e-08 6.61589964e-14 1.65900000e+02 1.36813187e+02
-250.0 8.00000000e-26 -1.62339050e-06 1.91978149e-14 1.90000000e+01 3.15320702e+01
-300.0 6.66666667e-26 -8.52393157e-07 -5.61271254e-13 5.13000000e+01 4.08834343e+01
-350.0 5.71428571e-26 -1.84072467e-06 8.21849334e-14 2.72000000e+01 4.54150162e+01
-400.0 5.00000000e-26 -2.29038309e-06 -8.96822846e-14 3.33000000e+01 2.67008438e+01
-100.0 2.00000000e-25 -2.16292797e-08 6.41483133e-14 4.78800000e+02 5.42441467e+02
-150.0 1.33333333e-25 -1.46889434e-07 -7.03552647e-14 8.83000000e+01 1.05605057e+02
-200.0 1.00000000e-25 -1.10819039e-06 3.69210530e-13 4.17000000e+01 2.92813225e+01
-250.0 8.00000000e-26 -1.26783071e-06 1.33697838e-13 1.96000000e+01 2.70255642e+01
-300.0 6.66666667e-26 2.16740611e-06 -5.73873545e-13 3.90000000e+01 2.75142155e+01
-350.0 5.71428571e-26 -1.32431677e-06 -1.39336326e-13 1.18000000e+01 3.10304279e+01
-400.0 5.00000000e-26 -1.57532732e-07 -1.22752767e-14 1.07000000e+01 2.92084770e+01
-100.0 2.00000000e-25 -1.87679568e-07 -7.59351822e-15 1.56200000e+02 1.28389099e+02
-150.0 1.33333333e-25 1.72509523e-07 3.93244779e-13 1.63500000e+02 1.57067200e+02
-200.0 1.00000000e-25 1.31377081e-06 -7.92547271e-15 5.06000000e+01 2.63263302e+01
-250.0 8.00000000e-26 6.17024597e-07 -1.84794598e-13 6.68000000e+01 4.56854172e+01
-300.0 6.66666667e-26 -1.81053120e-06 6.72190629e-13 1.58000000e+01 2.92046242e+01
-350.0 5.71428571e-26 6.08772741e-07 4.47404194e-13 5.68000000e+01 3.04391975e+01
-400.0 5.00000000e-26 -1.28974448e-06 -4.99177002e-13 3.59000000e+01 3.07177486e+01
-100.0 2.00000000e-25 -1.96941485e-09 7.62162485e-14 5.78200000e+02 4.98740936e+02
-150.0 1.33333333e-25 1.16422044e-07 8.81781953e-14 2.47100000e+02 2.60390778e+02
-200.0 1.00000000e-25 -1.74860865e-07 8.15077146e-14 1.46000000e+02 1.49091354e+02
-250.0 8.00000000e-26 3.09219939e-07 -2.96822097e-14 9.62000000e+01 1.23402733e+02
-300.0 6.66666667e-26 1.73003779e-06 -2.43357329e-14 3.72000000e+01 3.21214867e+01
-350.0 5.71428571e-26 9.23528400e-07 3.29177732e-13 3.67000000e+01 3.50002708e+01
-400.0 5.00000000e-26 -3.35490466e-07 -4.59601856e-13 3.34000000e+01 3.20039902e+01
-100.0 2.00000000e-25 2.44160034e-08 2.94700034e-13 1.04500000e+02 9.39170761e+01
-150.0 1.33333333e-25 -1.66300321e-07 -1.32515282e-13 2.23600000e+02 2.62754211e+02
-200.0 1.00000000e-25 -9.89341775e-07 1.57162596e-14 4.25000000e+01 3.39196548e+01
-250.0 8.00000000e-26 4.01700959e-07 6.08345511e-14 4.33000000e+01 2.80803089e+01
-300.0 6.66666667e-26 -7.49065521e-07 -2.78140542e-13 2.24000000e+01 2.75732365e+01
-350.0 5.71428571e-26 -1.01742404e-06 1.58180376e-13 2.92000000e+01 3.03545151e+01
-400.0 5.00000000e-26 1.61734759e-06 9.14473401e-14 2.03000000e+01 2.75872345e+01
-100.0 2.00000000e-25 -1.30944141e-07 -4.59513508e-14 1.50800000e+02 1.84553833e+02
-150.0 1.33333333e-25 -3.88231360e-07 5.25761519e-14 7.38000000e+01 9.97120819e+01
-200.0 1.00000000e-25 -4.81573146e-08 -3.06539173e-13 1.06300000e+02 1.08868156e+02
-250.0 8.00000000e-26 6.53529835e-07 -1.75302821e-13 1.92000000e+01 2.92682571e+01
-300.0 6.66666667e-26 -6.76188805e-07 -4.63819141e-13 1.45000000e+01 2.44380016e+01
-350.0 5.71428571e-26 1.03702635e-06 -1.25700302e-13 1.30000000e+01 3.25348015e+01
-400.0 5.00000000e-26 4.49693932e-07 3.56316425e-14 3.34000000e+01 2.53006420e+01
-100.0 2.00000000e-25 5.82478421e-08 7.75515015e-14 5.31000000e+02 5.26445374e+02
-150.0 1.33333333e-25 -3.21029603e-08 -1.19704824e-13 1.37100000e+02 1.44284576e+02
-200.0 1.00000000e-25 -1.11748408e-06 1.45975297e-13 2.64000000e+01 2.57817078e+01
-250.0 8.00000000e-26 1.13985524e-06 -6.06474749e-14 3.69000000e+01 2.61923218e+01
-300.0 6.66666667e-26 1.34719464e-07 1.64228534e-13 2.79000000e+01 6.82637405e+01
-350.0 5.71428571e-26 6.74422118e-07 -6.25120830e-14 2.24000000e+01 2.50688667e+01
-400.0 5.00000000e-26 1.07954257e-07 -3.19077877e-13 1.24000000e+01 3.35822105e+01
-100.0 2.00000000e-25 9.54673460e-08 4.27184425e-13 2.48600000e+02 2.28204147e+02
-150.0 1.33333333e-25 -5.15130218e-07 -5.51502123e-13 4.47000000e+01 2.76664085e+01
-200.0 1.00000000e-25 6.94589311e-08 7.22180649e-14 1.27300000e+02 1.46018692e+02
-250.0 8.00000000e-26 -1.04288504e-06 2.25935752e-13 3.97000000e+01 2.85804749e+01
-300.0 6.66666667e-26 -1.77325310e-06 -4.24266286e-13 1.43000000e+01 2.40833530e+01
-350.0 5.71428571e-26 2.17871455e-06 -2.57753345e-13 2.88000000e+01 3.63996086e+01
-400.0 5.00000000e-26 1.48898122e-06 6.60524421e-14 1.29000000e+01 2.76210995e+01
-100.0 2.00000000e-25 1.07717657e-06 -3.29474433e-13 9.71000000e+01 4.14864197e+01
-150.0 1.33333333e-25 1.81598147e-06 -1.71232534e-13 5.76000000e+01 3.07426720e+01
-200.0 1.00000000e-25 1.65218811e-06 -1.65547634e-14 2.96000000e+01 3.65558853e+01
-250.0 8.00000000e-26 2.67231357e-08 -1.58234855e-13 8.92000000e+01 8.86695633e+01
-300.0 6.66666667e-26 -2.37191785e-06 -5.68082137e-13 3.05000000e+01 3.26445694e+01
-350.0 5.71428571e-26 -3.12374165e-06 -1.43408080e-13 2.78000000e+01 2.51991482e+01
-400.0 5.00000000e-26 1.67361558e-06 -1.69241449e-13 3.12000000e+01 3.37750511e+01
-100.0 2.00000000e-25 2.48749839e-07 -2.96893283e-13 8.31000000e+01 7.09350510e+01
-150.0 1.33333333e-25 1.64951111e-08 1.57659635e-13 1.19400000e+02 1.32534653e+02
-200.0 1.00000000e-25 -1.51936230e-06 1.52691785e-13 3.18000000e+01 3.38039246e+01
-250.0 8.00000000e-26 -5.15963166e-08 2.87028842e-13 8.80000000e+01 9.57149963e+01
-300.0 6.66666667e-26 5.42093169e-07 -1.06673250e-13 5.44000000e+01 6.52619247e+01
-350.0 5.71428571e-26 -1.41653248e-06 5.71932744e-15 1.81000000e+01 3.71797905e+01
-400.0 5.00000000e-26 2.95662323e-06 4.01539078e-13 1.77000000e+01 2.93694706e+01
-100.0 2.00000000e-25 -1.37550465e-07 1.08821462e-13 4.23100000e+02 3.74900421e+02
-150.0 1.33333333e-25 -1.15463411e-07 4.20674877e-13 1.80400000e+02 2.11700104e+02
-200.0 1.00000000e-25 2.16411216e-07 1.80251582e-13 3.89000000e+01 5.19572754e+01
-250.0 8.00000000e-26 2.32751063e-08 -6.28944309e-14 4.17000000e+01 2.83321400e+01
-300.0 6.66666667e-26 -1.51501155e-06 1.32923681e-13 1.34000000e+01 2.60895271e+01
-350.0 5.71428571e-26 2.13796170e-06 6.22855331e-13 1.26000000e+01 2.99625778e+01
-400.0 5.00000000e-26 -2.83706179e-07 -3.66082485e-14 1.26000000e+01 2.84631062e+01
-100.0 2.00000000e-25 -1.11021724e-06 3.02513847e-13 2.60300000e+02 1.67676346e+02
-150.0 1.33333333e-25 4.09091278e-07 -3.86388103e-13 5.67000000e+01 6.69639511e+01
-200.0 1.00000000e-25 -2.86356872e-07 -1.43893639e-13 2.86000000e+01 3.16270676e+01
-250.0 8.00000000e-26 2.23536283e-08 -4.43127488e-14 9.35000000e+01 9.85390854e+01
-300.0 6.66666667e-26 -2.34497342e-06 -3.46900681e-13 1.63000000e+01 3.15559750e+01
-350.0 5.71428571e-26 -1.11028633e-06 2.03109741e-13 3.73000000e+01 3.46381149e+01
-400.0 5.00000000e-26 -1.68100666e-07 2.42657860e-13 1.46000000e+01 2.43150864e+01
-100.0 2.00000000e-25 5.97247052e-09 -8.94286612e-14 5.61800000e+02 4.92607483e+02
-150.0 1.33333333e-25 -3.98431929e-07 1.28622052e-13 6.53000000e+01 7.27139969e+01
-200.0 1.00000000e-25 -5.17275016e-07 6.44028674e-15 3.39000000e+01 3.85205803e+01
-250.0 8.00000000e-26 1.91667333e-07 -6.01837805e-13 1.85000000e+01 2.48970070e+01
-300.0 6.66666667e-26 1.72723266e-06 -4.75080800e-14 5.04000000e+01 2.84922333e+01
-350.0 5.71428571e-26 -1.24889881e-06 2.86595062e-14 4.08000000e+01 3.38847084e+01
-400.0 5.00000000e-26 -5.58523965e-07 1.47249885e-13 3.36000000e+01 4.98952866e+01
-100.0 2.00000000e-25 -1.65911331e-07 1.58004397e-13 1.13100000e+02 1.08804863e+02
-150.0 1.33333333e-25 -9.50259746e-08 1.47542108e-13 8.74000000e+01 9.08353577e+01
-200.0 1.00000000e-25 4.48460185e-07 1.94237872e-13 2.28000000e+01 2.80278091e+01
-250.0 8.00000000e-26 -1.84799738e-07 2.32549092e-13 8.90000000e+01 1.26346832e+02
-300.0 6.66666667e-26 1.32176048e-06 -9.25575079e-14 3.83000000e+01 3.75386658e+01
-350.0 5.71428571e-26 2.84925907e-07 -3.31474054e-14 2.86000000e+01 3.93491096e+01
-400.0 5.00000000e-26 -2.18200537e-06 -4.75523282e-13 1.74000000e+01 3.21987038e+01
-100.0 2.00000000e-25 -2.79049942e-07 5.12459891e-14 1.79300000e+02 2.17282272e+02
-150.0 1.33333333e-25 -5.17380712e-07 -1.00896478e-13 1.14300000e+02 6.26374397e+01
-200.0 1.00000000e-25 -1.16981066e-06 5.70154863e-14 1.46700000e+02 4.23898163e+01
-250.0 8.00000000e-26 1.48024669e-06 -4.40288898e-13 2.63000000e+01 3.51083450e+01
-300.0 6.66666667e-26 2.82696075e-06 5.46898891e-13 2.60000000e+01 2.81865826e+01
-350.0 5.71428571e-26 2.60449497e-07 -2.47286440e-13 3.84000000e+01 5.01325302e+01
-400.0 5.00000000e-26 2.52554465e-06 -8.91738374e-14 1.97000000e+01 2.95999928e+01
-100.0 2.00000000e-25 8.41295353e-08 2.53875819e-13 3.07400000e+02 2.98136536e+02
-150.0 1.33333333e-25 -5.10353821e-08 1.15302547e-13 2.26800000e+02 2.50716537e+02
-200.0 1.00000000e-25 2.07148183e-08 1.06620193e-13 1.67400000e+02 1.82909180e+02
-250.0 8.00000000e-26 -8.63368854e-07 -5.75081669e-13 2.75000000e+01 3.00025330e+01
-300.0 6.66666667e-26 -9.49728427e-07 7.59985970e-14 1.51000000e+01 2.83355732e+01
-350.0 5.71428571e-26 -9.53760484e-08 2.98169780e-13 5.50000000e+01 5.47068596e+01
-400.0 5.00000000e-26 -8.91617447e-07 3.47486675e-13 2.21000000e+01 3.41692429e+01
-100.0 2.00000000e-25 -1.08150459e-07 1.86466639e-13 4.08100000e+02 3.57682495e+02
-150.0 1.33333333e-25 2.62984749e-07 -4.85531728e-13 4.13000000e+01 2.94460239e+01
-200.0 1.00000000e-25 8.87240784e-07 1.74866193e-13 2.55000000e+01 3.53042755e+01
-250.0 8.00000000e-26 -8.27109226e-08 1.67701581e-13 3.54000000e+01 2.90864735e+01
-300.0 6.66666667e-26 9.76273832e-07 2.61108563e-13 3.15000000e+01 3.45162926e+01
-350.0 5.71428571e-26 -7.39363781e-07 -6.95657561e-14 3.72000000e+01 3.67973061e+01
-400.0 5.00000000e-26 -1.23019775e-06 3.52070392e-13 4.73000000e+01 3.29850082e+01
-100.0 2.00000000e-25 -3.69909152e-08 1.16819796e-13 6.34300000e+02 6.07739441e+02
-150.0 1.33333333e-25 -7.50140185e-07 -6.72539767e-15 4.34000000e+01 2.90662575e+01
-200.0 1.00000000e-25 1.48240048e-06 5.06049707e-13 2.63000000e+01 3.44485893e+01
-250.0 8.00000000e-26 -3.80215859e-08 1.85150150e-13 8.56000000e+01 1.02437462e+02
-300.0 6.66666667e-26 1.88100354e-06 -6.94441625e-14 4.02000000e+01 4.25853157e+01
-350.0 5.71428571e-26 -7.74951143e-07 1.16313800e-13 1.30000000e+01 2.92157402e+01
-400.0 5.00000000e-26 -8.36876726e-07 -3.91251576e-13 9.20000000e+00 3.29985199e+01
-100.0 2.00000000e-25 8.51457607e-08 -1.91847948e-13 4.73100000e+02 4.15496613e+02
-150.0 1.33333333e-25 5.41174963e-08 -3.85113592e-13 8.47000000e+01 3.10313034e+01
-200.0 1.00000000e-25 1.57369039e-06 2.72832440e-14 3.34000000e+01 2.97662411e+01
-250.0 8.00000000e-26 -2.59751577e-07 -1.19100978e-13 3.20000000e+01 2.67665958e+01
-300.0 6.66666667e-26 -1.56580918e-06 -4.86623019e-13 1.45000000e+01 2.06920834e+01
-350.0 5.71428571e-26 -2.56834136e-06 -5.56450753e-13 2.38000000e+01 3.06006927e+01
-400.0 5.00000000e-26 -2.77248795e-06 -1.41011536e-13 1.39000000e+01 3.08534203e+01
-100.0 2.00000000e-25 6.78616274e-09 1.01446419e-13 2.22300000e+02 2.30260941e+02
-150.0 1.33333333e-25 1.56231257e-06 7.25275641e-14 4.53000000e+01 2.56684742e+01
-200.0 1.00000000e-25 1.29214197e-06 3.13381127e-13 2.23000000e+01 2.90698605e+01
-250.0 8.00000000e-26 5.19554209e-07 2.36149305e-14 3.86000000e+01 2.96863823e+01
-300.0 6.66666667e-26 3.07782913e-06 4.42160362e-13 5.12000000e+01 3.88380394e+01
-350.0 5.71428571e-26 -2.52767815e-06 5.68743851e-13 5.07000000e+01 2.69561081e+01
-400.0 5.00000000e-26 1.78371596e-06 2.48502123e-13 2.77000000e+01 3.39265709e+01
-100.0 2.00000000e-25 -6.20645935e-09 2.48998743e-13 1.06000000e+02 9.02960739e+01
-150.0 1.33333333e-25 -5.19971550e-08 3.08655431e-13 8.65000000e+01 1.16637726e+02
-200.0 1.00000000e-25 1.69066298e-06 -2.92699783e-13 1.76400000e+02 6.60585175e+01
-250.0 8.00000000e-26 -9.01487365e-07 2.50931355e-13 2.65000000e+01 2.85785446e+01
-300.0 6.66666667e-26 -8.93657344e-08 2.18292879e-13 7.76000000e+01 6.70677490e+01
-350.0 5.71428571e-26 5.56241130e-07 -1.57615388e-13 3.29000000e+01 3.66373444e+01
-400.0 5.00000000e-26 -1.06324195e-06 1.69994561e-13 1.69000000e+01 3.15552921e+01
-100.0 2.00000000e-25 -1.13182291e-06 -5.69351282e-13 8.92000000e+01 5.62055435e+01
-150.0 1.33333333e-25 -1.75822962e-07 -3.69861745e-13 1.58900000e+02 1.82874313e+02
-200.0 1.00000000e-25 -1.49863748e-07 -4.87865648e-13 1.36300000e+02 1.44370361e+02
-250.0 8.00000000e-26 -2.80456135e-07 2.60505394e-13 8.63000000e+01 8.13805008e+01
-300.0 6.66666667e-26 7.63762376e-07 -3.43204441e-13 1.20000000e+01 2.86282845e+01
-350.0 5.71428571e-26 2.97054481e-07 -3.51464753e-15 4.87000000e+01 5.98091660e+01
-400.0 5.00000000e-26 1.88462062e-06 4.63352166e-13 2.10000000e+01 3.03648682e+01
-100.0 2.00000000e-25 -1.10423137e-08 1.17998994e-13 6.64400000e+02 5.52369995e+02
-150.0 1.33333333e-25 1.52561235e-08 2.03449692e-14 3.02600000e+02 2.84942017e+02
-200.0 1.00000000e-25 2.22987129e-07 1.82138737e-13 1.02800000e+02 2.98540192e+01
-250.0 8.00000000e-26 -3.21445725e-07 7.89099303e-14 4.42000000e+01 3.48697281e+01
-300.0 6.66666667e-26 -6.66109830e-07 4.01282558e-13 4.06000000e+01 2.82315712e+01
-350.0 5.71428571e-26 1.90602302e-06 1.29415811e-13 2.53000000e+01 3.22663422e+01
-400.0 5.00000000e-26 1.23048923e-06 -4.73191000e-13 2.31000000e+01 3.46318016e+01
-100.0 2.00000000e-25 8.13904855e-08 2.13515091e-13 3.16600000e+02 3.28600555e+02
-150.0 1.33333333e-25 7.55280514e-07 -3.04848323e-13 4.46000000e+01 3.88347816e+01
-200.0 1.00000000e-25 2.47431978e-06 3.63955557e-13 5.33000000e+01 4.03198166e+01
-250.0 8.00000000e-26 6.91372293e-08 2.94440450e-13 1.04100000e+02 1.02852516e+02
-300.0 6.66666667e-26 -2.95476780e-06 -3.15332047e-13 1.61000000e+01 2.35123863e+01
-350.0 5.71428571e-26 9.43866468e-07 5.78722100e-13 2.05000000e+01 2.82294445e+01
-400.0 5.00000000e-26 -1.89025526e-06 -6.33059279e-13 2.45000000e+01 2.65091953e+01
-100.0 2.00000000e-25 -2.54079961e-07 -1.06771191e-13 9.64000000e+01 1.44072418e+02
-150.0 1.33333333e-25 1.75849799e-07 -4.90948635e-14 1.28700000e+02 1.48726715e+02
-200.0 1.00000000e-25 -3.68258330e-07 4.94075759e-14 2.67000000e+01 3.37832603e+01
-250.0 8.00000000e-26 4.07237550e-07 1.94591343e-13 6.58000000e+01 8.34980850e+01
-300.0 6.66666667e-26 9.97253196e-07 6.23326889e-14 2.25000000e+01 3.43515472e+01
-350.0 5.71428571e-26 -1.13164249e-06 -2.89137852e-15 3.57000000e+01 2.90044823e+01
-400.0 5.00000000e-26 9.30489239e-07 -1.65210322e-13 2.09000000e+01 2.39653358e+01
-100.0 2.00000000e-25 2.17633943e-07 5.95242788e-13 1.01800000e+02 7.94380875e+01
-150.0 1.33333333e-25 1.64081293e-07 -9.95587548e-14 2.68900000e+02 3.26086853e+02
-200.0 1.00000000e-25 -2.83970174e-07 1.00065525e-14 1.51200000e+02 1.14951042e+02
-250.0 8.00000000e-26 -5.93591334e-07 7.26920543e-15 3.65000000e+01 2.92775116e+01
-300.0 6.66666667e-26 2.36937197e-06 -6.90658806e-14 4.84000000e+01 3.50136452e+01
-350.0 5.71428571e-26 5.03176992e-07 -3.35713262e-13 4.22000000e+01 2.94881687e+01
-400.0 5.00000000e-26 -1.73889543e-06 2.11575164e-13 1.01000000e+01 2.77996540e+01
-100.0 2.00000000e-25 1.39305705e-07 -2.15707304e-13 1.68600000e+02 1.89220825e+02
-150.0 1.33333333e-25 3.53297303e-07 -1.40428603e-14 6.67000000e+01 4.95890312e+01
-200.0 1.00000000e-25 2.56868567e-07 -1.21274710e-13 3.18000000e+01 3.01532211e+01
-250.0 8.00000000e-26 1.15057418e-07 2.70113466e-13 3.11000000e+01 3.99619293e+01
-300.0 6.66666667e-26 8.74505584e-07 2.49310994e-13 1.45000000e+01 3.24892235e+01
-350.0 5.71428571e-26 -2.02615853e-06 -2.27949072e-13 2.59000000e+01 2.99225025e+01
-400.0 5.00000000e-26 -2.54029848e-06 3.40454687e-13 2.18000000e+01 2.83978443e+01
-100.0 2.00000000e-25 -2.28576106e-07 -4.71716695e-14 1.00100000e+02 9.20282822e+01
-150.0 1.33333333e-25 2.98600105e-06 3.46943965e-13 4.70000000e+01 3.24671249e+01
-200.0 1.00000000e-25 1.90176069e-06 -5.33785110e-14 2.44000000e+01 2.44163990e+01
-250.0 8.00000000e-26 -9.49439059e-07 -2.43368110e-13 4.76000000e+01 4.02212906e+01
-300.0 6.66666667e-26 -1.23461388e-06 -2.42445655e-13 2.73000000e+01 2.60159054e+01
-350.0 5.71428571e-26 1.62430069e-10 5.03156031e-14 2.44000000e+01 5.47860985e+01
-400.0 5.00000000e-26 -1.50272122e-06 1.83396336e-13 1.69000000e+01 3.78065758e+01
-100.0 2.00000000e-25 5.62786582e-08 -2.28281280e-13 1.57100000e+02 1.32774460e+02
-150.0 1.33333333e-25 3.69891200e-07 -4.92250209e-13 4.02000000e+01 5.30068932e+01
-200.0 1.00000000e-25 -3.02120384e-07 4.18610543e-13 2.95000000e+01 2.78732624e+01
-250.0 8.00000000e-26 4.10020643e-07 3.74011935e-14 8.91000000e+01 5.75415726e+01
-300.0 6.66666667e-26 -2.14418973e-06 -2.94887311e-13 2.43000000e+01 2.59646435e+01
-350.0 5.71428571e-26 8.16179085e-07 -5.37001948e-13 3.34000000e+01 2.42234650e+01
-400.0 5.00000000e-26 -1.28684663e-06 2.09320929e-14 1.24000000e+01 3.38938408e+01
-100.0 2.00000000e-25 3.12331778e-08 -1.11239777e-13 9.73000000e+01 1.10995216e+02
-150.0 1.33333333e-25 -4.60183635e-07 -6.97359994e-14 8.11000000e+01 5.79712067e+01
-200.0 1.00000000e-25 3.05135387e-07 1.32764191e-13 1.47800000e+02 1.51895126e+02
-250.0 8.00000000e-26 -2.68625861e-06 2.08780974e-14 1.81000000e+01 3.88406715e+01
-300.0 6.66666667e-26 -3.46162455e-07 2.65683451e-13 6.45000000e+01 5.24473877e+01
-350.0 5.71428571e-26 2.02511872e-06 1.68618884e-13 1.19000000e+01 2.71273670e+01
-400.0 5.00000000e-26 -1.04070057e-06 2.27189628e-13 1.00000000e+01 3.54245224e+01
-100.0 2.00000000e-25 -5.25065218e-08 -7.47821082e-15 6.61000000e+02 7.20579834e+02
-150.0 1.33333333e-25 4.35433972e-07 9.67989439e-14 1.06000000e+02 1.08201248e+02
-200.0 1.00000000e-25 4.59925289e-07 5.96876575e-13 2.68000000e+01 2.64496441e+01
-250.0 8.00000000e-26 3.23080020e-07 -1.37974109e-13 6.85000000e+01 7.42980804e+01
-300.0 6.66666667e-26 -4.65489990e-07 3.29893517e-13 1.73000000e+01 2.77581692e+01
-350.0 5.71428571e-26 -1.26644537e-06 2.08312013e-13 2.10000000e+01 2.75519085e+01
-400.0 5.00000000e-26 -9.68842443e-07 -7.67340103e-14 1.18000000e+01 2.78556995e+01
-100.0 2.00000000e-25 4.62260122e-07 2.37116462e-13 1.99100000e+02 2.28391190e+02
-150.0 1.33333333e-25 1.01897005e-07 -3.06284519e-13 1.71300000e+02 2.02944443e+02
-200.0 1.00000000e-25 4.60564067e-08 2.12165896e-13 7.90000000e+01 7.62750473e+01
-250.0 8.00000000e-26 2.76236495e-06 5.32227075e-13 5.08000000e+01 3.55011826e+01
-300.0 6.66666667e-26 5.30706465e-08 2.65281679e-13 1.50000000e+01 3.35044975e+01
-350.0 5.71428571e-26 -6.08696958e-07 -2.50489364e-13 2.95000000e+01 5.04968185e+01
-400.0 5.00000000e-26 5.24268572e-07 6.84093857e-13 1.17000000e+01 4.33451881e+01
-100.0 2.00000000e-25 3.52249234e-07 -4.46605224e-13 8.04000000e+01 4.65702095e+01
-150.0 1.33333333e-25 -2.30310118e-07 9.01743678e-14 4.79000000e+01 6.15825310e+01
-200.0 1.00000000e-25 2.55774921e-07 -2.63846269e-14 2.87000000e+01 2.70949154e+01
-250.0 8.00000000e-26 5.04319626e-07 5.94275184e-16 7.01000000e+01 9.42828751e+01
-300.0 6.66666667e-26 -6.03105025e-07 -4.79868459e-13 3.95000000e+01 3.11707478e+01
-350.0 5.71428571e-26 3.01997442e-06 3.48245354e-13 1.19000000e+01 2.81041298e+01
-400.0 5.00000000e-26 3.16785439e-06 2.30884988e-14 4.04000000e+01 2.91972771e+01
-100.0 2.00000000e-25 9.02032866e-08 6.26058157e-14 4.90800000e+02 4.53082520e+02
-150.0 1.33333333e-25 -1.78563800e-06 5.59061373e-14 8.96000000e+01 4.92196922e+01
-200.0 1.00000000e-25 9.37488700e-08 -1.01501251e-14 7.90000000e+01 8.79399719e+01
-250.0 8.00000000e-26 6.54992331e-07 -1.18395165e-13 5.69000000e+01 2.73397865e+01
-300.0 6.66666667e-26 2.17416769e-07 3.10411479e-13 4.02000000e+01 3.80635872e+01
-350.0 5.71428571e-26 -7.36101526e-07 3.57785095e-13 4.63000000e+01 2.82597313e+01
-400.0 5.00000000e-26 -9.56694379e-07 4.90409135e-13 1.91000000e+01 2.74892082e+01
-100.0 2.00000000e-25 1.65833139e-07 -1.28374401e-13 4.43400000e+02 3.88865723e+02
-150.0 1.33333333e-25 2.72760960e-07 1.50480441e-13 5.36000000e+01 3.87351532e+01
-200.0 1.00000000e-25 -4.64878411e-08 -3.43032490e-13 1.27700000e+02 1.32257889e+02
-250.0 8.00000000e-26 3.02884001e-06 -2.92042636e-13 2.77000000e+01 3.02733002e+01
-300.0 6.66666667e-26 1.67095475e-07 3.56217082e-13 5.08000000e+01 5.32775612e+01
-350.0 5.71428571e-26 6.79388467e-07 4.25770859e-14 5.24000000e+01 3.28465080e+01
-400.0 5.00000000e-26 1.51958366e-06 -1.18586471e-13 1.30000000e+01 2.55835533e+01
-100.0 2.00000000e-25 3.71820548e-08 -1.10119851e-14 5.90000000e+02 6.69205444e+02
-150.0 1.33333333e-25 4.74646114e-07 3.01130631e-13 8.58000000e+01 8.29798431e+01
-200.0 1.00000000e-25 -3.10497301e-06 -6.58880690e-13 9.87000000e+01 5.29396935e+01
-250.0 8.00000000e-26 7.38917549e-07 4.51654683e-13 8.06000000e+01 3.13388748e+01
-300.0 6.66666667e-26 -4.62624943e-07 2.44833220e-13 1.38000000e+01 4.09784470e+01
-350.0 5.71428571e-26 1.60739770e-06 -1.34400847e-15 1.89000000e+01 4.10033455e+01
-400.0 5.00000000e-26 3.21920634e-07 -4.42650602e-13 1.01000000e+01 3.24661407e+01
-100.0 2.00000000e-25 -1.10572675e-07 2.92158155e-13 1.36900000e+02 1.23358376e+02
-150.0 1.33333333e-25 -5.33889907e-07 1.20800347e-13 3.84000000e+01 4.60506935e+01
-200.0 1.00000000e-25 1.11079437e-07 3.48971423e-15 1.40800000e+02 2.01299805e+02
-250.0 8.00000000e-26 -1.74769884e-07 9.35464038e-14 5.30000000e+01 3.57518539e+01
-300.0 6.66666667e-26 1.20793715e-06 -5.22292604e-14 5.75000000e+01 2.96195526e+01
-350.0 5.71428571e-26 -2.32503918e-06 8.83388786e-14 1.28000000e+01 3.35863190e+01
-400.0 5.00000000e-26 -7.58752172e-07 -3.71320026e-13 2.61000000e+01 3.15776272e+01
-100.0 2.00000000e-25 -6.93707811e-08 4.81737098e-15 1.84700000e+02 1.65314209e+02
-150.0 1.33333333e-25 4.44229897e-09 9.04471295e-14 2.00600000e+02 2.37789719e+02
-200.0 1.00000000e-25 -3.01339978e-06 1.01525549e-13 2.71000000e+01 3.48481674e+01
-250.0 8.00000000e-26 3.87826937e-07 2.17903199e-13 2.74000000e+01 2.62843304e+01
-300.0 6.66666667e-26 -1.49868086e-07 -1.68123638e-13 1.42000000e+01 2.63299961e+01
-350.0 5.71428571e-26 -2.63227774e-06 2.33252100e-13 4.95000000e+01 3.55615387e+01
-400.0 5.00000000e-26 -1.40395273e-06 1.88334292e-13 1.79000000e+01 3.20893974e+01
-100.0 2.00000000e-25 4.33191438e-08 -5.25963819e-14 5.82100000e+02 5.21514648e+02
-150.0 1.33333333e-25 1.43312327e-07 3.84986531e-13 8.65000000e+01 5.05972023e+01
-200.0 1.00000000e-25 -5.85203637e-08 -4.69293467e-14 1.66200000e+02 2.23476624e+02
-250.0 8.00000000e-26 5.61299760e-07 9.19458970e-14 1.64000000e+01 2.72621250e+01
-300.0 6.66666667e-26 2.09262464e-06 -3.16761373e-13 5.26000000e+01 3.32891655e+01
-350.0 5.71428571e-26 -2.74270624e-06 -2.77591867e-13 1.70000000e+01 2.38247299e+01
-400.0 5.00000000e-26 2.13336161e-07 5.79238546e-13 2.21000000e+01 3.36108780e+01
-100.0 2.00000000e-25 -5.03585795e-08 -2.27286071e-15 3.08900000e+02 3.06850800e+02
-150.0 1.33333333e-25 3.01359282e-07 -7.18117826e-14 6.41000000e+01 7.45998535e+01
-200.0 1.00000000e-25 1.63967588e-07 -2.19757792e-13 9.64000000e+01 2.86084385e+01
-250.0 8.00000000e-26 1.84205483e-07 -4.25762999e-13 2.26000000e+01 2.83459892e+01
-300.0 6.66666667e-26 1.05868915e-06 7.60273445e-14 2.80000000e+01 2.55747185e+01
-350.0 5.71428571e-26 -8.67013430e-07 2.34670939e-14 4.39000000e+01 4.65103798e+01
-400.0 5.00000000e-26 -4.83191798e-07 -7.21485826e-14 9.40000000e+00 4.06571884e+01
-100.0 2.00000000e-25 1.52219144e-08 -1.47410798e-13 4.74400000e+02 4.98731873e+02
-150.0 1.33333333e-25 1.23618765e-07 -4.43607245e-13 1.10900000e+02 1.31468063e+02
-200.0 1.00000000e-25 5.60520874e-09 2.51995235e-13 1.10600000e+02 1.53966064e+02
-250.0 8.00000000e-26 2.30634527e-06 5.09303829e-13 3.67000000e+01 3.21073303e+01
-300.0 6.66666667e-26 3.50688030e-07 8.59251936e-14 2.28000000e+01 2.95181580e+01
-350.0 5.71428571e-26 -5.48414931e-07 -2.40051587e-13 5.13000000e+01 3.63273392e+01
-400.0 5.00000000e-26 2.29804339e-07 3.61208156e-13 1.44000000e+01 3.31069870e+01
-100.0 2.00000000e-25 -8.89890615e-08 -1.02576619e-13 6.49400000e+02 5.85298584e+02
-150.0 1.33333333e-25 -4.30340776e-08 2.05019713e-13 1.36900000e+02 1.08803131e+02
-200.0 1.00000000e-25 -1.84404401e-06 2.94696604e-13 5.45000000e+01 3.14100742e+01
-250.0 8.00000000e-26 3.24808241e-07 2.27786894e-13 1.87000000e+01 3.40470886e+01
-300.0 6.66666667e-26 1.33692480e-06 2.64861295e-13 1.68000000e+01 2.79272289e+01
-350.0 5.71428571e-26 1.33472542e-06 -3.00579196e-13 1.46000000e+01 3.94529800e+01
-400.0 5.00000000e-26 -6.24699592e-07 6.04310435e-14 2.73000000e+01 2.63511600e+01
-100.0 2.00000000e-25 7.60279306e-09 4.75019623e-14 5.95700000e+02 5.83675476e+02
-150.0 1.33333333e-25 -1.17982147e-07 -4.54871264e-13 5.61000000e+01 2.49529552e+01
-200.0 1.00000000e-25 -6.35570725e-07 -1.45115764e-13 2.43000000e+01 3.13334770e+01
-100.0 2.00000000e-25 1.09184985e-07 1.30568387e-13 2.14900000e+02 1.75582611e+02
-150.0 1.33333333e-25 -3.80698967e-07 4.99104334e-13 5.31000000e+01 5.95769615e+01
-200.0 1.00000000e-25 5.75619548e-07 -4.48975923e-13 6.11000000e+01 6.95046997e+01
-250.0 8.00000000e-26 7.40350430e-07 1.40730770e-13 1.82000000e+01 4.80118904e+01
-300.0 6.66666667e-26 1.01788838e-06 9.34037979e-14 1.56000000e+01 2.85002460e+01
-350.0 5.71428571e-26 3.01809522e-06 3.41016722e-14 1.15000000e+01 3.38952255e+01
-400.0 5.00000000e-26 -9.57158768e-07 -2.21967271e-13 3.50000000e+01 3.43801193e+01
-100.0 2.00000000e-25 -7.66134676e-08 -8.01036519e-14 3.43500000e+02 3.78836182e+02
-150.0 1.33333333e-25 1.05987695e-07 -2.78668918e-14 6.88000000e+01 8.93688889e+01
-200.0 1.00000000e-25 -4.37502042e-07 1.81869369e-13 9.18000000e+01 9.26993561e+01
-250.0 8.00000000e-26 1.05783986e-07 -4.72563210e-14 8.17000000e+01 6.58308716e+01
-300.0 6.66666667e-26 -1.37817737e-06 -5.23677147e-13 5.97000000e+01 2.52711220e+01
-350.0 5.71428571e-26 5.16258645e-07 1.45942373e-13 2.06000000e+01 2.89130707e+01
-400.0 5.00000000e-26 -9.50602566e-07 1.91423119e-13 1.01000000e+01 2.86978664e+01
-100.0 2.00000000e-25 -1.53431483e-07 -2.06275080e-13 3.20600000e+02 2.71432770e+02
-150.0 1.33333333e-25 -1.25175271e-06 6.44813183e-13 4.05000000e+01 2.82081757e+01
-200.0 1.00000000e-25 -1.23390750e-06 5.26329477e-14 5.00000000e+01 2.37767315e+01
-250.0 8.00000000e-26 -9.19498294e-07 -5.09021147e-13 2.04000000e+01 3.22232170e+01
-300.0 6.66666667e-26 -6.41032898e-07 -4.04990616e-14 2.94000000e+01 3.08792515e+01
-350.0 5.71428571e-26 -3.53196608e-07 3.78457728e-14 5.41000000e+01 6.84248962e+01
-400.0 5.00000000e-26 -6.27516339e-07 -2.94536739e-13 2.99000000e+01 2.76840401e+01
-100.0 2.00000000e-25 3.26396510e-08 -3.18510150e-14 4.22500000e+02 4.00527435e+02
-150.0 1.33333333e-25 4.77884292e-08 7.38607297e-14 5.43000000e+01 2.88341370e+01
-200.0 1.00000000e-25 -3.33529464e-07 2.13240550e-13 9.63000000e+01 1.00658104e+02
-250.0 8.00000000e-26 -2.66998386e-06 3.39554369e-13 2.24000000e+01 2.62964363e+01
-300.0 6.66666667e-26 1.63022307e-09 -9.40226339e-14 6.32000000e+01 6.99230042e+01
-350.0 5.71428571e-26 1.08026612e-07 -4.92742559e-13 1.17000000e+01 3.00733337e+01
-400.0 5.00000000e-26 9.79049492e-07 -2.15151025e-13 1.78000000e+01 3.39865608e+01
-100.0 2.00000000e-25 1.26611592e-07 3.70354986e-13 1.14400000e+02 1.02794746e+02
-150.0 1.33333333e-25 1.50022571e-06 3.52258577e-13 4.38000000e+01 2.90014629e+01
-200.0 1.00000000e-25 -1.87282279e-07 -2.57211510e-13 1.92200000e+02 2.06616257e+02
-250.0 8.00000000e-26 2.13369020e-07 2.97775583e-13 1.06200000e+02 8.39720917e+01
-300.0 6.66666667e-26 -2.57519151e-06 2.78548850e-13 1.87000000e+01 2.37864304e+01
-350.0 5.71428571e-26 9.31460796e-07 2.25635313e-13 3.94000000e+01 3.05592556e+01
-400.0 5.00000000e-26 1.81156276e-06 -5.02525358e-14 1.02000000e+01 2.68987236e+01
-100.0 2.00000000e-25 6.08761574e-08 1.51953746e-14 5.87700000e+02 5.44291748e+02
-150.0 1.33333333e-25 1.56191810e-07 -1.53517083e-13 2.29600000e+02 2.17482300e+02
-200.0 1.00000000e-25 -2.26463104e-06 3.32660921e-13 3.61000000e+01 3.76923332e+01
-250.0 8.00000000e-26 -5.75032864e-07 -3.89311400e-14 3.59000000e+01 4.55309906e+01
-300.0 6.66666667e-26 -1.62111515e-07 6.27066707e-16 4.86000000e+01 5.77054977e+01
-350.0 5.71428571e-26 6.98435347e-07 -5.89411213e-13 3.16000000e+01 3.41124687e+01
-400.0 5.00000000e-26 5.20528143e-07 2.91929670e-13 2.95000000e+01 2.79391098e+01
-100.0 2.00000000e-25 -1.21118941e-07 -1.20633671e-13 4.51500000e+02 4.57411346e+02
-150.0 1.33333333e-25 -3.28146399e-08 -1.20861065e-13 8.82000000e+01 9.18570099e+01
-200.0 1.00000000e-25 -3.46074881e-07 -1.54439528e-13 1.03500000e+02 1.11131287e+02
-250.0 8.00000000e-26 3.54739299e-07 -4.00164905e-13 7.11000000e+01 9.12885895e+01
-300.0 6.66666667e-26 1.02187510e-06 4.07834570e-13 1.62000000e+01 3.05174007e+01
-350.0 5.71428571e-26 -1.48673962e-08 -1.46405680e-13 2.05000000e+01 2.49229603e+01
-400.0 5.00000000e-26 -4.18506971e-07 1.27727592e-13 4.23000000e+01 2.77256718e+01
-100.0 2.00000000e-25 -1.64151324e-08 1.12538888e-14 7.41400000e+02 6.58633667e+02
-150.0 1.33333333e-25 7.96163953e-08 -4.49026718e-13 5.69000000e+01 7.95077972e+01
-200.0 1.00000000e-25 -1.58885236e-06 -3.59327624e-13 1.41200000e+02 3.44504356e+01
-250.0 8.00000000e-26 -1.83819342e-07 1.15413588e-13 1.73000000e+01 2.84524021e+01
-300.0 6.66666667e-26 8.60081077e-07 2.84424960e-13 4.06000000e+01 4.04682846e+01
-350.0 5.71428571e-26 -8.21539281e-08 2.12988864e-13 1.64000000e+01 3.40842781e+01
-400.0 5.00000000e-26 -6.37485154e-07 9.89545981e-14 1.54000000e+01 3.83832779e+01
-100.0 2.00000000e-25 -8.87445495e-08 -5.37448188e-14 3.77300000e+02 4.25903229e+02
-150.0 1.33333333e-25 1.23414427e-07 2.28214358e-13 2.98900000e+02 2.93816895e+02
-200.0 1.00000000e-25 -1.47950686e-07 -2.25390057e-13 1.57600000e+02 1.52664536e+02
-250.0 8.00000000e-26 -9.06127653e-08 -1.73718510e-13 4.72000000e+01 7.75697708e+01
-300.0 6.66666667e-26 2.91978850e-08 4.99297917e-13 2.77000000e+01 3.42470741e+01
-350.0 5.71428571e-26 -7.38486740e-07 -1.56028633e-13 3.58000000e+01 3.83254776e+01
-400.0 5.00000000e-26 1.69626442e-06 -3.34961827e-13 1.31000000e+01 3.51561737e+01
-100.0 2.00000000e-25 -1.55450554e-07 6.59194044e-13 1.19700000e+02 1.29938614e+02
-150.0 1.33333333e-25 6.59713493e-08 2.83932591e-13 1.39700000e+02 1.27873802e+02
-200.0 1.00000000e-25 2.19735185e-07 -3.11388474e-14 4.41000000e+01 3.82261047e+01
-250.0 8.00000000e-26 -2.49153462e-07 -1.93577176e-13 2.87000000e+01 2.96068096e+01
-300.0 6.66666667e-26 1.34798083e-06 -2.41268393e-13 1.56000000e+01 3.29974365e+01
-350.0 5.71428571e-26 -2.80637783e-06 -1.46314552e-13 5.22000000e+01 2.56965179e+01
-400.0 5.00000000e-26 1.30102244e-07 -4.50052973e-13 4.70000000e+01 3.55980835e+01
-100.0 2.00000000e-25 1.03023652e-08 1.73888223e-13 1.34800000e+02 1.62381042e+02
-150.0 1.33333333e-25 8.30230249e-08 2.69917402e-13 2.54200000e+02 2.88793976e+02
-200.0 1.00000000e-25 -1.78743973e-06 -2.03921922e-13 2.78000000e+01 3.85463638e+01
-250.0 8.00000000e-26 1.47717390e-07 1.50631922e-13 7.39000000e+01 6.73642044e+01
-100.0 2.00000000e-25 9.60709237e-08 -1.33490467e-13 9.28000000e+01 1.36355225e+02
-150.0 1.33333333e-25 -2.56274504e-06 -4.57921186e-13 1.16200000e+02 3.87624512e+01
-200.0 1.00000000e-25 1.29400637e-06 -2.01235036e-13 7.88000000e+01 3.51658058e+01
-250.0 8.00000000e-26 6.86026560e-08 3.61778671e-13 7.91000000e+01 9.57756805e+01
-300.0 6.66666667e-26 -2.07706583e-06 -9.67417014e-14 3.14000000e+01 3.59166374e+01
-350.0 5.71428571e-26 -5.48452398e-07 -4.51906830e-14 5.10000000e+01 9.17383881e+01
-400.0 5.00000000e-26 1.05654402e-06 -7.03408979e-14 9.60000000e+00 2.56728725e+01
-100.0 2.00000000e-25 1.78808140e-07 2.96221324e-13 2.54600000e+02 2.70588867e+02
-150.0 1.33333333e-25 3.39532932e-07 -9.19118208e-14 4.16000000e+01 3.63746490e+01
-200.0 1.00000000e-25 4.83157713e-07 -1.55224912e-13 7.00000000e+01 7.61728058e+01
-250.0 8.00000000e-26 -3.76508730e-07 2.66406656e-13 4.48000000e+01 3.64764252e+01
-300.0 6.66666667e-26 1.58025299e-06 2.24568505e-13 2.91000000e+01 3.27775536e+01
-350.0 5.71428571e-26 3.02131997e-06 -1.77682551e-13 2.95000000e+01 3.71338196e+01
-400.0 5.00000000e-26 1.10759606e-06 -4.97076768e-13 1.51000000e+01 4.68524857e+01
-100.0 2.00000000e-25 -4.37708216e-08 -3.73250127e-13 9.63000000e+01 7.46488419e+01
-150.0 1.33333333e-25 1.67304322e-08 2.08651791e-13 4.33000000e+01 3.05435295e+01
-200.0 1.00000000e-25 -2.01282469e-06 -7.86043949e-15 1.10700000e+02 3.63289452e+01
-250.0 8.00000000e-26 5.32836332e-07 -9.88510907e-14 1.93000000e+01 2.71921978e+01
-300.0 6.66666667e-26 -4.08658288e-07 2.25447196e-13 8.23000000e+01 9.41406479e+01
-350.0 5.71428571e-26 -2.85631369e-07 -4.19586731e-13 1.55000000e+01 3.50648689e+01
-400.0 5.00000000e-26 -9.20649217e-07 5.14444039e-14 2.82000000e+01 2.98564281e+01
-100.0 2.00000000e-25 1.28898790e-07 2.74200843e-13 5.00000000e+02 4.26410187e+02
-150.0 1.33333333e-25 5.26459267e-07 -1.90619039e-13 5.39000000e+01 4.04660339e+01
-200.0 1.00000000e-25 2.51087309e-06 -1.25982224e-13 2.86000000e+01 2.71918926e+01
-250.0 8.00000000e-26 -6.68455176e-07 2.57382619e-13 3.28000000e+01 3.13544426e+01
-300.0 6.66666667e-26 -5.28842826e-07 -1.62088787e-13 3.90000000e+01 4.42330093e+01
-350.0 5.71428571e-26 -1.07910778e-06 3.50852792e-13 1.26000000e+01 2.74125423e+01
-400.0 5.00000000e-26 2.20160775e-07 -1.44695340e-13 2.05000000e+01 3.14346828e+01
-100.0 2.00000000e-25 4.04108025e-07 3.02359098e-13 1.04600000e+02 1.26388962e+02
-150.0 1.33333333e-25 5.10056932e-07 -1.47365235e-13 3.86000000e+01 4.70826797e+01
-200.0 1.00000000e-25 2.42978153e-08 -7.97625923e-14 1.23400000e+02 1.35598495e+02
-250.0 8.00000000e-26 -1.94390044e-06 2.93397321e-14 7.84000000e+01 2.80305672e+01
-300.0 6.66666667e-26 8.61120007e-07 -6.23898423e-13 1.80000000e+01 3.70211868e+01
-350.0 5.71428571e-26 2.18070945e-06 1.01428392e-13 1.14000000e+01 2.84821987e+01
-400.0 5.00000000e-26 5.70750593e-08 -3.94283858e-14 3.60000000e+01 6.15840454e+01
-100.0 2.00000000e-25 -5.83571698e-08 -4.02171910e-14 3.13600000e+02 3.14498749e+02
-150.0 1.33333333e-25 9.53992512e-08 3.57314668e-13 1.81000000e+02 1.82343597e+02
-200.0 1.00000000e-25 1.51029923e-06 6.90877619e-14 7.66000000e+01 3.64363747e+01
-250.0 8.00000000e-26 1.06864633e-07 -3.96357504e-14 1.06900000e+02 1.25239151e+02
-300.0 6.66666667e-26 3.37359591e-07 5.59447801e-14 8.09000000e+01 8.13989563e+01
-350.0 5.71428571e-26 -8.29457036e-09 3.98823948e-13 1.66000000e+01 3.24737968e+01
-400.0 5.00000000e-26 -1.56164243e-06 3.44492715e-13 9.90000000e+00 2.57114811e+01
-100.0 2.00000000e-25 -8.10080323e-08 -1.60318905e-13 1.77400000e+02 1.66789169e+02
-150.0 1.33333333e-25 -4.79795840e-07 -3.98439501e-13 1.56500000e+02 1.62144119e+02
-200.0 1.00000000e-25 4.70921879e-07 6.05897210e-14 2.50000000e+01 2.77374783e+01
-250.0 8.00000000e-26 4.81026362e-07 3.32145229e-13 8.98000000e+01 8.91614609e+01
-300.0 6.66666667e-26 -6.71773890e-08 3.91111293e-14 7.38000000e+01 4.29272423e+01
-350.0 5.71428571e-26 -1.71831569e-07 5.54567610e-13 1.35000000e+01 2.64100533e+01
-400.0 5.00000000e-26 -1.78374994e-06 4.81986575e-13 1.65000000e+01 4.34410896e+01
-100.0 2.00000000e-25 -4.51615243e-08 -1.51093850e-13 3.28900000e+02 3.48785370e+02
-150.0 1.33333333e-25 1.35178318e-06 6.20164478e-13 4.79000000e+01 2.60330181e+01
-200.0 1.00000000e-25 4.54206770e-08 -3.71450104e-13 5.11000000e+01 4.01852379e+01
-250.0 8.00000000e-26 -1.94548520e-07 -4.37209645e-13 8.11000000e+01 8.23281784e+01
-300.0 6.66666667e-26 -2.14911680e-07 5.65349500e-13 8.16000000e+01 5.61396027e+01
-350.0 5.71428571e-26 -4.46893662e-07 4.60152220e-14 2.28000000e+01 4.53370209e+01
-400.0 5.00000000e-26 3.70024186e-07 2.29578146e-13 2.22000000e+01 4.81813698e+01
-100.0 2.00000000e-25 2.49816487e-08 8.29764464e-14 6.32900000e+02 5.85585693e+02
-150.0 1.33333333e-25 -1.08183205e-07 3.73829252e-13 1.00500000e+02 1.06610260e+02
-200.0 1.00000000e-25 2.48818335e-07 6.42030375e-14 1.21800000e+02 9.25329361e+01
-250.0 8.00000000e-26 2.75229755e-07 -9.29179753e-14 7.31000000e+01 6.47866592e+01
-300.0 6.66666667e-26 8.19710941e-07 -1.27717883e-13 2.69000000e+01 2.73471241e+01
-350.0 5.71428571e-26 -1.55863986e-06 7.61106566e-14 1.93000000e+01 3.70998039e+01
-400.0 5.00000000e-26 -1.69132227e-06 -1.68153087e-13 2.66000000e+01 3.19294930e+01
-100.0 2.00000000e-25 -3.16346167e-08 2.00763422e-13 9.05000000e+01 9.68800583e+01
-150.0 1.33333333e-25 1.98926230e-07 3.79208066e-13 4.73000000e+01 3.17504654e+01
-200.0 1.00000000e-25 -3.94814798e-07 -3.70194451e-14 5.77000000e+01 5.56444855e+01
-250.0 8.00000000e-26 1.79047596e-07 -3.50571323e-13 1.96000000e+01 2.59227371e+01
-300.0 6.66666667e-26 -2.16957623e-06 2.49570503e-13 1.39000000e+01 2.25410748e+01
-350.0 5.71428571e-26 1.06277479e-07 -4.45099297e-14 1.92000000e+01 2.56745815e+01
-400.0 5.00000000e-26 -1.42317678e-06 2.12368841e-14 2.82000000e+01 3.63136635e+01
-100.0 2.00000000e-25 7.31087297e-08 -1.44543410e-14 6.80500000e+02 6.19696777e+02
-150.0 1.33333333e-25 -1.82224897e-06 4.87238141e-13 4.23000000e+01 2.95601196e+01
-200.0 1.00000000e-25 2.83925413e-07 -2.00355332e-13 2.72000000e+01 3.32511978e+01
-250.0 8.00000000e-26 -5.21178585e-08 1.75551100e-13 2.66000000e+01 3.76176720e+01
-300.0 6.66666667e-26 -9.13680793e-07 -6.32820565e-14 1.93000000e+01 3.50802498e+01
-350.0 5.71428571e-26 -1.04841025e-06 -3.45905526e-13 2.33000000e+01 2.19365788e+01
-400.0 5.00000000e-26 -1.22513740e-06 1.34547004e-13 1.66000000e+01 2.94593639e+01
-100.0 2.00000000e-25 1.62414594e-07 -1.03506857e-13 1.21500000e+02 1.42089310e+02
-150.0 1.33333333e-25 1.02405053e-08 -3.44045147e-14 6.51000000e+01 7.74036636e+01
-200.0 1.00000000e-25 1.56916279e-07 4.70146830e-13 1.39400000e+02 1.26256645e+02
-250.0 8.00000000e-26 -3.59122101e-07 1.55785582e-13 2.94000000e+01 3.36407814e+01
-300.0 6.66666667e-26 -1.44800293e-06 3.64120081e-13 2.96000000e+01 2.71018658e+01
-350.0 5.71428571e-26 4.47173704e-07 -3.26440659e-13 4.57000000e+01 5.10626297e+01
-400.0 5.00000000e-26 1.15066928e-07 -3.58225237e-13 1.67000000e+01 2.80397053e+01
-100.0 2.00000000e-25 -1.19435693e-07 1.69909133e-15 1.88600000e+02 1.72460373e+02
-150.0 1.33333333e-25 -5.96154663e-08 -2.75163000e-14 2.28500000e+02 2.39873627e+02
-200.0 1.00000000e-25 -1.40903427e-06 1.50741737e-14 4.48000000e+01 2.71253300e+01
-250.0 8.00000000e-26 7.40669108e-08 2.57529730e-13 8.90000000e+01 9.43854218e+01
-300.0 6.66666667e-26 1.07998236e-07 2.58508373e-14 5.09000000e+01 4.91010704e+01
-350.0 5.71428571e-26 -1.67871022e-06 3.19060953e-14 1.85000000e+01 2.93695049e+01
-400.0 5.00000000e-26 3.17975118e-06 1.02408241e-13 2.07000000e+01 6.19462280e+01
-100.0 2.00000000e-25 -5.58358870e-08 1.62149146e-14 5.11300000e+02 4.88654449e+02
-150.0 1.33333333e-25 1.20057500e-07 6.68161042e-14 1.06000000e+02 1.39326996e+02
-200.0 1.00000000e-25 1.71678742e-07 -1.76194350e-13 9.08000000e+01 7.92454605e+01
-250.0 8.00000000e-26 5.80239050e-07 -5.62126255e-13 9.80000000e+01 7.57971725e+01
-300.0 6.66666667e-26 1.56105657e-06 -2.84476505e-14 2.72000000e+01 3.56929436e+01
-350.0 5.71428571e-26 -2.33081627e-06 3.34977985e-13 1.33000000e+01 2.66220951e+01
-400.0 5.00000000e-26 2.11176922e-06 -2.52505173e-13 9.50000000e+00 3.02158604e+01
-100.0 2.00000000e-25 5.72965497e-08 -3.75280497e-14 5.95500000e+02 6.22043823e+02
-150.0 1.33333333e-25 -1.28861983e-06 -4.77790716e-14 1.26000000e+02 3.87831192e+01
-200.0 1.00000000e-25 1.07898770e-06 1.71070820e-13 2.52000000e+01 3.86266098e+01
-250.0 8.00000000e-26 2.31931814e-07 -3.28682031e-13 7.21000000e+01 8.90629349e+01
-300.0 6.66666667e-26 -9.73657865e-07 -3.89451836e-14 1.93000000e+01 3.11432800e+01
-350.0 5.71428571e-26 1.57485726e-07 -5.62710044e-13 6.18000000e+01 3.64240227e+01
-400.0 5.00000000e-26 1.70662861e-06 1.82684348e-13 9.70000000e+00 2.85232620e+01
-100.0 2.00000000e-25 1.98245207e-07 3.75872965e-13 1.01600000e+02 8.96695480e+01
-150.0 1.33333333e-25 -1.47475692e-07 2.28560697e-13 1.30900000e+02 1.24781502e+02
-200.0 1.00000000e-25 -1.37290144e-08 4.29154216e-14 1.36200000e+02 1.58306519e+02
-250.0 8.00000000e-26 -3.41937465e-08 8.08451831e-14 1.09600000e+02 1.07870796e+02
-300.0 6.66666667e-26 -1.37705553e-06 4.52983676e-13 1.36000000e+01 3.69719162e+01
-350.0 5.71428571e-26 8.17944883e-07 4.00005475e-13 2.23000000e+01 3.58033791e+01
-400.0 5.00000000e-26 -1.96631479e-07 7.94639159e-14 1.92000000e+01 2.40952148e+01
-100.0 2.00000000e-25 -1.38349261e-07 8.82339519e-14 9.06000000e+01 9.30678253e+01
-150.0 1.33333333e-25 -4.13126124e-07 -1.34245300e-14 1.13800000e+02 7.67082520e+01
-200.0 1.00000000e-25 2.82201018e-07 2.93975673e-13 1.19700000e+02 1.12268806e+02
-250.0 8.00000000e-26 -6.34737749e-07 -3.53022473e-14 2.03000000e+01 2.22554874e+01
-300.0 6.66666667e-26 1.26119126e-07 -1.22091495e-13 8.59000000e+01 4.01145935e+01
-350.0 5.71428571e-26 -1.68715704e-06 -1.51319578e-14 5.63000000e+01 3.30467224e+01
-400.0 5.00000000e-26 4.33884789e-07 -1.89520230e-13 2.23000000e+01 2.81286983e+01
-100.0 2.00000000e-25 5.34240847e-08 1.21087070e-13 2.22400000e+02 2.22127289e+02
-150.0 1.33333333e-25 -6.18233358e-08 2.41150944e-13 1.93000000e+02 1.83932419e+02
-200.0 1.00000000e-25 -1.04496580e-06 4.30517809e-13 3.16000000e+01 2.53794289e+01
-250.0 8.00000000e-26 8.30721675e-07 -2.03472633e-14 6.44000000e+01 2.85615749e+01
-300.0 6.66666667e-26 -6.29587326e-07 -1.16793624e-13 2.76000000e+01 4.42930031e+01
-350.0 5.71428571e-26 4.28625128e-07 -2.56306056e-15 2.78000000e+01 4.39952698e+01
-400.0 5.00000000e-26 -3.36898879e-07 -2.49794135e-14 2.23000000e+01 4.96947136e+01
-100.0 2.00000000e-25 9.83667370e-08 1.75891985e-13 6.51700000e+02 6.35513428e+02
-150.0 1.33333333e-25 2.08414608e-07 5.21753566e-14 1.24900000e+02 1.23915344e+02
-200.0 1.00000000e-25 4.37369607e-09 2.95874965e-13 9.11000000e+01 8.97156754e+01
-250.0 8.00000000e-26 -1.94175197e-07 -1.86050728e-13 5.56000000e+01 5.04124069e+01
-300.0 6.66666667e-26 7.21827210e-07 -2.79906870e-13 1.53000000e+01 3.08120613e+01
-350.0 5.71428571e-26 3.04960508e-06 2.03754436e-14 1.70000000e+01 2.71343842e+01
-400.0 5.00000000e-26 -7.66083925e-07 1.16722242e-13 2.65000000e+01 3.13768120e+01
-100.0 2.00000000e-25 -1.06917049e-07 -1.70536100e-13 1.01700000e+02 1.45507553e+02
-150.0 1.33333333e-25 -5.26251256e-08 -1.04711494e-13 2.73100000e+02 2.50499466e+02
-200.0 1.00000000e-25 -3.16603848e-06 3.57793735e-13 3.29000000e+01 2.77667789e+01
-250.0 8.00000000e-26 -6.43210303e-07 -2.31607967e-13 1.05800000e+02 9.35604782e+01
-300.0 6.66666667e-26 -6.85135056e-07 -1.07618124e-13 1.65000000e+01 2.57334423e+01
-350.0 5.71428571e-26 -3.94764051e-07 1.72981830e-13 5.46000000e+01 8.96005096e+01
-400.0 5.00000000e-26 -3.80482547e-07 -3.41312015e-13 2.15000000e+01 3.04239883e+01
-100.0 2.00000000e-25 5.01172188e-08 -4.78577128e-14 9.38000000e+01 8.50099335e+01
-150.0 1.33333333e-25 -1.33507243e-07 -5.04326646e-15 2.64500000e+02 2.43955917e+02
-200.0 1.00000000e-25 1.30616879e-07 4.04491100e-13 7.72000000e+01 7.84513702e+01
-250.0 8.00000000e-26 -3.75112574e-07 -6.78878843e-15 4.84000000e+01 7.95159225e+01
-300.0 6.66666667e-26 -6.83993168e-07 -6.15191235e-13 6.61000000e+01 3.53108749e+01
-350.0 5.71428571e-26 1.71237275e-06 -6.57964356e-13 3.18000000e+01 2.58702946e+01
-400.0 5.00000000e-26 -1.34940329e-06 -5.49582138e-13 2.46000000e+01 2.77725773e+01
-100.0 2.00000000e-25 -9.28446546e-08 1.43391021e-14 4.63000000e+02 4.29789886e+02
-150.0 1.33333333e-25 1.89753234e-07 -1.31002072e-13 1.08200000e+02 1.28221680e+02
-200.0 1.00000000e-25 -1.85975003e-06 -2.82591646e-13 3.61000000e+01 2.93847523e+01
-250.0 8.00000000e-26 -1.78431243e-07 -7.14207055e-14 1.00000000e+02 1.14187843e+02
-300.0 6.66666667e-26 -1.02421286e-06 3.29618169e-14 3.44000000e+01 4.01949081e+01
-350.0 5.71428571e-26 -4.54964002e-07 8.04396233e-15 2.45000000e+01 2.69234676e+01
-400.0 5.00000000e-26 1.53627127e-06 1.07085909e-13 1.04000000e+01 3.66137085e+01
-100.0 2.00000000e-25 -1.40477372e-07 -1.45786831e-13 5.34500000e+02 5.40222717e+02
-150.0 1.33333333e-25 1.41913368e-07 2.96714938e-13 2.35200000e+02 2.20183411e+02
-200.0 1.00000000e-25 -3.48545484e-07 7.42773824e-15 9.47000000e+01 6.66949921e+01
-250.0 8.00000000e-26 1.57060501e-07 -4.10583250e-13 1.97000000e+01 2.21821175e+01
-300.0 6.66666667e-26 1.66965215e-06 -1.20167831e-13 2.30000000e+01 2.67660351e+01
-350.0 5.71428571e-26 8.93244863e-07 -1.55526342e-13 1.42000000e+01 2.56216602e+01
-400.0 5.00000000e-26 -1.22147570e-06 1.73771223e-14 9.70000000e+00 4.09078178e+01
-100.0 2.00000000e-25 -1.87001916e-08 8.55109355e-14 4.06300000e+02 3.25540314e+02
-150.0 1.33333333e-25 5.23052819e-08 -2.88284804e-13 3.14400000e+02 3.28296051e+02
-200.0 1.00000000e-25 1.04464484e-06 -1.37366470e-13 1.05000000e+02 7.62139359e+01
-250.0 8.00000000e-26 -3.21403196e-07 -3.84248119e-14 7.06000000e+01 7.35596466e+01
-300.0 6.66666667e-26 -1.78538474e-06 1.38990246e-13 4.08000000e+01 3.33357048e+01
-350.0 5.71428571e-26 -1.05881750e-06 3.62356078e-13 4.60000000e+01 3.05420589e+01
-400.0 5.00000000e-26 -4.49138454e-07 1.56284261e-13 3.76000000e+01 2.80657406e+01
-100.0 2.00000000e-25 -7.74059465e-08 -9.50772103e-14 4.45300000e+02 4.29147888e+02
-150.0 1.33333333e-25 -3.29615240e-07 6.62834535e-14 4.35000000e+01 2.73656025e+01
-200.0 1.00000000e-25 -1.32228040e-06 4.35769254e-13 3.40000000e+01 3.18425713e+01
-250.0 8.00000000e-26 -4.18704076e-07 3.78294292e-14 1.93000000e+01 2.75489998e+01
-300.0 6.66666667e-26 1.94087828e-07 3.61642670e-14 1.24000000e+01 3.12786007e+01
-350.0 5.71428571e-26 1.79420388e-06 -3.12403045e-13 3.47000000e+01 2.66862926e+01
-400.0 5.00000000e-26 -1.88248489e-06 -3.81061217e-13 4.12000000e+01 3.04246464e+01
-100.0 2.00000000e-25 3.62979520e-07 1.59540491e-13 1.62500000e+02 1.55828720e+02
-150.0 1.33333333e-25 -3.43578108e-08 -2.64703821e-13 2.59500000e+02 2.70612488e+02
-200.0 1.00000000e-25 -9.31862090e-08 -3.34852677e-13 1.24000000e+02 9.53779526e+01
-250.0 8.00000000e-26 -3.21170564e-07 3.14726120e-13 1.94000000e+01 3.76622849e+01
-300.0 6.66666667e-26 -3.45772190e-07 -2.15239866e-13 2.23000000e+01 2.55580826e+01
-350.0 5.71428571e-26 -5.37922205e-08 2.15189353e-13 1.18000000e+01 3.19640198e+01
-400.0 5.00000000e-26 2.31101252e-06 2.45363748e-13 1.36000000e+01 3.52214088e+01
-100.0 2.00000000e-25 1.25312063e-08 -1.11759746e-13 1.89500000e+02 2.28637527e+02
-150.0 1.33333333e-25 3.32300235e-07 -1.38690455e-13 1.96200000e+02 1.62461029e+02
-200.0 1.00000000e-25 8.74999557e-08 -3.40526041e-15 1.29900000e+02 1.67936081e+02
-250.0 8.00000000e-26 1.19964782e-06 4.92630338e-13 2.36000000e+01 2.98867435e+01
-300.0 6.66666667e-26 1.19378909e-06 -4.11164795e-13 1.47000000e+01 3.92928619e+01
-350.0 5.71428571e-26 1.57617085e-06 3.02088333e-13 4.27000000e+01 3.71019325e+01
-400.0 5.00000000e-26 1.93865291e-06 -5.58104053e-13 1.74000000e+01 3.38404427e+01
-100.0 2.00000000e-25 -1.49931250e-07 -1.05011172e-13 4.69600000e+02 3.87829620e+02
-150.0 1.33333333e-25 -4.41684769e-08 3.45402653e-13 1.34800000e+02 1.85908676e+02
-200.0 1.00000000e-25 2.06747064e-06 -2.28353174e-13 4.47000000e+01 3.13818512e+01
-250.0 8.00000000e-26 -7.00658340e-07 1.21023140e-13 2.39000000e+01 2.66020298e+01
-300.0 6.66666667e-26 -8.82167690e-07 3.92625220e-13 1.72000000e+01 3.21557045e+01
-350.0 5.71428571e-26 -5.60164928e-08 1.59828250e-13 2.89000000e+01 3.36368141e+01
-400.0 5.00000000e-26 -2.77891304e-06 1.40513648e-13 3.77000000e+01 2.81656208e+01
-100.0 2.00000000e-25 -3.06174975e-07 -8.13765819e-14 1.41600000e+02 1.44431702e+02
-150.0 1.33333333e-25 -7.89647860e-07 -5.79258626e-14 5.39000000e+01 3.83772202e+01
-200.0 1.00000000e-25 2.91594542e-07 7.92265900e-14 1.04900000e+02 8.31688080e+01
-250.0 8.00000000e-26 7.03744618e-09 -3.78398004e-13 6.78000000e+01 8.48144913e+01
-300.0 6.66666667e-26 9.90923088e-07 -2.99247305e-13 3.76000000e+01 2.73437595e+01
-350.0 5.71428571e-26 7.84078296e-08 -1.18255421e-14 1.83000000e+01 2.70003281e+01
-400.0 5.00000000e-26 1.15623680e-06 4.59027100e-13 9.40000000e+00 2.69383392e+01
-100.0 2.00000000e-25 -2.05408899e-07 -1.42317483e-13 1.11700000e+02 8.58378601e+01
-150.0 1.33333333e-25 -3.39617401e-08 2.02453320e-13 2.51300000e+02 2.25451004e+02
-200.0 1.00000000e-25 1.28670273e-07 1.13482797e-13 1.12900000e+02 1.19844093e+02
-250.0 8.00000000e-26 1.77502535e-06 4.55245894e-13 2.26000000e+01 3.48026047e+01
-300.0 6.66666667e-26 -5.22318341e-07 -2.23398676e-13 1.99000000e+01 3.12355633e+01
-350.0 5.71428571e-26 -2.94075910e-06 -3.78686955e-13 1.69000000e+01 3.98624001e+01
-400.0 5.00000000e-26 1.45843103e-06 4.58606010e-14 3.79000000e+01 3.35062523e+01
-100.0 2.00000000e-25 2.80875518e-08 -2.47491831e-14 5.77500000e+02 5.68858398e+02
-150.0 1.33333333e-25 2.10716918e-06 -9.98024779e-14 3.87000000e+01 2.81740150e+01
-200.0 1.00000000e-25 8.80676083e-08 -8.48932255e-14 1.10000000e+02 1.24017731e+02
-250.0 8.00000000e-26 -3.37564362e-07 -4.55134258e-13 6.76000000e+01 5.23767662e+01
-300.0 6.66666667e-26 4.18997743e-08 1.07162503e-13 7.38000000e+01 6.96030960e+01
-350.0 5.71428571e-26 -3.01410050e-06 -9.31308958e-14 3.77000000e+01 3.09999599e+01
-400.0 5.00000000e-26 -9.02818112e-07 2.85362262e-14 1.23000000e+01 2.44748039e+01
-100.0 2.00000000e-25 2.02508801e-08 1.46608998e-13 1.43600000e+02 1.35614853e+02
-150.0 1.33333333e-25 4.80730336e-07 5.86067429e-14 5.94000000e+01 5.58792953e+01
-200.0 1.00000000e-25 -6.36058576e-07 -1.17036807e-14 3.39000000e+01 5.34473877e+01
-250.0 8.00000000e-26 -5.02963807e-07 3.37174106e-14 3.86000000e+01 2.81335621e+01
-300.0 6.66666667e-26 -1.52509603e-07 -1.06023852e-13 5.43000000e+01 5.72754250e+01
-350.0 5.71428571e-26 1.17436782e-06 2.10871073e-13 2.70000000e+01 2.82904587e+01
-400.0 5.00000000e-26 1.49766421e-09 3.57678943e-14 1.38000000e+01 3.62442474e+01
-100.0 2.00000000e-25 -1.18614177e-06 1.29888807e-13 9.84000000e+01 4.13731003e+01
-150.0 1.33333333e-25 -1.19094117e-06 -4.88846954e-13 1.01800000e+02 5.65577812e+01
-200.0 1.00000000e-25 6.03265246e-07 -7.20728181e-14 9.75000000e+01 8.72045898e+01
-250.0 8.00000000e-26 2.24936350e-07 5.17226564e-13 5.17000000e+01 5.95777779e+01
-300.0 6.66666667e-26 -3.47485091e-07 -3.29058042e-13 5.56000000e+01 4.59018288e+01
-350.0 5.71428571e-26 9.73488351e-07 6.20556674e-13 2.40000000e+01 3.01424389e+01
-400.0 5.00000000e-26 9.03506344e-07 3.46947635e-13 1.08000000e+01 3.16512909e+01
-100.0 2.00000000e-25 1.49795802e-08 -2.24922154e-13 4.71400000e+02 4.06517120e+02
-150.0 1.33333333e-25 9.40221820e-07 3.21880646e-14 1.41500000e+02 9.74226990e+01
-200.0 1.00000000e-25 6.04220915e-07 9.51175654e-15 2.81000000e+01 3.46682701e+01
-250.0 8.00000000e-26 -9.30126895e-07 -1.06728614e-13 3.71000000e+01 2.94447746e+01
-300.0 6.66666667e-26 5.06787082e-07 -1.75212309e-13 4.20000000e+01 5.97756157e+01
-350.0 5.71428571e-26 -9.15603167e-07 -1.37846369e-13 1.77000000e+01 3.32413635e+01
-400.0 5.00000000e-26 1.17238326e-06 -1.28566393e-13 2.83000000e+01 3.36364326e+01
-100.0 2.00000000e-25 -5.46166600e-07 4.52212594e-13 1.02400000e+02 7.92945328e+01
-150.0 1.33333333e-25 -1.18098171e-06 4.48246864e-13 6.81000000e+01 3.37829247e+01
-200.0 1.00000000e-25 -1.23598814e-06 -1.17735208e-13 5.61000000e+01 5.07777710e+01
-250.0 8.00000000e-26 3.45788113e-07 2.88162827e-13 1.03400000e+02 1.20531082e+02
-300.0 6.66666667e-26 -2.14233273e-06 3.69548426e-13 1.81000000e+01 2.89489288e+01
-350.0 5.71428571e-26 -1.77060855e-07 9.62954129e-14 4.85000000e+01 8.54630585e+01
-400.0 5.00000000e-26 1.07707604e-06 1.34040560e-13 1.12000000e+01 2.31755600e+01
-100.0 2.00000000e-25 1.39961351e-07 7.42006928e-14 2.39100000e+02 2.36934906e+02
-150.0 1.33333333e-25 -3.90439201e-07 -5.06571949e-14 6.78000000e+01 3.57604828e+01
-200.0 1.00000000e-25 1.47167242e-07 -2.81667583e-13 1.55300000e+02 1.69820114e+02
-250.0 8.00000000e-26 1.18187225e-06 3.23233431e-13 5.89000000e+01 3.24176216e+01
-300.0 6.66666667e-26 -2.82055197e-08 2.17871286e-14 5.88000000e+01 9.23148651e+01
-350.0 5.71428571e-26 -2.34242005e-07 7.77812133e-14 2.55000000e+01 3.35319595e+01
-400.0 5.00000000e-26 5.34573719e-07 -3.88758394e-13 9.70000000e+00 2.96746502e+01
-100.0 2.00000000e-25 1.43440108e-07 6.78949793e-14 6.13900000e+02 5.11775391e+02
-150.0 1.33333333e-25 -2.52744766e-07 -1.61068579e-14 7.77000000e+01 8.40365601e+01
-200.0 1.00000000e-25 1.46433727e-08 2.73153007e-13 7.32000000e+01 9.57258835e+01
-250.0 8.00000000e-26 -6.76529357e-07 -4.70166802e-14 7.30000000e+01 6.21341171e+01
-300.0 6.66666667e-26 4.27979522e-07 -2.64163434e-13 1.46000000e+01 3.00877647e+01
-350.0 5.71428571e-26 -1.10229902e-07 8.85525670e-14 1.07000000e+01 3.08021297e+01
-400.0 5.00000000e-26 1.23351372e-06 -3.88650109e-14 2.43000000e+01 3.86281586e+01
-100.0 2.00000000e-25 1.32681553e-07 -2.60887601e-13 9.66000000e+01 9.87287445e+01
-150.0 1.33333333e-25 -1.20995267e-07 -2.03274538e-13 2.48700000e+02 2.44330566e+02
-200.0 1.00000000e-25 2.02604689e-08 -1.47609265e-13 7.72000000e+01 1.17158173e+02
-250.0 8.00000000e-26 -2.77935079e-06 -6.78400436e-15 2.02000000e+01 3.26779327e+01
-300.0 6.66666667e-26 4.77420919e-07 1.00180768e-13 7.16000000e+01 3.41600342e+01
-350.0 5.71428571e-26 1.19530720e-06 1.54166275e-13 4.48000000e+01 2.71654644e+01
-400.0 5.00000000e-26 2.71321409e-06 2.66976875e-13 3.01000000e+01 3.05217152e+01
-100.0 2.00000000e-25 8.97945647e-08 3.46072303e-13 1.67500000e+02 2.10989975e+02
-150.0 1.33333333e-25 -2.36551426e-07 -3.73598078e-13 1.32100000e+02 1.30900238e+02
-200.0 1.00000000e-25 2.74911681e-07 3.15834097e-14 6.44000000e+01 1.04547462e+02
-250.0 8.00000000e-26 -6.23543755e-07 -1.72851734e-13 1.78000000e+01 2.92189217e+01
-300.0 6.66666667e-26 -4.98739940e-07 -5.27327290e-14 3.57000000e+01 2.56735191e+01
-350.0 5.71428571e-26 -1.86993230e-06 1.48762467e-13 1.80000000e+01 2.58397293e+01
-400.0 5.00000000e-26 -9.81554606e-07 -2.87298599e-13 9.80000000e+00 2.90978756e+01
-100.0 2.00000000e-25 1.40771654e-07 5.71759499e-14 3.45200000e+02 3.37332001e+02
-150.0 1.33333333e-25 2.35870985e-08 1.02552600e-14 3.22500000e+02 3.31501251e+02
-200.0 1.00000000e-25 -5.32461893e-07 1.04080523e-13 4.45000000e+01 2.48617325e+01
-250.0 8.00000000e-26 -9.00467992e-07 2.63076117e-13 3.10000000e+01 3.10141315e+01
-300.0 6.66666667e-26 8.67696656e-07 -8.77942734e-14 1.62000000e+01 2.58070183e+01
-350.0 5.71428571e-26 -1.25929641e-06 -9.21991282e-14 3.18000000e+01 2.79000263e+01
-400.0 5.00000000e-26 1.77783399e-06 -2.48337711e-13 2.07000000e+01 3.18492107e+01
-100.0 2.00000000e-25 -2.92793345e-08 -7.86586056e-14 5.88900000e+02 5.68651733e+02
-150.0 1.33333333e-25 7.81727749e-08 1.33732404e-13 1.75600000e+02 1.57847046e+02
-200.0 1.00000000e-25 -9.05809703e-07 -3.97481125e-13 2.90000000e+01 3.80151901e+01
-250.0 8.00000000e-26 -1.05186388e-07 -7.55554665e-14 2.83000000e+01 3.45563622e+01
-300.0 6.66666667e-26 1.41170894e-07 7.58060151e-14 2.26000000e+01 2.92816353e+01
-350.0 5.71428571e-26 2.30256348e-06 -3.74842438e-13 1.98000000e+01 3.05526772e+01
-400.0 5.00000000e-26 4.99380537e-07 -4.89570265e-13 1.64000000e+01 3.06078930e+01
-100.0 2.00000000e-25 -1.73410459e-07 -9.38306848e-14 8.50000000e+01 1.30181274e+02
-150.0 1.33333333e-25 -2.24038298e-06 -2.34879050e-13 4.17000000e+01 2.65930729e+01
-200.0 1.00000000e-25 -3.58517102e-07 -3.50631084e-13 2.60000000e+01 2.47750626e+01
-250.0 8.00000000e-26 -6.29816306e-07 -3.29275583e-13 8.36000000e+01 5.96472015e+01
-300.0 6.66666667e-26 3.85985416e-07 -1.39904810e-13 5.43000000e+01 5.39417725e+01
-350.0 5.71428571e-26 -1.32124265e-06 2.64494394e-13 3.60000000e+01 2.60412617e+01
-400.0 5.00000000e-26 -8.57635762e-07 -1.66498909e-13 3.44000000e+01 3.61974983e+01
-100.0 2.00000000e-25 5.68194700e-08 1.23297133e-13 4.47500000e+02 4.53916321e+02
-150.0 1.33333333e-25 -1.79983175e-07 -1.31435116e-13 1.47300000e+02 1.07144829e+02
-200.0 1.00000000e-25 -2.35001622e-07 -3.50834188e-13 8.14000000e+01 9.71205750e+01
-250.0 8.00000000e-26 -1.50180064e-07 -3.80228996e-14 9.61000000e+01 9.30674210e+01
-300.0 6.66666667e-26 2.37994800e-06 9.32133746e-14 1.77000000e+01 3.39727211e+01
-350.0 5.71428571e-26 -5.99071107e-07 -1.40357521e-13 3.50000000e+01 3.69465065e+01
-400.0 5.00000000e-26 1.01896514e-07 -3.67473362e-14 1.71000000e+01 3.39003601e+01
-100.0 2.00000000e-25 1.22409762e-07 -1.81332511e-13 1.32800000e+02 1.50139053e+02
-150.0 1.33333333e-25 -3.93458301e-07 -3.16440340e-13 4.65000000e+01 2.67780304e+01
-200.0 1.00000000e-25 -2.57465516e-07 -3.84853355e-13 1.23500000e+02 8.24295349e+01
-250.0 8.00000000e-26 -2.32790126e-06 -3.12786751e-14 1.86000000e+01 4.48651962e+01
-300.0 6.66666667e-26 -6.14335615e-07 -6.44628944e-14 2.11000000e+01 2.44921818e+01
-350.0 5.71428571e-26 4.70894001e-07 4.19020517e-13 2.78000000e+01 3.27985382e+01
-400.0 5.00000000e-26 -2.09948810e-06 -2.44863919e-13 2.30000000e+01 2.47439690e+01
-100.0 2.00000000e-25 6.51459676e-07 8.06230912e-14 2.85200000e+02 2.22565720e+02
-150.0 1.33333333e-25 1.59667856e-07 -4.29486190e-14 2.78100000e+02 2.93916840e+02
-200.0 1.00000000e-25 -1.30895655e-06 6.61626773e-14 2.51000000e+01 3.34963112e+01
-250.0 8.00000000e-26 3.16656106e-08 1.61705144e-13 8.14000000e+01 7.44811554e+01
-300.0 6.66666667e-26 -1.23690263e-06 1.97950273e-13 1.66000000e+01 3.36092529e+01
-350.0 5.71428571e-26 3.40620222e-07 2.76097273e-13 3.21000000e+01 4.20734787e+01
-400.0 5.00000000e-26 -1.64977097e-06 -2.51174146e-13 1.05000000e+01 2.88038750e+01
diff --git a/Paper/AllSkyMC/generate_data.py b/Paper/AllSkyMC/generate_data.py
index 81bc4a3878a9ffefe09ada9a5fb4923e606993d4..23c1589cf181030dd486d21642a4c37a7eff0b26 100644
--- a/Paper/AllSkyMC/generate_data.py
+++ b/Paper/AllSkyMC/generate_data.py
@@ -12,14 +12,14 @@ data_label = '{}_data'.format(label)
 results_file_name = '{}/MCResults_{}.txt'.format(outdir, ID)
 
 # Properties of the GW data
-sqrtSX = 2e-23
+sqrtSX = 1e-23
 tstart = 1000000000
 Tspan = 100*86400
 tend = tstart + Tspan
 
 # Fixed properties of the signal
 F0_center = 30
-F1_center = 1e-10
+F1_center = -1e-10
 F2 = 0
 tref = .5*(tstart+tend)
 
@@ -31,7 +31,7 @@ DeltaF1 = VF1 * np.sqrt(45/4.)/(np.pi*Tspan**2)
 DeltaAlpha = 0.02
 DeltaDelta = 0.02
 
-depths = np.linspace(100, 400, 7)
+depths = np.linspace(100, 400, 9)
 
 nsteps = 50
 run_setup = [((nsteps, 0), 20, False),
@@ -45,7 +45,7 @@ for depth in depths:
     h0 = sqrtSX / float(depth)
     F0 = F0_center + np.random.uniform(-0.5, 0.5)*DeltaF0
     F1 = F1_center + np.random.uniform(-0.5, 0.5)*DeltaF1
-    Alpha_center = np.random.uniform(0, 2*np.pi)
+    Alpha_center = np.random.uniform(DeltaAlpha, 2*np.pi-DeltaAlpha)
     Delta_center = np.arccos(2*np.random.uniform(0, 1)-1)-np.pi/2
     Alpha = Alpha_center + np.random.uniform(-0.5, 0.5)*DeltaAlpha
     Delta = Delta_center + np.random.uniform(-0.5, 0.5)*DeltaDelta
@@ -59,7 +59,6 @@ for depth in depths:
         Delta=Delta, h0=h0, sqrtSX=sqrtSX, psi=psi, phi=phi, cosi=cosi,
         detector='H1,L1')
     data.make_data()
-    predicted_twoF = data.predict_fstat()
 
     startTime = time.time()
     theta_prior = {'F0': {'type': 'unif',
@@ -95,6 +94,6 @@ for depth in depths:
     dF1 = F1 - d['F1']
     runTime = time.time() - startTime
     with open(results_file_name, 'a') as f:
-        f.write('{} {:1.8e} {:1.8e} {:1.8e} {:1.8e} {:1.8e} {}\n'
-                .format(depth, h0, dF0, dF1, predicted_twoF, maxtwoF, runTime))
+        f.write('{} {:1.8e} {:1.8e} {:1.8e} {:1.8e} {}\n'
+                .format(depth, h0, dF0, dF1, maxtwoF, runTime))
     os.system('rm {}/*{}*'.format(outdir, label))
diff --git a/Paper/AllSkyMC/plot_data.py b/Paper/AllSkyMC/plot_data.py
index 37811a586c174cfdd4ab586678a2b7f0055b985c..415e2acf056561f63b985d8dc435b8c2da58d1fb 100644
--- a/Paper/AllSkyMC/plot_data.py
+++ b/Paper/AllSkyMC/plot_data.py
@@ -31,8 +31,7 @@ def binomialConfidenceInterval(N, K, confidence=0.95):
 df_list = []
 for fn in filenames:
     df = pd.read_csv(
-        fn, sep=' ', names=['depth', 'h0', 'dF0', 'dF1', 'twoF_predicted',
-                            'twoF', 'runTime'])
+        fn, sep=' ', names=['depth', 'h0', 'dF0', 'dF1', 'twoF', 'runTime'])
     df['CLUSTER_ID'] = fn.split('_')[1]
     df_list.append(df)
 df = pd.concat(df_list)
@@ -52,9 +51,9 @@ for d in depths:
 
 yerr = np.abs(recovery_fraction - np.array(recovery_fraction_CI).T)
 fig, ax = plt.subplots()
-ax.errorbar(depths, recovery_fraction, yerr=yerr, fmt='sk', marker='s', ms=2,
+ax.errorbar(depths, recovery_fraction, yerr=yerr, fmt='sr', marker='s', ms=2,
             capsize=1, capthick=0.5, elinewidth=0.5,
-            label='Monte-Carlo result')
+            label='Monte-Carlo result', zorder=10)
 
 fname = 'analytic_data.txt'
 if os.path.isfile(fname):
diff --git a/Paper/AllSkyMC/runTimeHist.png b/Paper/AllSkyMC/runTimeHist.png
index ee6df4216d4f111e51301ca2dc30b61a8fb99e33..1335a76b9c0a12c3b73208e637c1d8b7dff68645 100644
Binary files a/Paper/AllSkyMC/runTimeHist.png and b/Paper/AllSkyMC/runTimeHist.png differ
diff --git a/Paper/AllSkyMC/submitfile b/Paper/AllSkyMC/submitfile
index 191a502764a6e221a87d0ccc89d49be609c8587c..2354ed631ad6ac25fcaa1b7fd28994dc2e2cfffd 100644
--- a/Paper/AllSkyMC/submitfile
+++ b/Paper/AllSkyMC/submitfile
@@ -1,12 +1,12 @@
-Executable= repeat.sh
-Arguments= $(Cluster)_$(Process)
+Executable=AllSkyMC_repeat.sh
+Arguments=$(Cluster)_$(Process)
 Universe=vanilla
 Input=/dev/null
 accounting_group = ligo.dev.o2.cw.explore.test
-Output=CollectedOutput/out.$(Process)
-Error=CollectedOutput/err.$(Process)
-Log=CollectedOutput/log.$(Process)
+Output=CollectedOutput/out.$(Cluster).$(Process)
+Error=CollectedOutput/err.$(Cluster).$(Process)
+Log=CollectedOutput/log.$(Cluster).$(Process)
 request_cpus = 1
 request_memory = 16 GB
 
-Queue 100
+Queue 70
diff --git a/Paper/AllSkyMCNoiseOnly/allsky_noise_twoF_histogram.png b/Paper/AllSkyMCNoiseOnly/allsky_noise_twoF_histogram.png
deleted file mode 100644
index 2e4a80ec22349299deb6933f833912fb7db325d9..0000000000000000000000000000000000000000
Binary files a/Paper/AllSkyMCNoiseOnly/allsky_noise_twoF_histogram.png and /dev/null differ
diff --git a/Paper/AllSkyMCNoiseOnly/generate_data.py b/Paper/AllSkyMCNoiseOnly/generate_data.py
index cc26b72bdc649338d211dd25eb64825c116f8979..ec082f540b7d15a0d07787a1c07a811197392878 100644
--- a/Paper/AllSkyMCNoiseOnly/generate_data.py
+++ b/Paper/AllSkyMCNoiseOnly/generate_data.py
@@ -9,17 +9,17 @@ outdir = sys.argv[2]
 
 label = 'run_{}'.format(ID)
 data_label = '{}_data'.format(label)
-results_file_name = '{}/MCResults_{}.txt'.format(outdir, ID)
+results_file_name = '{}/NoiseOnlyMCResults_{}.txt'.format(outdir, ID)
 
 # Properties of the GW data
-sqrtSX = 2e-23
+sqrtSX = 1e-23
 tstart = 1000000000
 Tspan = 100*86400
 tend = tstart + Tspan
 
 # Fixed properties of the signal
 F0_center = 30
-F1_center = 1e-10
+F1_center = -1e-10
 F2 = 0
 tref = .5*(tstart+tend)
 
@@ -28,6 +28,9 @@ VF0 = VF1 = 100
 DeltaF0 = VF0 * np.sqrt(3)/(np.pi*Tspan)
 DeltaF1 = VF1 * np.sqrt(45/4.)/(np.pi*Tspan**2)
 
+DeltaAlpha = 0.02
+DeltaDelta = 0.02
+
 nsteps = 50
 run_setup = [((nsteps, 0), 20, False),
              ((nsteps, 0), 11, False),
@@ -35,21 +38,14 @@ run_setup = [((nsteps, 0), 20, False),
              ((nsteps, 0), 3, False),
              ((nsteps, nsteps), 1, False)]
 
-DeltaAlpha = 0.05
-DeltaDelta = 0.05
 
 h0 = 0
 F0 = F0_center + np.random.uniform(-0.5, 0.5)*DeltaF0
 F1 = F1_center + np.random.uniform(-0.5, 0.5)*DeltaF1
-Alpha = np.random.uniform(0, 2*np.pi)
-Delta = np.arccos(2*np.random.uniform(0, 1)-1)-np.pi/2
-fAlpha = np.random.uniform(0, 1)
-Alpha_min = Alpha - DeltaAlpha*(1-fAlpha)
-Alpha_max = Alpha + DeltaAlpha*fAlpha
-fDelta = np.random.uniform(0, 1)
-Delta_min = Delta - DeltaDelta*(1-fDelta)
-Delta_max = Delta + DeltaDelta*fDelta
-
+Alpha_center = np.random.uniform(DeltaAlpha, 2*np.pi-DeltaAlpha)
+Delta_center = np.arccos(2*np.random.uniform(0, 1)-1)-np.pi/2
+Alpha = Alpha_center + np.random.uniform(-0.5, 0.5)*DeltaAlpha
+Delta = Delta_center + np.random.uniform(-0.5, 0.5)*DeltaDelta
 psi = np.random.uniform(-np.pi/4, np.pi/4)
 phi = np.random.uniform(0, 2*np.pi)
 cosi = np.random.uniform(-1, 1)
@@ -60,25 +56,24 @@ data = pyfstat.Writer(
     Delta=Delta, h0=h0, sqrtSX=sqrtSX, psi=psi, phi=phi, cosi=cosi,
     detector='H1,L1')
 data.make_data()
-predicted_twoF = data.predict_fstat()
 
 startTime = time.time()
 theta_prior = {'F0': {'type': 'unif',
-                      'lower': F0-DeltaF0/2.,
-                      'upper': F0+DeltaF0/2.},
+                      'lower': F0_center-DeltaF0,
+                      'upper': F0_center+DeltaF0},
                'F1': {'type': 'unif',
-                      'lower': F1-DeltaF1/2.,
-                      'upper': F1+DeltaF1/2.},
+                      'lower': F1_center-DeltaF1,
+                      'upper': F1_center+DeltaF1},
                'F2': F2,
                'Alpha': {'type': 'unif',
-                         'lower': Alpha_min,
-                         'upper': Alpha_max},
+                         'lower': Alpha_center-DeltaAlpha,
+                         'upper': Alpha_center+DeltaAlpha},
                'Delta': {'type': 'unif',
-                         'lower': Delta_min,
-                         'upper': Delta_max},
+                         'lower': Delta_center-DeltaDelta,
+                         'upper': Delta_center+DeltaDelta},
                }
 
-ntemps = 1
+ntemps = 2
 log10temperature_min = -1
 nwalkers = 100
 
@@ -96,6 +91,6 @@ dF0 = F0 - d['F0']
 dF1 = F1 - d['F1']
 runTime = time.time() - startTime
 with open(results_file_name, 'a') as f:
-    f.write('{:1.8e} {:1.8e} {:1.8e} {:1.8e} {}\n'
-            .format(dF0, dF1, predicted_twoF, maxtwoF, runTime))
+    f.write('{:1.8e} {:1.8e} {:1.8e} {}\n'
+            .format(dF0, dF1, maxtwoF, runTime))
 os.system('rm {}/*{}*'.format(outdir, label))
diff --git a/Paper/AllSkyMCNoiseOnly/plot_data.py b/Paper/AllSkyMCNoiseOnly/plot_data.py
index 8165be5dd1ad2355967e278aed4a78887b9cf062..ed0bd07eca40600ba6bc66e112d5550468535ff7 100644
--- a/Paper/AllSkyMCNoiseOnly/plot_data.py
+++ b/Paper/AllSkyMCNoiseOnly/plot_data.py
@@ -24,11 +24,11 @@ def maxtwoFinNoise(twoF, Ntrials):
 df_list = []
 for fn in filenames:
     df = pd.read_csv(
-        fn, sep=' ', names=['dF0', 'dF1', 'twoF_predicted',
-                            'twoF', 'runTime'])
+        fn, sep=' ', names=['dF0', 'dF1', 'twoF', 'runTime'])
     df['CLUSTER_ID'] = fn.split('_')[1]
     df_list.append(df)
 df = pd.concat(df_list)
+print 'Number of samples = ', len(df)
 
 fig, ax = plt.subplots()
 ax.hist(df.twoF, bins=50, histtype='step', color='k', normed=True, linewidth=1)
diff --git a/Paper/AllSkyMCNoiseOnly/submitfile b/Paper/AllSkyMCNoiseOnly/submitfile
index 191a502764a6e221a87d0ccc89d49be609c8587c..6add374c6853fd6816ae8ed6dc7690d1d48ef04d 100644
--- a/Paper/AllSkyMCNoiseOnly/submitfile
+++ b/Paper/AllSkyMCNoiseOnly/submitfile
@@ -1,11 +1,11 @@
-Executable= repeat.sh
+Executable= AllSkyMCNoiseOnly_repeat.sh
 Arguments= $(Cluster)_$(Process)
 Universe=vanilla
 Input=/dev/null
 accounting_group = ligo.dev.o2.cw.explore.test
-Output=CollectedOutput/out.$(Process)
-Error=CollectedOutput/err.$(Process)
-Log=CollectedOutput/log.$(Process)
+Output=CollectedOutput/out.$(Cluster).$(Process)
+Error=CollectedOutput/err.$(Cluster).$(Process)
+Log=CollectedOutput/log.$(Cluster).$(Process)
 request_cpus = 1
 request_memory = 16 GB
 
diff --git a/Paper/DirectedMC/repeat.sh b/Paper/DirectedMC/DirectedMC_repeat.sh
similarity index 53%
rename from Paper/DirectedMC/repeat.sh
rename to Paper/DirectedMC/DirectedMC_repeat.sh
index ee17fcaa8b5cf02e2436a18319b959162c9c7afa..0f98c59e2193363a0f61d499da7226571ab60008 100755
--- a/Paper/DirectedMC/repeat.sh
+++ b/Paper/DirectedMC/DirectedMC_repeat.sh
@@ -4,9 +4,8 @@
 export PATH="/home/gregory.ashton/anaconda2/bin:$PATH"
 export MPLCONFIGDIR=/home/gregory.ashton/.config/matplotlib
 
-rm /local/user/gregory.ashton/MCResults*txt 
-for ((n=0;n<10;n++))
+for ((n=0;n<1;n++))
 do
-/home/gregory.ashton/anaconda2/bin/python generate_data.py "$1" /local/user/gregory.ashton --quite --no-template-counting
+/home/gregory.ashton/anaconda2/bin/python generate_data.py "$1" /local/user/gregory.ashton --no-template-counting --no-interactive
 done
-cp /local/user/gregory.ashton/MCResults*txt /home/gregory.ashton/PyFstat/Paper/DirectedMC/CollectedOutput
+cp /local/user/gregory.ashton/MCResults_"$1".txt $(pwd)/CollectedOutput
diff --git a/Paper/DirectedMC/generate_data.py b/Paper/DirectedMC/generate_data.py
index 2b270df8fc05cba4424ffaa7216edccf60d3a8f8..2e4c7ef17d364cff68a3a424f1e3b1675521c4ae 100644
--- a/Paper/DirectedMC/generate_data.py
+++ b/Paper/DirectedMC/generate_data.py
@@ -12,17 +12,17 @@ data_label = '{}_data'.format(label)
 results_file_name = '{}/MCResults_{}.txt'.format(outdir, ID)
 
 # Properties of the GW data
-sqrtSX = 2e-23
+sqrtSX = 1e-23
 tstart = 1000000000
 Tspan = 100*86400
 tend = tstart + Tspan
 
 # Fixed properties of the signal
 F0_center = 30
-F1_center = 1e-10
+F1_center = -1e-10
 F2 = 0
-Alpha = 5e-3
-Delta = 6e-2
+Alpha = np.radians(83.6292)
+Delta = np.radians(22.0144)
 tref = .5*(tstart+tend)
 
 
@@ -30,9 +30,9 @@ VF0 = VF1 = 100
 DeltaF0 = VF0 * np.sqrt(3)/(np.pi*Tspan)
 DeltaF1 = VF1 * np.sqrt(45/4.)/(np.pi*Tspan**2)
 
-depths = np.linspace(100, 400, 7)
+depths = np.linspace(100, 400, 9)
 
-nsteps = 50
+nsteps = 25
 run_setup = [((nsteps, 0), 20, False),
              ((nsteps, 0), 7, False),
              ((nsteps, 0), 2, False),
@@ -53,7 +53,6 @@ for depth in depths:
         Delta=Delta, h0=h0, sqrtSX=sqrtSX, psi=psi, phi=phi, cosi=cosi,
         detector='H1,L1')
     data.make_data()
-    predicted_twoF = data.predict_fstat()
 
     startTime = time.time()
     theta_prior = {'F0': {'type': 'unif',
@@ -80,11 +79,12 @@ for depth in depths:
         log10temperature_min=log10temperature_min)
     mcmc.run(run_setup=run_setup, create_plots=False, log_table=False,
              gen_tex_table=False)
+    mcmc.print_summary()
     d, maxtwoF = mcmc.get_max_twoF()
     dF0 = F0 - d['F0']
     dF1 = F1 - d['F1']
     runTime = time.time() - startTime
     with open(results_file_name, 'a') as f:
-        f.write('{} {:1.8e} {:1.8e} {:1.8e} {:1.8e} {:1.8e} {}\n'
-                .format(depth, h0, dF0, dF1, predicted_twoF, maxtwoF, runTime))
+        f.write('{} {:1.8e} {:1.8e} {:1.8e} {:1.8e} {}\n'
+                .format(depth, h0, dF0, dF1, maxtwoF, runTime))
     os.system('rm {}/*{}*'.format(outdir, label))
diff --git a/Paper/DirectedMC/plot_data.py b/Paper/DirectedMC/plot_data.py
index fe9a2e39efe3dccfd963ba6a5a0841565ecd8a4d..6e22b9bde654c971d213e753b1a890ebfec42955 100644
--- a/Paper/DirectedMC/plot_data.py
+++ b/Paper/DirectedMC/plot_data.py
@@ -31,10 +31,12 @@ def binomialConfidenceInterval(N, K, confidence=0.95):
 df_list = []
 for fn in filenames:
     df = pd.read_csv(
-        fn, sep=' ', names=['depth', 'h0', 'dF0', 'dF1', 'twoF_predicted',
-                            'twoF', 'runTime'])
+        fn, sep=' ', names=['depth', 'h0', 'dF0', 'dF1', 'twoF', 'runTime'])
     df['CLUSTER_ID'] = fn.split('_')[1]
-    df_list.append(df)
+    if len(df) != 9:
+        print len(df), fn
+    else:
+        df_list.append(df)
 df = pd.concat(df_list)
 
 twoFstar = 60
@@ -52,9 +54,9 @@ for d in depths:
 
 yerr = np.abs(recovery_fraction - np.array(recovery_fraction_CI).T)
 fig, ax = plt.subplots()
-ax.errorbar(depths, recovery_fraction, yerr=yerr, fmt='sk', marker='s', ms=2,
+ax.errorbar(depths, recovery_fraction, yerr=yerr, fmt='sr', marker='s', ms=2,
             capsize=1, capthick=0.5, elinewidth=0.5,
-            label='Monte-Carlo result')
+            label='Monte-Carlo result', zorder=10)
 
 fname = 'analytic_data.txt'
 if os.path.isfile(fname):
diff --git a/Paper/DirectedMC/runTimeHist.png b/Paper/DirectedMC/runTimeHist.png
index 13cb78f5b50209ae275f7dda07dfe150d0f42403..38b0640185d0a10a7ee1148f0e85ccedcae5c62b 100644
Binary files a/Paper/DirectedMC/runTimeHist.png and b/Paper/DirectedMC/runTimeHist.png differ
diff --git a/Paper/DirectedMC/submitfile b/Paper/DirectedMC/submitfile
index 7f057b75593f21a6a3a04b6c577f164c038340e0..e468d6d7b30eff9fdb725c4ef9719404bf2d3c71 100644
--- a/Paper/DirectedMC/submitfile
+++ b/Paper/DirectedMC/submitfile
@@ -1,12 +1,12 @@
-Executable= repeat.sh
-Arguments= $(Cluster)_$(Process)
+Executable=DirectedMC_repeat.sh
+Arguments=$(Cluster)_$(Process)
 Universe=vanilla
 Input=/dev/null
 accounting_group = ligo.dev.o2.cw.explore.test
-Output=CollectedOutput/out.$(Process)
-Error=CollectedOutput/err.$(Process)
-Log=CollectedOutput/log.$(Process)
+Output=CollectedOutput/out.$(Cluster).$(Process)
+Error=CollectedOutput/err.$(Cluster).$(Process)
+Log=CollectedOutput/log.$(Cluster).$(Process)
 request_cpus = 1
-request_memory = 8 GB
+request_memory = 16 GB
 
-Queue 100
+Queue 6
diff --git a/Paper/AllSkyMCNoiseOnly/repeat.sh b/Paper/DirectedMCNoiseOnly/DirectedMCNoiseOnly_repeat.sh
similarity index 57%
rename from Paper/AllSkyMCNoiseOnly/repeat.sh
rename to Paper/DirectedMCNoiseOnly/DirectedMCNoiseOnly_repeat.sh
index 5f43c35213b7e51665a94cdbbc5d67fc9b7b1e3c..7b4d26d400c71a2f0d5c9a86e624a66fdbf3ca52 100755
--- a/Paper/AllSkyMCNoiseOnly/repeat.sh
+++ b/Paper/DirectedMCNoiseOnly/DirectedMCNoiseOnly_repeat.sh
@@ -4,9 +4,8 @@
 export PATH="/home/gregory.ashton/anaconda2/bin:$PATH"
 export MPLCONFIGDIR=/home/gregory.ashton/.config/matplotlib
 
-rm /local/user/gregory.ashton/MCResults*txt 
 for ((n=0;n<100;n++))
 do
-/home/gregory.ashton/anaconda2/bin/python generate_data.py "$1" /local/user/gregory.ashton --quite --no-template-counting
+/home/gregory.ashton/anaconda2/bin/python generate_data.py "$1" /local/user/gregory.ashton --no-template-counting --no-interactive
 done
-cp /local/user/gregory.ashton/MCResults*txt /home/gregory.ashton/PyFstat/Paper/AllSkyMCNoiseOnly/CollectedOutput
+cp /local/user/gregory.ashton/NoiseOnlyMCResults_"$1".txt $(pwd)/CollectedOutput
diff --git a/Paper/DirectedMCNoiseOnly/generate_data.py b/Paper/DirectedMCNoiseOnly/generate_data.py
index 952ccd4cfac6276b1c3251d66bbdeddfbb64209d..5e388df7d554e62fe381c994e0dda3864aea3fd8 100644
--- a/Paper/DirectedMCNoiseOnly/generate_data.py
+++ b/Paper/DirectedMCNoiseOnly/generate_data.py
@@ -10,27 +10,27 @@ outdir = sys.argv[2]
 
 label = 'run_{}'.format(ID)
 data_label = '{}_data'.format(label)
-results_file_name = '{}/MCResults_{}.txt'.format(outdir, ID)
+results_file_name = '{}/NoiseOnlyMCResults_{}.txt'.format(outdir, ID)
 
 # Properties of the GW data
-sqrtSX = 2e-23
+sqrtSX = 1e-23
 tstart = 1000000000
 Tspan = 100*86400
 tend = tstart + Tspan
 
 # Fixed properties of the signal
 F0_center = 30
-F1_center = 1e-10
+F1_center = -1e-10
 F2 = 0
-Alpha = 5e-3
-Delta = 6e-2
+Alpha = np.radians(83.6292)
+Delta = np.radians(22.0144)
 tref = .5*(tstart+tend)
 
 VF0 = VF1 = 100
 DeltaF0 = VF0 * np.sqrt(3)/(np.pi*Tspan)
 DeltaF1 = VF1 * np.sqrt(45/4.)/(np.pi*Tspan**2)
 
-nsteps = 20
+nsteps = 25
 run_setup = [((nsteps, 0), 20, False),
              ((nsteps, 0), 7, False),
              ((nsteps, 0), 2, False),
@@ -50,21 +50,20 @@ data = pyfstat.Writer(
     Delta=Delta, h0=h0, sqrtSX=sqrtSX, psi=psi, phi=phi, cosi=cosi,
     detector='H1,L1')
 data.make_data()
-predicted_twoF = data.predict_fstat()
 
 startTime = time.time()
 theta_prior = {'F0': {'type': 'unif',
-                      'lower': F0-DeltaF0/2.,
-                      'upper': F0+DeltaF0/2.},
+                      'lower': F0_center-DeltaF0,
+                      'upper': F0_center+DeltaF0},
                'F1': {'type': 'unif',
-                      'lower': F1-DeltaF1/2.,
-                      'upper': F1+DeltaF1/2.},
+                      'lower': F1_center-DeltaF1,
+                      'upper': F1_center+DeltaF1},
                'F2': F2,
                'Alpha': Alpha,
                'Delta': Delta
                }
 
-ntemps = 1
+ntemps = 2
 log10temperature_min = -1
 nwalkers = 100
 
@@ -77,11 +76,12 @@ mcmc = pyfstat.MCMCFollowUpSearch(
     log10temperature_min=log10temperature_min)
 mcmc.run(run_setup=run_setup, create_plots=False, log_table=False,
          gen_tex_table=False)
+mcmc.print_summary()
 d, maxtwoF = mcmc.get_max_twoF()
 dF0 = F0 - d['F0']
 dF1 = F1 - d['F1']
 runTime = time.time() - startTime
 with open(results_file_name, 'a') as f:
-    f.write('{:1.8e} {:1.8e} {:1.8e} {:1.8e} {}\n'
-            .format(dF0, dF1, predicted_twoF, maxtwoF, runTime))
+    f.write('{:1.8e} {:1.8e} {:1.8e} {}\n'
+            .format(dF0, dF1, maxtwoF, runTime))
 os.system('rm {}/*{}*'.format(outdir, label))
diff --git a/Paper/DirectedMCNoiseOnly/repeat.sh b/Paper/DirectedMCNoiseOnly/repeat.sh
deleted file mode 100755
index 0142257850dd0ab734558a72caa5ffae365cedfa..0000000000000000000000000000000000000000
--- a/Paper/DirectedMCNoiseOnly/repeat.sh
+++ /dev/null
@@ -1,12 +0,0 @@
-#!/bin/bash
-
-. /home/gregory.ashton/lalsuite-install/etc/lalapps-user-env.sh
-export PATH="/home/gregory.ashton/anaconda2/bin:$PATH"
-export MPLCONFIGDIR=/home/gregory.ashton/.config/matplotlib
-
-rm /local/user/gregory.ashton/MCResults*txt 
-for ((n=0;n<100;n++))
-do
-/home/gregory.ashton/anaconda2/bin/python generate_data.py "$1" /local/user/gregory.ashton --quite --no-template-counting
-done
-cp /local/user/gregory.ashton/MCResults*txt /home/gregory.ashton/PyFstat/Paper/DirectedMCNoiseOnly/CollectedOutput
diff --git a/Paper/DirectedMCNoiseOnly/submitfile b/Paper/DirectedMCNoiseOnly/submitfile
index 7f057b75593f21a6a3a04b6c577f164c038340e0..77d69ee4d0b86673b02ec07c08b2ad850c054343 100644
--- a/Paper/DirectedMCNoiseOnly/submitfile
+++ b/Paper/DirectedMCNoiseOnly/submitfile
@@ -1,12 +1,12 @@
-Executable= repeat.sh
+Executable= DirectedMCNoiseOnly_repeat.sh
 Arguments= $(Cluster)_$(Process)
 Universe=vanilla
 Input=/dev/null
 accounting_group = ligo.dev.o2.cw.explore.test
-Output=CollectedOutput/out.$(Process)
-Error=CollectedOutput/err.$(Process)
-Log=CollectedOutput/log.$(Process)
+Output=CollectedOutput/out.$(Cluster).$(Process)
+Error=CollectedOutput/err.$(Cluster).$(Process)
+Log=CollectedOutput/log.$(Cluster).$(Process)
 request_cpus = 1
-request_memory = 8 GB
+request_memory = 16 GB
 
-Queue 100
+Queue 1
diff --git a/Paper/allsky_noise_twoF_histogram.png b/Paper/allsky_noise_twoF_histogram.png
new file mode 100644
index 0000000000000000000000000000000000000000..9623605b5845b4664f726cfdd5a397ff18b21218
Binary files /dev/null and b/Paper/allsky_noise_twoF_histogram.png differ
diff --git a/Paper/allsky_recovery.png b/Paper/allsky_recovery.png
index aef4bf549a6be72b4719f42ca2b2db77048eea65..2eff0db48b4af9e4d5600640ac2e96d8c235ddda 100644
Binary files a/Paper/allsky_recovery.png and b/Paper/allsky_recovery.png differ
diff --git a/Paper/directed_noise_twoF_histogram.png b/Paper/directed_noise_twoF_histogram.png
index e8b23a5f85c29004d657dc6b578ae161fcdb22f2..9dfd21c9f0af3f517363d7f6333470d7effab6d3 100644
Binary files a/Paper/directed_noise_twoF_histogram.png and b/Paper/directed_noise_twoF_histogram.png differ
diff --git a/Paper/directed_recovery.png b/Paper/directed_recovery.png
index d6c0f2be4c7a40db63e50397a34a428f77d26c9a..6799cffed4b184a9851ce36d916929ab9d362687 100644
Binary files a/Paper/directed_recovery.png and b/Paper/directed_recovery.png differ
diff --git a/pyfstat.py b/pyfstat.py
index f49e6ba39b3c53dfe39c05f68d4b46150d23e533..0c664345acdb550ae953d66188cbc6e6956b98bc 100755
--- a/pyfstat.py
+++ b/pyfstat.py
@@ -52,6 +52,8 @@ else:
 parser = argparse.ArgumentParser()
 parser.add_argument("-q", "--quite", help="Decrease output verbosity",
                     action="store_true")
+parser.add_argument("--no-interactive", help="Don't use interactive output",
+                    action="store_true")
 parser.add_argument("-c", "--clean", help="Don't use cached data",
                     action="store_true")
 parser.add_argument("-u", "--use-old-data", action="store_true")
@@ -61,7 +63,7 @@ parser.add_argument('unittest_args', nargs='*')
 args, unknown = parser.parse_known_args()
 sys.argv[1:] = args.unittest_args
 
-if args.quite:
+if args.quite or args.no_interactive:
     def tqdm(x, *args, **kwargs):
         return x
 
@@ -431,7 +433,7 @@ class ComputeFstat(object):
         detector_names = list(set([d.header.name for d in SFTCatalog.data]))
         self.detector_names = detector_names
         SFT_timestamps = [d.header.epoch for d in SFTCatalog.data]
-        if args.quite is False:
+        if args.quite is False and args.no_interactive is False:
             try:
                 from bashplotlib.histogram import plot_hist
                 print('Data timestamps histogram:')
@@ -1749,17 +1751,18 @@ class MCMCSearch(BaseSearchClass):
     def print_summary(self):
         max_twoFd, max_twoF = self.get_max_twoF()
         median_std_d = self.get_median_stds()
-        print('\nSummary:')
+        logging.info('Summary:')
         if hasattr(self, 'theta0_idx'):
-            print('theta0 index: {}'.format(self.theta0_idx))
-        print('Max twoF: {} with parameters:'.format(max_twoF))
+            logging.info('theta0 index: {}'.format(self.theta0_idx))
+        logging.info('Max twoF: {} with parameters:'.format(max_twoF))
         for k in np.sort(max_twoFd.keys()):
             print('  {:10s} = {:1.9e}'.format(k, max_twoFd[k]))
-        print('\nMedian +/- std for production values')
+        logging.info('Median +/- std for production values')
         for k in np.sort(median_std_d.keys()):
             if 'std' not in k:
-                print('  {:10s} = {:1.9e} +/- {:1.9e}'.format(
+                logging.info('  {:10s} = {:1.9e} +/- {:1.9e}'.format(
                     k, median_std_d[k], median_std_d[k+'_std']))
+        logging.info('\n')
 
     def CF_twoFmax(self, theta, twoFmax, ntrials):
         Fmax = twoFmax/2.0