diff --git a/docs/fully_coherent_search.md b/docs/fully_coherent_search.md index 6f274d60077c5f63fa3080a308e6d14ddec88eec..461649bda30272ad86df5c801922f03a26a6f6a8 100644 --- a/docs/fully_coherent_search.md +++ b/docs/fully_coherent_search.md @@ -66,11 +66,11 @@ simply called `nsteps = [500, 1000]`). Finally, the simulation run for `500` steps of burn-in then `1000` steps of production to estimate the posterior. Passing all this to the MCMC search, we also need to give it a label and -directory to save the data and provide `sftlabel` and `sftdir` which defines -which data to use in the search +directory to save the data and provide `sftfilepath`, a string matching +the data to use in the search ``` -mcmc = MCMCSearch('fully_coherent', 'data', sftlabel='basic', sftdir='data', +mcmc = MCMCSearch('fully_coherent', 'data', sftfilepath='data/*basic*sft', theta_prior=theta_prior, tref=tref, tstart=tstart, tend=tend, nsteps=nsteps, nwalkers=nwalkers, ntemps=ntemps, scatter_val=1e-10) diff --git a/docs/fully_coherent_search_on_glitching_data.md b/docs/fully_coherent_search_on_glitching_data.md index 8e5ca97f42c9437a5198fa18969455307137c09b..4332aeb943082322ff823b5cab092df97add6a25 100644 --- a/docs/fully_coherent_search_on_glitching_data.md +++ b/docs/fully_coherent_search_on_glitching_data.md @@ -47,11 +47,10 @@ nwalkers = 500 nsteps = [100, 100, 100] mcmc = MCMCSearch('fully_coherent_on_glitching_data', 'data', - sftlabel='glitch', sftdir='data', + sftfilepath='data/*_glitch*.sft', theta_prior=theta_prior, tref=tref, tstart=tstart, tend=tend, - nsteps=nsteps, nwalkers=nwalkers, ntemps=ntemps, betas=betas, - scatter_val=1e-6) - + nsteps=nsteps, nwalkers=nwalkers, ntemps=ntemps, + log10temperature_min=log10temperature_min, scatter_val=1e-6) mcmc.run() mcmc.plot_corner(add_prior=True) ``` diff --git a/examples/fully_coherent_search.py b/examples/fully_coherent_search.py index 8e6b4227d262f8ec67d3cb9a8089a2381662f345..9b11b66b576023736585d9aa453ca7fe4f2f2970 100644 --- a/examples/fully_coherent_search.py +++ b/examples/fully_coherent_search.py @@ -9,7 +9,7 @@ tref = 362750407.0 tstart = 1000000000 duration = 100*86400 -tend = tstart = duration +tend = tstart + duration theta_prior = {'F0': {'type': 'norm', 'loc': F0, 'scale': abs(1e-6*F0)}, 'F1': {'type': 'norm', 'loc': F1, 'scale': abs(1e-6*F1)}, @@ -22,7 +22,7 @@ ntemps = 1 nwalkers = 100 nsteps = [100, 500, 1000] -mcmc = MCMCSearch('fully_coherent', 'data', sftlabel='basic', sftdir='data', +mcmc = MCMCSearch('fully_coherent', 'data', sftfilepath='data/*basic*sft', theta_prior=theta_prior, tref=tref, tstart=tstart, tend=tend, nsteps=nsteps, nwalkers=nwalkers, ntemps=ntemps, scatter_val=1e-10) diff --git a/examples/fully_coherent_search_on_glitching_data.py b/examples/fully_coherent_search_on_glitching_data.py index 2ea029b0af205bd5ff8d7a5f0c35ade1eee9687a..fbb8b349d66f5decac87e82034b0352ed1397aea 100644 --- a/examples/fully_coherent_search_on_glitching_data.py +++ b/examples/fully_coherent_search_on_glitching_data.py @@ -10,7 +10,7 @@ tref = 362750407.0 tstart = 1000000000 duration = 100*86400 -tend = tstart = duration +tend = tstart + duration theta_prior = {'F0': {'type': 'unif', 'lower': F0-5e-5, 'upper': F0+5e-5}, @@ -21,15 +21,15 @@ theta_prior = {'F0': {'type': 'unif', 'lower': F0-5e-5, } ntemps = 10 -betas = np.logspace(0, -30, ntemps) +log10temperature_min = -30 nwalkers = 500 nsteps = [100, 100, 100] mcmc = MCMCSearch('fully_coherent_on_glitching_data', 'data', - sftlabel='glitch', sftdir='data', + sftfilepath='data/*_glitch*.sft', theta_prior=theta_prior, tref=tref, tstart=tstart, tend=tend, - nsteps=nsteps, nwalkers=nwalkers, ntemps=ntemps, betas=betas, - scatter_val=1e-6) + nsteps=nsteps, nwalkers=nwalkers, ntemps=ntemps, + log10temperature_min=log10temperature_min, scatter_val=1e-6) mcmc.run() mcmc.plot_corner(add_prior=True) mcmc.print_summary() diff --git a/examples/semi_coherent_glitch_search.py b/examples/semi_coherent_glitch_search.py index b4dc3b727de34433042c3e85bbc8cf0b9520c538..435ea6b4f7edfa77ba9f13981ba920784f8bf69d 100644 --- a/examples/semi_coherent_glitch_search.py +++ b/examples/semi_coherent_glitch_search.py @@ -28,7 +28,7 @@ nwalkers = 500 nsteps = [1000, 1000, 1000] mcmc = pyfstat.MCMCGlitchSearch( - 'semi_coherent_glitch_search', 'data', sftlabel='glitch', sftdir='data', + 'semi_coherent_glitch_search', 'data', sftfilepath='data/*_glitch*sft', theta_prior=theta_prior, tref=tref, tstart=tstart, tend=tend, nsteps=nsteps, nwalkers=nwalkers, scatter_val=1e-10, nglitch=1) diff --git a/examples/semi_coherent_twoglitch_search.py b/examples/semi_coherent_twoglitch_search.py index 0c44cb16b8f3a34f08aa65219c7f8ad4de51c6c2..6b0b77a3a3992df5069a5a61f95f5ca3e7596041 100644 --- a/examples/semi_coherent_twoglitch_search.py +++ b/examples/semi_coherent_twoglitch_search.py @@ -28,8 +28,8 @@ nwalkers = 100 nsteps = [500, 500, 500] mcmc = pyfstat.MCMCGlitchSearch( - 'semi_coherent_twoglitch_search', 'data', sftlabel='twoglitch', - sftdir='data', theta_prior=theta_prior, tref=tref, tstart=tstart, + 'semi_coherent_twoglitch_search', 'data', sftfilepath='data/*twoglitch*sft', + theta_prior=theta_prior, tref=tref, tstart=tstart, tend=tend, nsteps=nsteps, nwalkers=nwalkers, scatter_val=1e-10, nglitch=2) mcmc.run()